NEW ORLEANS TECHNICAL REFERENCE MANUAL VERSION 6.1 VOLUME III APPENDICES

SUBMITTED BY: ADM ASSOCIATES, INC.
SUBMITTED TO: ENTERGY NEW ORLEANS

SUBMITTED DATE: JANUARY 10, 2023

TABLE OF CONTENTS

1. APPENDICES 8
1.1 APPENDIX A InPuTS 8
1.1.1 Residential 8
1.1.2 Commercial 15
1.2 Appendix B Examples for Existing Baseline Methods for Settlement \& Examples of Adjustments 77
1.2.1 Examples for Existing Baseline Methods for Settlement 77
1.2.2 Baseline Adjustment Examples 82
1.2.3 NAESB Performance Evaluation Methodologies of Wholesale Demand Response Programs 88
1.3 Appendix C Prior work in DR M\&V Methods 89
1.3.1 Baseline Methods Assessment Studies 89
1.3.2 Protocols For DR Program Evaluation. 96
1.4 ApPENDIX D Information Sources and References. 99
1.4.1 Primary Sources Used to Prepare Protocols 1-4 99
1.4.2 Primary Sources Used to Prepare New Construction Protocols 99
1.4.3 Primary Sources Used to Prepare Retrocomissioning Protocols 100
1.4.4 Primary Sources Used to Prepare Behavioral Protocols. 102
1.4.5 Primary Sources Used to Prepare Demand Response Protocols 105
TABLE OF TABLES
Table 1-1 Ambient Water Main (Tin) and Outside Air Temperature ($\mathrm{T}_{\mathrm{amb}}$) Calculations 8
Table 1-2 Estimated Annual Hot Water Use 8
Table 1-3 Tank Size of Replaced Water Heater 9
Table 1-4 Estimated Average Ambient Temperatures by Water Heater Installation Location 9
Table 1-5 Heat Pump Water Heater Adjustment Factors 9
Table 1-6 COP Adjustment Factors 9
Table 1-7 Annual Average Daily Isolation 9
Table 1-8 Residential Envelope Measures - Prototype Home Characteristics 10
Table 1-9 Insulation - Prototype Home Characteristics 13
Table 1-10. Ceiling Insulation - Prototype Home Characteristics 13
Table 1-11. Wall Insulation - Prototype Home Characteristics 13
Table 1-12. Floor Insulation - Prototype Home Characteristics. 13
Table 1-13. Air Infiltration - Prototype Home Characteristics 14
Table 1-14. Radiant Barriers - Prototype Home Characteristics 14
Table 1-15. Window Film - Prototype Home Characteristics 14
Table 1-16 Ambient Water Main (Tin) and Outside Air Temperature (Tamb) Calculations 15
Table 1-17 Duct Efficiency, Duct Insulation (SC), Cool Roofs \& Window Awnings (SC) - Prototype Building Characteristics 15
Table 1-18 eQuest Model EFLH Results 17
Table 1-19 EFHL Normalized Multipliers 17
Table 1-20 Commercial Lighting Updates 18
Table 1-21 ASHRAE 90.1-2007 Lighting Power Densities (LPD) - Building Area Method 19
Table 1-22 ASHRAE 90.1-2007 LPD - Space-by-Space Method by Space Types 20
Table 1-23 ASHRAE 90.1-2007 Lighting Power Densities (LPD) - Space-by-Space Method by Building- Specific Space Types 21
Table 1-24 ASHRAE 90.1-2007 Lighting Power Densities (LPD) - Building Exteriors' 22
Table 1-25 Wattage Tables 23
Table 1-26 Examples of Customer Baseline Methodologies 78
Table 1-27 Examples of Baseline Adjustments 80
Table 1-28 EUL Model 102
Table 1-29 EUL Model Results 102

TABLE OF FIGURES

Figure 1-1 Calculated Baseline, No Adjustment .. 83
Figure 1-2 Symmetric Multiplicative Adjustment ... 85
Figure 1-3 Weather-Sensitive Adjustment... 87

ACRONYMS/ABBREVIATIONS

Table 1 Acronyms/Abbreviations

Acronym	Term
AC	Air Conditioner
AOH	Annual operating hours
APS	Advanced Power Strip
AR\&R	Appliance Recycling \& Replacement
BP	Behavioral Program
BYOT	Bring Your Own Thermostat
C\&I	Commercial and Industrial
CEE	Consortium for Energy Efficiency
CF	Coincidence factor
CFL	Compact fluorescent lamp (bulb)
CFM	Cubic feet per minute
CRE	Commercial Real Estate
DI	Direct install
DLC	Direct Load Control
DLC	Design Lights Consortium
EER	Energy efficiency ratio
EFLH	Equivalent full-load hours
EISA	Energy Independence and Security Act
EL	Efficiency loss
EM\&V	Evaluation, Measurement, and Verification
ES	ENERGY STAR
EUL	Estimated Useful Life
GPM	Gallons per minute
HDD	Heating degree days
HID	High intensity discharge
HOU	Hours of Use
HP	Heat pump
HPwES	Home Performance with ENERGY STAR
HSPF	Heating seasonal performance factor
HVAC	Heating, Ventilation, and Air Conditioning
IEER	Integrated Energy Efficiency Ratio
IEF	Interactive Effects Factor
IPLV	Integrated part load value
IQW	Income Qualified Weatherization
ISR	In-Service Rate
kW	Kilowatt
kWh	Kilowatt hour

LCDR	Large Commercial Demand Response
LCIS	Large Commercial \& Industrial Solutions
LCA	Lifecycle Cost Adjustment
LED	Light Emitting Diode
M\&V	Measurement and Verification
MFS	Multifamily Solutions
MW	Megawatt
MWh	Megawatt hour
NC	New Construction
NTG	Net-to-Gross
PCT	Participant Cost Test
PFI	Publicly Funded Institutions
PY	Program Year
QA	Quality Assurance
QC	Quality Control
RCA	Refrigerant charge adjustment
RIM	Ratepayer Impact Measure
RLA	Retail Lighting and Appliances
ROB	Replace on Burnout
RR	Realization Rate
RUL	Remaining Useful Life
SCDR	Small Commercial Demand Response
SCIS	Small Commercial \& Industrial Solutions
SEER	Seasonal Energy Efficiency Ratio
SK\&E	School Kits and Education
TA	Trade Ally
TPI	Third-Party Implementer
TPE	Third-Party Evaluator
TRC	Total Resource Cost Test
TRM	Technical Reference Manual
UCT	Utility Cost Test
VFD	Variable Frequency Drive

