

Advocating for

Fair, Affordable, Sustainable

Energy Policy


Why HIA for New Orleans?

Where Does
Energy
Come
From?

Replacement Choices

Natural Gas Plant

On Shore Wind

Off Shore Wind

Waste to Energy

Solar Farm

Hybrid Solar Natural Gas

What's Feasible for New Orleans?

- Cost
- Pollutants
- Traffic
- Accidents
- Area needed for project
- Can it meet the need?

Cost

	Prop- osed	Alt 1	Alt 2	Alt 3	Alt 4	Alt 5
Fuel Source	CT gas plant	On- shore Wind	Off- shore wind	Waste to energy	Solar Farm	Hybrid Solar gas plant
Wholesale Cost by kWh	.\$04	\$.05	\$.20	\$.08	\$.07	\$.06
Pass through fuel cost per kWh	\$.03-\$. 0765	None	None	None	None	\$.024-\$. 0612

Pollution

	Prop- osed	Alt 1	Alt 2	Alt 3	Alt 4	Alt 5
Fuel Source	CT gas plant	On- shore Wind	Off- shore wind	Waste to energy	Solar Farm	Hybrid Solar gas plant
Criteria pollutants	NOx SOx CO CO ₂ CH ₄ N ₂ O VOCs	None	None	NOx SOx CO CO ₂ CH ₄ N ₂ O VOCs PM	None	NOx SOx CO CO ₂ CH ₄ N ₂ O VOCs

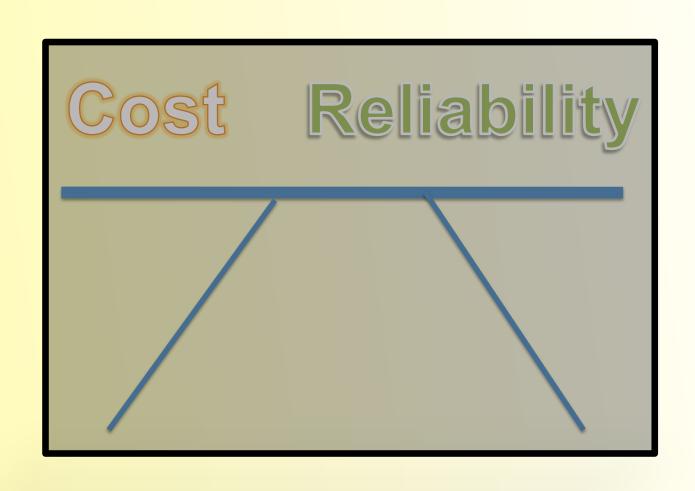
Traffic and Accidents

	Prop- osed	Alt 1	Alt 2	Alt 3	Alt 4	Alt 5
Fuel Source	CT gas plant	On- shore Wind	Off- shore wind	Waste to energy	Solar Farm	Hybrid Solar gas plant
Traffic impact	Depends on siting	Traffic decrease	No Traffic	Traffic pattern shift to industrial area	No traffic	Depends on siting
Accident risk	Storm/ flood, comb- ustion	Storms	Storms, salt water	Storm/ flood, combustion	Storm /flood	Storm/ flood, comb- ustion

Space and MWs

	Prop- osed	Alt 1	Alt 2	Alt 3	Alt 4	Alt 5
Fuel Source	CT gas plant	On- shore Wind	Off- shore wind	Waste to energy	Solar Farm	Hybrid Solar gas plant
Area needed	3-5 acres per unit	60 acres/ MW	60 /MW		1 acres/ MW	TBD
MW Capacity Potential	200MW	200 MW	200MW	26MW	200 MW	200MW

Managing the HIA Process


 Narrowed Scoping to Proposed project and 3 alternatives

- ✓ Hybrid Gas Solar Plant
- ✓ Waste to Energy
- ✓ Solar Farm

Benefit to Council Benefit to Community

- Addresses costs of energy that are not included in traditional resource planning
- Allows a space to talk about health impacts of our energy choices
- Provides new information to Council and Entergy about how to mitigate for potential health impacts of different energy choices
- Ties in with current resource planning policy
 - Integrated Resource Planning

Historic Utility Planning: Black box process

Integrated Resource Planning Basics

- Repeats
 - A new plan is created every 3 years
- The planning horizon is 20 years
- Fair
 - All options are put on the table
- Renewable energy and energy efficiency are also included

Integrated Resource Planning Basics

- Transparent
 - Utility planning is a docketed proceeding
 - The need for new power plants is known far in advance
- Flexible
 - The IRP is just a plan that permits adjustment in response to changed circumstances
- Minimize total costs (total bills, not just rates)

Collaborative Process

Questions?

References

- New Orleans City Council Docket No. UD-11-03 ENO Ninemile 6 generating unit. The unit nameplate value is 550MW, 20% of which is supplied to Entergy New Orleans.
- Louisiana Public Service Commission docket No. U-33244 Entergy Application to purchase Union Generating Plant. Unit nameplate value 2000MW, 200MW slated for Entergy New Orleans.
- U.S. Environmental Protection Agency eGRID 2010 data Version 1.0.
- U.S. Energy Information Administration (2014) Annual Energy Outlook Early Release Overview. Accessed at: http://www.eia.gov/forecasts/aeo/er/pdf/0383er(2014).pdf
- US Department of Energy (2014) 2013 Wind Technologies Market Report. Accessed at http://emp.lbl.gov/ sites/all/files/lbnl-6809e.pdf
- WindExchange. National Renewable Energy Lab. Louisiana Wind Potential Map. Updated 12/2014.
 Accessed at http://apps2.eere.energy.gov/wind/windexchange/wind_resource_maps.asp?stateab=la
- Oklahoma Gas & Electric, Arkansas Public Service Commission, Docket 12-067-u-Doc
- Austin Energy Fourth Quarter and Year End Report (2013). Accessed at: https://austinenergy.com/wps/wcm/connect/1eafeb32-410a-4d4e-85aa-4ea352aa8c5c/4thQtrFY2013Report.pdf?MOD=AJPERES
- ibid.
- White, F. (2013) A Solar Booster Shot for Natural Gas Power Plant. Pacific Northwest National Laboratory.
 Accessed at: http://www.pnnl.gov/news/release.aspx?id=981
- World Bank. (2014) Kunming Konggang Waste Incineration Power Plant Environmental Auditing Report.
- U.S. Agency for Toxic Substances and Disease Registry. The Benningfield Group. (2009) U.S. Multifamily Energy Efficiency Potential by 2020, 3–9.
- Joint Center for Housing Studies of Harvard University. (2011) America's Rental Housing: Meeting Challenges, Building on Opportunities.