SAVINGS TYPES

Table 2 Savings Types

Savings Types	Definition
Energy Savings (kWh)	The change in energy (kWh) consumption that results directly from program-related actions taken by participants in a program.
Demand Reductions (kW)	The time rate of energy flow. Demand usually refers to electric power measured in kW (equals kWh/h) but can also refer to natural gas, usually as Btu/hr., kBtu/hr., therms/day, etc.
Expected / Ex ante Gross	The change in energy consumption and/or peak demand that results directly from program-related actions taken by participants in a program, regardless of why they participated.
Verified / Ex post Gross	Latin for "from something done afterward" gross savings. The energy and peak demand reduction estimates reported by the evaluators after the gross impact evaluation and associated M\&V efforts have been completed.
Net / Ex post Net	Verified / ex post gross savings multiplied by the net-to-gross (NTG) ratio. Changes in energy use that are attributable to a particular program. These changes may implicitly or explicitly include the effects of free-ridership, spillover, and induced market effects.
Annual Savings	Energy and demand reduction expressed on an annual basis, or the amount of energy and/or peak demand a measure or program can be expected to save over the course of a typical year. The TRM provides algorithms and assumptions to calculate annual savings and are based on the sum of the annual savings estimates of installed measures or behavior change.
Lifetime Savings	Energy savings expressed in terms of the total expected savings over the useful life of the measure. Typically calculated by multiplying the annual savings of a measure by its EUL. The TRC Test uses savings from the full lifetime of a measure to calculate the cost-effectiveness of programs.
Sal	

1. APPENDICES

1.1 Appendix A Inputs

1.1.1 RESIDENTIAL

1.1.1.1 ENERGY STAR ${ }^{\circledR}$ Appliances

Unless otherwise noted, deemed savings values and inputs were derived form and found in the Energy Star calculators: https://www.energystar.gov/products/appliances

1.1.1.2 Domestic Hot Water

1.1.1.2.1 Ambient Water Main (Tin) and Ambient Air Temperature ($T_{\text {amb }}$) Calculations

Table 1-1 Ambient Water Main (Tin) and Outside Air Temperature ($\mathrm{T}_{\mathrm{amb}}$) Calculations

New Orleans	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Avg
Month	1	2	3	4	5	6	7	8	9	10	11	12	
Outside Air Temp (Tair)	49.9	55.6	64.1	69.4	75.1	80.7	81.6	82.3	77.7	68.2	65.6	54.5	68.7
Inlet Water Temp (Tin)	66.0	64.2	65.2	68.6	73.6	78.9	83.1	85.2	84.4	81.2	76.3	70.9	74.8
Offset (district water)	6.00												
Ratio	0.647												
Lag													

1.1.1.2.2 Estimated Hot Water Usage (By Tank Size)

The values in the table below are based off Table 136: Estimated Annual Hot Water Use (gal), Arkansas TRM 5.0, page 137.

Table 1-2 Estimated Annual Hot Water Use

Tanks Size (gal) of Replaced Water Heater	40	50	65	$\mathbf{8 0}$
El Dorado Estimated Annual Hot Water Use (gal)	17,815	20,245	24,293	29,152

The TPE created a correction factor to compensate for the difference in the average water main temperatures between the two cities.

Correction Factor $=\frac{\text { El Dorado Average Water Main Temperature }}{\text { New Orleans Average Water Main Temperature }}=\frac{70.1}{\mathbf{7 4 . 8}}$

$$
\text { = . } 937166
$$

The correction factor was applied to existing El Dorado hot water usage estimates.
Table 1-3 Tank Size of Replaced Water Heater

Tanks Size (gal) of Replaced Water Heater	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 5}$	$\mathbf{8 0}$
New Orleans Estimated Annual Hot Water Use (gal)	16,696	18,973	22,767	27,320

Table 1-4 Estimated Average Ambient Temperatures by Water Heater Installation Location

Average ambient air temperature, New Orleans (TMY3)	68.78
Number of heating degree days, New Orleans (TMY3, base 65)	126
Number of cooling degree days, New Orleans (TMY3, base 65)	239
Ratio of conditioned/unconditioned	1.00549

Table 1-5 Heat Pump Water Heater Adjustment Factors

Types of Days	Count	\% of year
Heating Days	126	35%
Cooling Days	239	65%

PA\% for conditioned space: 2.784\%
Table 1-6 COP Adjustment Factors

Heating Type	COP-Heating	COP-Cooling	Calculated F Adj	Calculated Adj	Estimated Adj
Gas	20	3	1.201	0.856	0.917
Heat Pump	2	3	1.046	0.983	1.201
Elec. Resistance	0.89	3	0.830	1.238	1.395

1.1.1.2.3 Water Heater Jackets

Estimated hot water usage (by tank size) Deemed water heating jacket savings are Table 143: Water Heater Jackets - Electric Heating Deemed Savings Values Arkansas TRM 5.0, page 144.

Table 1-7 Annual Average Daily Isolation

Daily Total Insolation (BTU/ft2/day) (AR TRM 5.0)	1,601
Average solar radiation EI Dorado, AR (NREL)	1,407
Average solar radiation New Orleans, LA (NREL)	1,405
Correction factor	1.137

1.1.1.2.4 Weather Zone Localization Factor for SEF

- Average solar radiation New Orleans, LA (NREL): $4.33 \mathrm{kWh} / \mathrm{m} 2 /$ day $=1,405.254 \mathrm{BTU} / \mathrm{ft} 2 /$ day
- Average solar radiation El Dorado, AR (AR TRM 5.0): 1,601 BTU/ft2/day
- Latitude correction factor: 1.137

1.1.1.3 Envelope

1.1.1.3.1 Prototype Building Characteristics

Various building energy usage computer models have been used in development of deemed savings included in the TRM according to several factors:

- Building Type and Use. Prototype buildings support deemed savings development for measures to be implemented in the following building types: residential, converted residence (CR), commercial, and small commercial (SC).
- Model Vintage. Original prototypes date back to deemed savings developed in 2007/08 for use in the QuickStart programs. Prototype inputs have been updated for more recent models.
- Measure being modeled. Specific changes to a prototype are introduced to represent the specific measure being implemented in a given building.

In this Appendix, "top level" tables - those tables with the letter A followed only by a number in their table name (e.g., Table 1-8) provide the general characteristics of a given model prototype.
"Supplemental tables" - (e.g.,Table 1-9 through Table 1-15) - provide the specific changes introduced to a given prototype for the modeling of specific measures.

The following table applies to the Attic Knee Wall Insulation, Ceiling Insulation, Wall Insulation, Floor Insulation, Roof Deck Insulation, Air Infiltration, Radiant Barriers, ENERGY STAR Windows, and Window Film measures. Table 1-8 BEopt ${ }^{\text {TM }}$ - a residential building modeling platform developed by NREL - was used to estimate energy savings for these measures using the U.S. DOE EnergyPlus simulation engine.

Table 1-8 Residential Envelope Measures - Prototype Home Characteristics

Shell Characteristic	Value	Source(s)
Site/Layout	Average square footage of conditioned (heated) space between one story home and all SFD homes in 2009 RECS microdata for AR/LA/OK.1	
Orientation	$1,764 \mathrm{ft.2}$	Square building with faces on each cardinal direction

[^0]| Number of Stories | Single story with unfinished attic | Preponderance of SFD homes in 2009 RECS microdata are single story |
| :---: | :---: | :---: |
| Building Envelope | | |
| Foundation | Slab-on-ground, no edge insulation | Preponderance of SFD homes in 2009 RECS microdata (62\%) have slab foundation Also a conservative assumption for base energy usage. |
| Slab Insulation | None - no perimeter, underslab, or above-slab insulation | Not part of standard practice, also no requirement for slab insulation in residential code for relevant weather regions except the NW corner of state in IECC Climate Zone 4. |
| Ceiling Insulation | R-12 | Table 25 of BA Home Simulation Protocols suggests R-9 is appropriate for homes closed rafter roofs built with 2×6 beams, R-15 for 2×10. Suspect 2×6 is more likely, but some share of homes will have had ceiling insulation replaced/added. Select R-12 based on the above information and engineering judgment. ${ }^{3}$ |
| Wall Insulation | R-11 | BAHSP, p. 35 - value for homes built 1980-1989 |
| Air Leakage | 0.9 ACH | Median ACH for older, low income housing. ${ }^{4}$ |
| Window Area | 15\% of wall area | American Housing Survey 2007 and 2008 was used to inform the value for likely participants. |

[^1]| Window U-value (single pane) | 1.12 | 2009 ASHRAE Fundamentals, Ch. 15
 Table 4. Value for double-pane, metal frame, fixed, clear glass window. |
| :---: | :---: | :---: |
| Window U-value (double pane) | 0.65 | |
| Window SHGC | 0.79 | |
| Window SHGC | 0.64 | |
| HVAC | | |
| Efficiency Rating, Air Conditioner | 10 SEER | Federal Standard in effect from 19902006. Representative of low-efficiency program participant homes. |
| Efficiency Rating Space Heating (Gas Furnace) | 78\% AFUE | Annual Fuel Utilization Efficiency - base gas furnace efficiency |
| Efficiency Rating Space Heating (Electric Resistance Heat) | COP 1.0 | Coefficient of Performance for central electric resistance heating systems |
| Efficiency Rating Space Heating (Heat Pump) | HSPF $=7.25$ | Average of Federal Standards: 1992 1/2006: 6.8 HSPF 1/2006-1/2015: 7.7 HSPF |
| Thermostat Settings | Heating: 71 F Cooling 76 F | BAHSP, p. 49 |
| Duct Losses | 20\% | Lower tier of air leakage for typical homes as cited by ENERGY STAR5 |
| Duct Insulation | R-4 | |
| Domestic Hot Water | | |
| Energy Factor, Electric Storage | 0.9 | BAHSP (p. 42) EWH with 50 gal tank, 3inch insulation. |
| Energy Factor, Gas Storage | 0.59 | BAHSP (p. 42), midpoint between options 2 and 3 |
| Lighting | | |
| Share of Lighting by Type | Lamps are 66\% incandescent, 21\% CFL, 13\% T-8 linear fluorescent | BAHSP (p. 16) |

[^2]Table 1-9 Insulation - Prototype Home Characteristics

Shell Characteristic	Value	Source(s)
Ceiling Construction	2-foot-wide vaulted ceiling around the perimeter of the conditioned floor area	This modeling approach reduces simulation distortions introduced by a large, vaulted ceiling area, while still exposing the attic knee walls to the conditioned space.
Base Knee Wall Insulation	No existing insulation	Encountered insulation level drives eligibility for this measure
Improved Knee Wall Insulation	(1) Insulate to R-19, or (2) Insulate to R-30	Efficiency Measure

Table 1-10. Ceiling Insulation - Prototype Home Characteristics

Shell Characteristic	Value	Source(s)
Base Ceiling Insulation	Five ranges of encountered ceiling insulation:	Insulation level as encountered by the EESP drives eligibility for this R-0 to R-1 R-2 to R-4 R-5 to R-8 R-9 to R-14 R-15 to R-22
Improved Ceiling Insulation	Insulate to R-38 \& R-49	Efficiency measure - retrofit insulation level

Shell Characteristic	Value	Source(s)
Base Wall Insulation	R-0	Insulation level as encountered by the EESP drives eligibility for this measure
Improved Wall Insulation	R-13 \& R-23	$3.5^{\prime \prime}$ of fiberglass batt at R-3.7/in provides R-13 Full thickness of 4" cavity with open cell foam provides R-13 Full thickness of 4" cavity with open cell foam provides R-13

Table 1-12. Floor Insulation - Prototype Home Characteristics

Shell Characteristic	Value	Source(s)
Foundation	Pier and beam with vented crawlspace	Floor Insulation not a relevant measure for homes with slab foundation

Base Floor Insulation	R-0	Insulation level as encountered by the EESP drives eligibility for this measure
Change Floor Insulation	R-19	
Srawlspace Insulation	R-13	This brings existing homes in
compliance with IECC 2009.		

1.1.2 COMMERCIAL

1.1.2.1 Water Heating

Table 1-16 Ambient Water Main (Tin) and Outside Air Temperature (Tamb) Calculations

New Orleans	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Avg
Month	1	2	3	4	5	6	7	8	9	10	11	12	
Outside Air Temp ($\mathrm{T}_{\text {air }}$)	49.9	55.6	64.1	69.4	75.1	80.7	81.6	82.3	77.7	68.2	65.6	54.5	68.7
Water Heater Inlet Water Temp (T_{in})	66.0	64.2	65.2	68.6	73.6	78.9	83.1	85.2	84.4	81.2	76.3	70.9	74.8
Offset (district water) $=$	6.00												
Ratio $=$	0.647												
Lag =	34.8												

Table 1-17 Duct Efficiency, Duct Insulation (SC), Cool Roofs \& Window Awnings (SC) - Prototype Building Characteristics

Building Characteristics	Building Type		
	Small Office	Stand-Alone Retail	Strip Mall
General			
Ground Area (SQFT)	7,500	15,000	7,500
\# of Stories	2	1	1
Floor Area (SQFT)	15,000	15,000	7,500
Roof			
Construction	Metal frame, > 24in oc	Metal frame, >24 in oc	Metal frame, > 24in oc
Ext. Finish	Roof, built up	Roof, built up	Roof, built up
Ext. Color	Med (abs $=0.6$)	Med (abs $=0.6$)	Med (abs $=0.6$)

Ext. Insulation	Varied	Varied	Varied
Add `I Insulation	No batt or radiant barrier	No batt or radiant barrier	No batt or radiant barrier
Walls			
Construction	Matel frame, 2×6, 24in, oc	Matel frame, 2x6, 16in, oc	Matel frame, $2 \times 4,24 \mathrm{in}$, oc
Ext. Finish	Wood/Plywood	CMU	Stucco/Gunite
Ext. Color	Med (abs $=0.6$)	Med (abs $=0.6$)	Med (abs $=0.6$)
Ext. Insulation	3/4in fiber bd sheathing (R-2)	3/4in fiber bd sheathing ($\mathrm{R}-2$)	3/4in fiber bd sheathing (R-2)
Add'I Insulation	R-19 Batt	R-11 Batt	R-11 Batt
Ceiling			
Construction	Acoustic Tile	Acoustic Tile	Acoustic Tile
Insulation	Varied	Varied	Varied
Windows			
Glass Category	Double Clr/Tint 1/4", 1/2" Air	Double Clr/Tint 1/4", 1/2" Air	Double Clr/Tint 1/4", 1/2" Air
Window Area	70\% of Walls	70% of North Wall; All Others 0\%	70% of North Wall; All Others 0\%
Lighting			
Lighting Density (w/SQFT)	1.33	2.03	2.03
HVAC			
Cooling Source	DX Coils	DX Coils	DX Coils
System Type	Packaged Single Zone	Packaged Single Zone	Packaged Single Zone
Typ. Unit Size	11.25 to 20 tons	5.4 to 7.5 tons	< 5.4 tons
EER (Base)	8.50 EER	8.90 EER	9.70 EER
Heating Source	Furnace	Furnace	Furnace
Typ. Unit Size	>225 kBTUh	>225 kBTUh	>225 kBTUh
Efficiency (AFUE)	0.806	0.780	0.780
Fans			
Min. Design Flow (CFM/ft^2)	0.5	0.5	0.5
Cycle Fans at Night?	Cycle Fans (no OA at night)	Cycle Fans (no OA at night)	Cycle Fans (no OA at night)

DHW			
Fuel	Natural Gas	Natural Gas	Natural Gas
Type	Storage	Storage	Storage
Tank Insulation R-Value	12.00	12.00	12.00
Tank Capacity (Gal)	39	21	11

1.1.2.2 HVAC

The tables below provide the eQuest Equivalent Full Load Hours (EFLH) model results for various building types found in New Orleans. EFLH values developed in eQuest were then normalized with El Dorado, AR EFLH.

Table 1-18 eQuest Model EFLH Results

Building Type	El Dorado		New Orleans	
	EFLH \mathbf{c}	EFLH \mathbf{h}	EFLH $_{\mathbf{c}}$	EFLH
Fast Food	2,111	411	3,013	178
Grocery	1,544	537	1,703	285
Health Clinic	1,317	510	1,451	325
Large Office	1,684	879	1,598	501
Lodging	5,833	588	7,647	372
Full Menu Restaurant	2,070	509	2,900	217
Retail	2,424	588	3,305	372
School	1,209	420	1,672	167
Small Office	1,564	115	2,098	37
University	1,755	771	1,799	602

Table 1-19 EFHL Normalized Multipliers

Building Type	El Dorado		New Orleans	
	EFLH $_{\mathbf{c}}$		EFLH $_{\mathbf{h}}$	EFLH $_{\mathbf{c}}$
EFLH $_{\mathbf{h}}$				
Fast Food	1.00	1.00	1.43	0.43
Grocery	1.00	1.00	1.10	0.53
Health Clinic	1.00	1.00	1.10	0.64
Large Office	1.00	1.00	0.95	0.57
Lodging	1.00	1.00	1.31	0.63
Full Menu Restaurant	1.00	1.00	1.40	0.43
Retail	1.00	1.00	1.36	0.63
School	1.00	1.00	1.38	0.40
Small Office	1.00	1.00	1.34	0.33
University	1.00	1.00	1.02	0.78

1.1.2.3 Lighting Efficiency

The table below shows logger counts, standard deviations, and compare original AR TRM V6.1 hours with figures derived from direct monitoring.

Table 1-20 Commercial Lighting Updates

Facility or Space Type	Count of Loggers	ARM TRM 6 hours	New Orleans Recommended Value
Leisure Dining: Bar Area	12		2,676.0
Corridor/Hallway/Stairwell	39		5,537.3
Education: College/University		3,577.0	3,577.0
Education: K-12	9	2,777.0	2,333.5
Exterior		3,996.0	4,319.0
Food Sales: 24-Hour Supermarket		6,900.0	6,900.0
Food Sales: Non 24-Hour Supermarket	5	4,706.0	2,058.2
Food Service: Fast Food	11	6,188.0	6,473.4
Food Service: Sit-Down Restaurant	13	4,368.0	4,730.6
Health Care: In-Patient	3	5,730.0	4,019.4
Health Care: Nursing Home		4,271.0	4,271.0
Health Care: Out-Patient		3,386.0	3,386.0
Convenience Store (non-24 hour)	22		4,244.8
Lodging (Hotel/Motel/Dorm): Common Areas	22	6,630.0	4,126.9
Lodging (Hotel/Motel/Dorm): Room	13	3,055.0	3,369.9
Manufacturing		5,740.0	5,740.0
Multi-family Housing: Common Areas	24	4,772.0	5,703.4
Non-Warehouse Storage (Generic)	11		4,206.5
Office	27	3,737.0	5,158.5
Office (attached to other facility)	36		4,728.4
Parking Structure		7,884.0	7,884.0
Public Assembly		2,638.0	2,638.0
Public Order and Safety		3,472.0	3,472.0
Religious Gathering	8	1,824.0	3,174.3
Restroom (Generic)	11		3,515.6
Retail: Enclosed Mall		4,813.0	4,813.0
Retail: Freestanding	52	3,668.0	3,514.8
Retail: Other	4	4,527.0	4,311.8
Retail: Strip Mall		3,965.0	3,965.0
Service: Excluding Food		3,406.0	3,406.0
Warehouse: Non-Refrigerated	9	3,501.0	2,416.7
Warehouse: Offices	4		2,791.8
Warehouse: Refrigerated		3,798.0	3,798.0

1.1.2.3.1 Lighting Power Density

The table below presents LPD by building area type.

Table 1-21 ASHRAE 90.1-2007 Lighting Power Densities (LPD) - Building Area Method ${ }^{6}$

Building Area Type	LPD $\left(\mathbf{W} / \mathrm{ft}^{2}\right)$
Automotive Facility	0.9
Convention Center	1.2
Court House	1.2
Dining: Bar Lounge/Leisure	1.3
Dining: Fast Food	1.4
Dining: Family	1.6
Dormitory	1.0
Exercise Center	1.0
Gymnasium	1.1
Healthcare-Clinic	1.0
Hospital	1.2
Hotel	1.0
Library	1.3
Manufacturing Facility	1.3
Motel	1.0
Movie Theater	1.2
Multifamily	0.7
Museum	1.1
Office	1.0
Parking Garage	0.3
Penitentiary	1.0
Performing Arts Theater	1.6
Police/Fire Station	1.0
Post Office	1.1
Religious Building	1.3
Retail	1.5
School/University	1.2
Sports Arena	1.1
Town Hall	1.1
Transportation	1.0
Warehouse	0.8
Workshop	1.4

[^3]Table 1-22 ASHRAE 90.1-2007 LPD - Space-by-Space Method by Space Types ${ }^{7}$

Common Space Types ${ }^{8}$		LPD ($\mathrm{W} / \mathrm{ft}^{2}$)
Office- Enclosed		1.1
Office-Open Plan		1.1
Conference/Meeting/Multipurpose		1.3
Classroom/Lecture/Training		1.4
	For Penitentiary	1.3
Lobby		1.3
	For Hotel	1.1
	For Performing Arts Center	3.3
	For Motion Picture Theater	1.1
Audiences/Seating Area		0.9
	For Gymnasium	0.4
	For Exercise Center	0.3
	For Convention Center	0.7
	For Penitentiary	0.7
	For Religious Building	1.7
	For Sports Area	0.4
	For Performing Arts Theater	2.6
	For Motion Picture Theater	1.2
	For Transportation	0.5
Atrium- First Three Floors		0.6
Atrium- Additional Floors		0.2
Lounge/Reception		1.2
	For Hospital	0.8
Dining Area		0.9
	For Penitentiary	1.3
	For Hotel	1.3
	For Motel	1.2
	For Bar Lounge/Leisure Dining	1.4
	For Family Dining	2.1
Food Preparation		1.2
Laboratory		1.4
Restrooms		0.9
Dressing/Locker/Fitting Room		0.6
Corridor/Transition		0.5
	For Hospital	1.0
	For Manufacturing Facility	0.5
Stairs- Active		0.6
Active Storage		0.8
	For Hospital	0.9
Inactive Storage		0.3
	For Museum	0.8
Electrical/Mechanical		1.5

[^4]| Workshop | | 1.9 |
| :--- | :--- | :--- |
| Sales Area (for accent lighting) | | 1.7 |

Table 1-23 ASHRAE 90.1-2007 Lighting Power Densities (LPD) - Space-by-Space Method by Building-Specific Space Types ${ }^{9}$

Building-Specific Space Types ${ }^{10}$		LPD ($\mathrm{W} / \mathrm{ft}^{2}$)
Gymnasium/Exercise Center	Playing Area	1.4
	Exercise Area	0.9
Courthouse/Police Station/Penitentiary	Courtroom	1.9
	Confinement Cells	0.9
	Judges' Chambers	1.3
Fire Stations	Engine Room	0.8
	Sleeping Quarters	0.3
Post Office- Sorting Area		1.2
Convention Center- Exhibit Space		1.3
Library	Card File and Cataloging	1.1
	Stacks	1.7
	Reading Area	1.2
Hospital	Emergency	2.7
	Recovery	0.8
	Nurses' Station	1.0
	Exam/Treatment	1.5
	Pharmacy	1.2
	Patient Room	0.7
	Operating Room	2.2
	Nursery	0.6
	Medical Supply	1.4
	Physical Therapy	0.9
	Radiology	0.4
	Laundry-Washing	0.6
Automotive- Service/Repair		0.7
Manufacturing	Low Bay *<25ft floor to ceiling height)	1.2
	High Bay (>25ft floor to ceiling height)	1.7
	Detailed manufacturing	2.1
	Equipment Room	1.2
	Control Room	0.5
Hotel/Motel Guest Rooms		1.1
Dormitory- Living Quarters		1.1
Museum	General Exhibition	1

[^5]| | | Restoration | | 1.7 |
| :--- | :--- | :--- | :---: | :---: |
| Religious Building | Worship Pulpit, Choir | 1.5 | | |
| | Fellowship Hall | 2.4 | | |
| Retail | Sales Area (for accent lighting) | 0.9 | | |
| Sports Arena | Mall Concourse | 1.7 | | |
| | Ring Sports Area | 1.7 | | |
| | Court Sports Area | 2.7 | | |
| | Indoor Playing Field Area | 2.3 | | |
| Parking Garage- Garage Area | Fine Material Storage | 1.4 | | |
| | Medium/Bulky Material Storage | 1.4 | | |
| | | 0.9 | | |

Table 1-24 ASHRAE 90.1-2007 Lighting Power Densities (LPD) - Building Exteriors ${ }^{11,12}$

Tradable/ Non-tradable	Exterior Space Type		LPD
Tradable Surfaces	Uncovered Parking Areas- Parking lots and drives		$0.15 \mathrm{Wft}^{2}$
	Building Grounds	Walkways <10ft wide	1.0 W/linear ft
		Walkways >10ftwide	$0.02 \mathrm{~W} / \mathrm{ft}^{2}$
		Stairways	$1 \mathrm{ft}^{2}$
	Building Entrances and Exits	Main entries	$30 \mathrm{~W} /$ linear ft (of door width)
		Other doors	$20 \mathrm{~W} /$ linear ft (of door width)
	Canopies and Overhangs- Canopies (free standing, attached \& overhangs)		1.25 W/ft ${ }^{2}$
	Outdoor Sales	Open areas (including vehicle sales lots)	$0.5 \mathrm{~W} / \mathrm{ft}^{2}$
		Street frontage for vehicle sales lots (in addition to above)	$20 \mathrm{~W} / \mathrm{linear} \mathrm{ft}$.
Non-tradable Surfaces	Building Facades	For each illuminated wall or surface OR	$0.2 \mathrm{~W} / \mathrm{ft}^{2}$
		For each illuminated wall or surface length	5.0 W/linear ft
	Automated Teller Machines and Night Depositories	Per location	270 W
		Per additional ATM per location	90 W

[^6]| | Entrances and Gatehouse Inspection Stations at Guarded Facilities-
 Uncovered areas (for covered areas use Canopies/Overhangs) | $1.25 \mathrm{~W} / \mathrm{ft}^{2}$ |
| :--- | :--- | :--- |
| | Loading Areas for Emergency Service Vehicles- Uncovered areas (for
 covered areas use Canopies/Overhangs) | $0.5 \mathrm{~W} / \mathrm{ft}^{2}$ |
| | Drive-up Windows at Fast Food Restaurants- per drive-through | 400 W |
| | Parking near 24-hour Retail Entrances- Per main entry | 800 W |

1.1.2.3.2 Wattage Tables

The table below presents standard wattage.
Table 1-25 Wattage Tables

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
Integrated Ballast LEDs								
$\begin{aligned} & \text { LED001- } \\ & \text { SCRW } \\ & \hline \end{aligned}$	LEDINT1 W	Integrated Ballast LED, (1) 1W screw-in lamp/base, any bulb shape	$\begin{aligned} & \text { 1W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	1	1
$\begin{aligned} & \text { LEDOO2- } \\ & \text { SCRW } \end{aligned}$	$\begin{aligned} & \text { LEDINT2 } \\ & \text { W } \end{aligned}$	Integrated Ballast LED, (1) 2W screw-in lamp/base, any bulb shape	$\begin{aligned} & \text { 2W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	2	1
LEDOO3SCRW	LEDINT3 W	Integrated Ballast LED, (1) 3W screw-in lamp/base, any bulb shape	$\begin{aligned} & \text { 3W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	3	1
$\begin{aligned} & \text { LEDOO4- } \\ & \text { SCRW } \end{aligned}$	LEDINT4 w	Integrated Ballast LED, (1) 4W screw-in lamp/base, any bulb shape	$\begin{aligned} & \text { 4W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	4	1
$\begin{aligned} & \text { LEDOO5- } \\ & \text { SCRW } \end{aligned}$	LEDINT5 W	Integrated Ballast LED, (1) 5W screw-in lamp/base, any bulb shape	$\begin{aligned} & \text { 5W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	5	1
LEDOO6- SCRW	LEDINT6 w	Integrated Ballast LED, (1) 6W screw-in lamp/base, any bulb shape	6W LED - Int. Ballast	Electronic	N/A	N/A	6	1
$\begin{aligned} & \text { LEDOO7- } \\ & \text { SCRW } \end{aligned}$	LEDINT7 W	Integrated Ballast LED, (1) 7W screw-in lamp/base, any bulb shape	$\begin{aligned} & \text { 7W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	7	1
$\begin{aligned} & \text { LED008- } \\ & \text { SCRW } \end{aligned}$	LEDINT8 W	Integrated Ballast LED, (1) 8W screw-in lamp/base, any bulb shape	8W LED - Int. Ballast	Electronic	N/A	N/A	8	1
$\begin{aligned} & \text { LED009- } \\ & \text { SCRW } \end{aligned}$	LEDINT9 w	Integrated Ballast LED, (1) 9W screw-in lamp/base, any bulb shape	$\begin{aligned} & \text { 9W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	9	1
$\begin{aligned} & \text { LED010- } \\ & \text { SCRW } \end{aligned}$	LEDINT1 ow	Integrated Ballast LED, (1) 10W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 10W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	10	1
$\begin{aligned} & \text { LED011- } \\ & \text { SCRW } \end{aligned}$	LEDINT1	Integrated Ballast LED, (1) 11W screwin lamp/ base, any bulb shape	$\begin{aligned} & \text { 11W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	11	1
$\begin{aligned} & \text { LED012- } \\ & \text { SCRW } \end{aligned}$	$\begin{aligned} & \text { LEDINT1 } \\ & \text { 2W } \\ & \hline \end{aligned}$	Integrated Ballast LED, (1) 12 W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 12W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	12	1
$\begin{aligned} & \text { LED013- } \\ & \text { SCRW } \end{aligned}$	LEDINT1 $3 \mathrm{~W}$	Integrated Ballast LED, (1) 13W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 13W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	13	1
$\begin{aligned} & \text { LED014- } \\ & \text { SCRW } \end{aligned}$	LEDINT1 $4 \mathrm{~W}$	Integrated Ballast LED, (1) 14W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 14W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	14	1
$\begin{aligned} & \text { LED015- } \\ & \text { SCRW } \end{aligned}$	LEDINT1 $5 \mathrm{~W}$	Integrated Ballast LED, (1) 15W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 15W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	15	1
$\begin{aligned} & \text { LED016- } \\ & \text { SCRW } \end{aligned}$	$\begin{aligned} & \text { LEDINT1 } \\ & 6 \mathrm{~W} \end{aligned}$	Integrated Ballast LED, (1) 16W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 16W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	16	1
$\begin{aligned} & \text { LED017- } \\ & \text { SCRW } \end{aligned}$	$\begin{aligned} & \text { LEDINT1 } \\ & 7 \mathrm{~W} \end{aligned}$	Integrated Ballast LED, (1) 17W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 17W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	17	1
$\begin{aligned} & \text { LED018- } \\ & \text { SCRW } \end{aligned}$	$\begin{aligned} & \text { LEDINT1 } \\ & 8 \mathrm{~W} \end{aligned}$	Integrated Ballast LED, (1) 18 W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 18W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	18	1
$\begin{aligned} & \text { LED019- } \\ & \text { SCRW } \end{aligned}$	$\begin{aligned} & \text { LEDINT1 } \\ & 9 \mathrm{~W} \end{aligned}$	Integrated Ballast LED, (1) 19W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 19W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	19	1
$\begin{aligned} & \text { LEDO20- } \\ & \text { SCRW } \end{aligned}$	LEDINT2 OW	Integrated Ballast LED, (1) 20W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 20W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	20	1
$\begin{aligned} & \text { LED021- } \\ & \text { SCRW } \end{aligned}$	LEDINT2 1W	Integrated Ballast LED, (1) 21W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 21W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	21	1
$\begin{aligned} & \text { LEDO22- } \\ & \text { SCRW } \end{aligned}$	$\begin{aligned} & \text { LEDINT2 } \\ & 2 \mathrm{~W} \\ & \hline \end{aligned}$	Integrated Ballast LED, (1) 22W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 22W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	22	1
$\begin{aligned} & \text { LEDO23- } \\ & \text { SCRW } \end{aligned}$	LEDINT2 $3 \mathrm{~W}$	Integrated Ballast LED, (1) 23W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 23W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	23	1

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
$\begin{aligned} & \text { LEDO24- } \\ & \text { SCRW } \end{aligned}$	LEDINT2 $4 \mathrm{~W}$	Integrated Ballast LED, (1) 24 W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 24W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	24	1
$\begin{aligned} & \text { LEDO25- } \\ & \text { SCRW } \end{aligned}$	$\begin{aligned} & \text { LEDINT2 } \\ & 5 \mathrm{~W} \end{aligned}$	Integrated Ballast LED, (1) 25W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 25W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	25	1
$\begin{aligned} & \text { LEDO26- } \\ & \text { SCRW } \end{aligned}$	LEDINT2 $6 \mathrm{~W}$	Integrated Ballast LED, (1) 26W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 26W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	26	1
$\begin{aligned} & \text { LED027- } \\ & \text { SCRW } \end{aligned}$	$\begin{aligned} & \text { LEDINT2 } \\ & \text { 7W } \end{aligned}$	Integrated Ballast LED, (1) 27W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 27W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	27	1
$\begin{aligned} & \text { LEDO28- } \\ & \text { SCRW } \end{aligned}$	$\begin{aligned} & \text { LEDINT2 } \\ & \text { 8W } \end{aligned}$	Integrated Ballast LED, (1) 28W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 28W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	28	1
$\begin{aligned} & \text { LEDO29- } \\ & \text { SCRW } \end{aligned}$	LEDINT2 9w	Integrated Ballast LED, (1) 29W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 29W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	29	1
$\begin{aligned} & \text { LEDO30- } \\ & \text { SCRW } \end{aligned}$	LEDINT3 OW	Integrated Ballast LED, (1) 30W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 30W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	30	1
$\begin{aligned} & \text { LED031- } \\ & \text { SCRW } \end{aligned}$	LEDINT3 1W	Integrated Ballast LED, (1) 31W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 31W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	31	1
$\begin{aligned} & \text { LEDO32- } \\ & \text { SCRW } \end{aligned}$	$\begin{aligned} & \text { LEDINT3 } \\ & \text { 2W } \\ & \hline \end{aligned}$	Integrated Ballast LED, (1) 32W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 32W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	32	1
LED033- SCRW	LEDINT3 3W	Integrated Ballast LED, (1) 33W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 33W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	33	1
$\begin{aligned} & \text { LEDO34- } \\ & \text { SCRW } \end{aligned}$	LEDINT3 4W	Integrated Ballast LED, (1) 34W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 34W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	34	1
$\begin{aligned} & \text { LED035- } \\ & \text { SCRW } \end{aligned}$	LEDINT3 $5 \mathrm{~W}$	Integrated Ballast LED, (1) 35W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 35W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	35	1
$\begin{aligned} & \text { LED036- } \\ & \text { SCRW } \end{aligned}$	LEDINT3 6W	Integrated Ballast LED, (1) 36W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 36W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	36	1
LED037- SCRW	LEDINT3 7W	Integrated Ballast LED, (1) 37W screwin lamp/base, any bulb shape	37W LED - Int. Ballast	Electronic	N/A	N/A	37	1
$\begin{aligned} & \text { LED038- } \\ & \text { SCRW } \end{aligned}$	LEDINT3 $8 \mathrm{~W}$	Integrated Ballast LED, (1) 38W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 38W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	38	1
LED039- SCRW	LEDINT3 9w	Integrated Ballast LED, (1) 39W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 39W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	39	1
$\begin{aligned} & \text { LEDO40- } \\ & \text { SCRW } \end{aligned}$	LEDINT4 OW	Integrated Ballast LED, (1) 40W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 40W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	40	1
$\begin{aligned} & \text { LED041- } \\ & \text { SCRW } \end{aligned}$	LEDINT4 1W	Integrated Ballast LED, (1) 41W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 41W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	41	1
LEDO42- SCRW	LEDINT4 $2 \mathrm{~W}$	Integrated Ballast LED, (1) 42W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 42W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	42	1
$\begin{aligned} & \text { LED043- } \\ & \text { SCRW } \end{aligned}$	LEDINT4 3W	Integrated Ballast LED, (1) 43W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 43W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	43	1
LED044SCRW	LEDINT4 $4 \mathrm{~W}$	Integrated Ballast LED, (1) 44W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 44W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	44	1
LED045SCRW	LEDINT4 5W	Integrated Ballast LED, (1) 45W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 45W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	45	1
LEDO46- SCRW	LEDINT4 6W	Integrated Ballast LED, (1) 46W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 46W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	46	1
LED047- SCRW	LEDINT4 7W	Integrated Ballast LED, (1) 47W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 47W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	47	1
LEDO48- SCRW	LEDINT4 8W	Integrated Ballast LED, (1) 48W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 48W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	48	1
LEDO49- SCRW	LEDINT4 9w	Integrated Ballast LED, (1) 49W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 49W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	49	1
$\begin{aligned} & \text { LED050- } \\ & \text { SCRW } \end{aligned}$	LEDINT5 OW	Integrated Ballast LED, (1) 50W screwin lamp/base, any bulb shape	$\begin{aligned} & \text { 50W LED - Int. } \\ & \text { Ballast } \end{aligned}$	Electronic	N/A	N/A	50	1
Non-Integrated Ballast LEDs								
$\begin{aligned} & \text { LED001- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED1W	Non-Integrated Ballast LED, 1W, any bulb shape, any application	1W LED - NonInt. Ballast	Electronic	N/A	N/A	1	15
$\begin{aligned} & \text { LED002- } \\ & \text { FIXT } \end{aligned}$	LED2W	Non-Integrated Ballast LED, 2W, any bulb shape, any application	2W LED - NonInt. Ballast	Electronic	N/A	N/A	2	15
$\begin{aligned} & \text { LEDO03- } \\ & \text { FIXT } \end{aligned}$	LED3W	Non-Integrated Ballast LED, 3W, any bulb shape, any application	3W LED - Non- Int. Ballast	Electronic	N/A	N/A	3	15
$\begin{aligned} & \text { LEDO04- } \\ & \text { FIXT } \end{aligned}$	LED4W	Non-Integrated Ballast LED, 4W, any bulb shape, any application	4W LED - NonInt. Ballast	Electronic	N/A	N/A	4	15

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
$\begin{aligned} & \text { LEDOO5- } \\ & \text { FIXT } \end{aligned}$	LED5W	Non-Integrated Ballast LED, 5W, any bulb shape, any application	5W LED - Non- Int. Ballast	Electronic	N/A	N/A	5	15
LED006- FIXT	LED6W	Non-Integrated Ballast LED, 6W, any bulb shape, any application	6W LED - NonInt. Ballast	Electronic	N/A	N/A	6	15
$\begin{aligned} & \text { LED007- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED7W	Non-Integrated Ballast LED, 7W, any bulb shape, any application	7W LED - NonInt. Ballast	Electronic	N/A	N/A	7	15
$\begin{aligned} & \text { LEDO08- } \\ & \text { FIXT } \end{aligned}$	LED8W	Non-Integrated Ballast LED, 8W, any bulb shape, any application	8W LED - Non- Int. Ballast	Electronic	N/A	N/A	8	15
$\begin{aligned} & \text { LED009- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED9W	Non-Integrated Ballast LED, 9W, any bulb shape, any application	9W LED - Non- Int. Ballast	Electronic	N/A	N/A	9	15
$\begin{aligned} & \text { LED010- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED10W	Non-Integrated Ballast LED, 10W, any bulb shape, any application	10W LED - NonInt. Ballast	Electronic	N/A	N/A	10	15
$\begin{aligned} & \text { LED011- } \\ & \text { FIXT } \end{aligned}$	LED11W	Non-Integrated Ballast LED, 11W, any bulb shape, any application	11W LED - NonInt. Ballast	Electronic	N/A	N/A	11	15
$\begin{aligned} & \text { LEDO12- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED12W	Non-Integrated Ballast LED, 12W, any bulb shape, any application	12W LED - NonInt. Ballast	Electronic	N/A	N/A	12	15
$\begin{aligned} & \text { LEDO13- } \\ & \text { FIXT } \end{aligned}$	LED13W	Non-Integrated Ballast LED, 13W, any bulb shape, any application	13W LED - Non- Int. Ballast	Electronic	N/A	N/A	13	15
$\begin{aligned} & \text { LED014- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED14W	Non-Integrated Ballast LED, 14W, any bulb shape, any application	14W LED - NonInt. Ballast	Electronic	N/A	N/A	14	15
$\begin{aligned} & \text { LEDO15- } \\ & \text { FIXT } \end{aligned}$	LED15W	Non-Integrated Ballast LED, 15W, any bulb shape, any application	15W LED - Non- Int. Ballast	Electronic	N/A	N/A	15	15
$\begin{aligned} & \text { LEDO16- } \\ & \text { FIXT } \end{aligned}$	LED16W	Non-Integrated Ballast LED, 16W, any bulb shape, any application	16W LED - NonInt. Ballast	Electronic	N/A	N/A	16	15
$\begin{aligned} & \text { LEDO17- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED17W	Non-Integrated Ballast LED, 17W, any bulb shape, any application	17W LED - Non- Int. Ballast	Electronic	N/A	N/A	17	15
$\begin{aligned} & \text { LED018- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED18W	Non-Integrated Ballast LED, 18W, any bulb shape, any application	18W LED - NonInt. Ballast	Electronic	N/A	N/A	18	15
$\begin{aligned} & \text { LED019- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED19W	Non-Integrated Ballast LED, 19W, any bulb shape, any application	19W LED - NonInt. Ballast	Electronic	N/A	N/A	19	15
$\begin{aligned} & \text { LEDO20- } \\ & \text { FIXT } \end{aligned}$	LED20W	Non-Integrated Ballast LED, 20W, any bulb shape, any application	20W LED - Non- Int. Ballast	Electronic	N/A	N/A	20	15
$\begin{aligned} & \text { LEDO21- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED21W	Non-Integrated Ballast LED, 21W, any bulb shape, any application	21W LED - Non- Int. Ballast	Electronic	N/A	N/A	21	15
$\begin{aligned} & \text { LEDO22- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED22W	Non-Integrated Ballast LED, 22W, any bulb shape, any application	22W LED - NonInt. Ballast	Electronic	N/A	N/A	22	15
$\begin{aligned} & \text { LEDO23- } \\ & \text { FIXT } \end{aligned}$	LED23W	Non-Integrated Ballast LED, 23W, any bulb shape, any application	23W LED - Non- Int. Ballast	Electronic	N/A	N/A	23	15
$\begin{aligned} & \text { LEDO24- } \\ & \text { FIXT } \end{aligned}$	LED24W	Non-Integrated Ballast LED, 24W, any bulb shape, any application	24W LED - Non- Int. Ballast	Electronic	N/A	N/A	24	15
$\begin{aligned} & \text { LEDO25- } \\ & \text { FIXT } \end{aligned}$	LED25W	Non-Integrated Ballast LED, 25W, any bulb shape, any application	25W LED - Non- Int. Ballast	Electronic	N/A	N/A	25	15
$\begin{aligned} & \text { LEDO26- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED26W	Non-Integrated Ballast LED, 26W, any bulb shape, any application	26W LED - NonInt. Ballast	Electronic	N/A	N/A	26	15
$\begin{aligned} & \text { LEDO27- } \\ & \text { FIXT } \end{aligned}$	LED27W	Non-Integrated Ballast LED, 27W, any bulb shape, any application	27W LED - Non- Int. Ballast	Electronic	N/A	N/A	27	15
$\begin{aligned} & \text { LEDO28- } \\ & \text { FIXT } \end{aligned}$	LED28W	Non-Integrated Ballast LED, 28W, any bulb shape, any application	28W LED - Non- Int. Ballast	Electronic	N/A	N/A	28	15
$\begin{aligned} & \text { LEDO29- } \\ & \text { FIXT } \end{aligned}$	LED29W	Non-Integrated Ballast LED, 29W, any bulb shape, any application	29W LED - Non- Int. Ballast	Electronic	N/A	N/A	29	15
$\begin{aligned} & \text { LED030- } \\ & \text { FIXT } \end{aligned}$	LED30W	Non-Integrated Ballast LED, 30W, any bulb shape, any application	30W LED - Non- Int. Ballast	Electronic	N/A	N/A	30	15
$\begin{aligned} & \text { LED031- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED31W	Non-Integrated Ballast LED, 31W, any bulb shape, any application	31W LED - Non- Int. Ballast	Electronic	N/A	N/A	31	15
$\begin{aligned} & \text { LEDO32- } \\ & \text { FIXT } \end{aligned}$	LED32W	Non-Integrated Ballast LED, 32W, any bulb shape, any application	32W LED - Non- Int. Ballast	Electronic	N/A	N/A	32	15
$\begin{aligned} & \text { LED033- } \\ & \text { FIXT } \end{aligned}$	LED33W	Non-Integrated Ballast LED, 33W, any bulb shape, any application	33W LED - Non- Int. Ballast	Electronic	N/A	N/A	33	15
$\begin{aligned} & \text { LED034- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED34W	Non-Integrated Ballast LED, 34W, any bulb shape, any application	34W LED - NonInt. Ballast	Electronic	N/A	N/A	34	15
$\begin{aligned} & \text { LEDO35- } \\ & \text { FIXT } \end{aligned}$	LED35W	Non-Integrated Ballast LED, 35W, any bulb shape, any application	35W LED - Non- Int. Ballast	Electronic	N/A	N/A	35	15
$\begin{aligned} & \text { LED036- } \\ & \text { FIXT } \end{aligned}$	LED36W	Non-Integrated Ballast LED, 36W, any bulb shape, any application	36W LED - Non- Int. Ballast	Electronic	N/A	N/A	36	15

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
$\begin{aligned} & \text { LEDO37- } \\ & \text { FIXT } \end{aligned}$	LED37W	Non-Integrated Ballast LED, 37W, any bulb shape, any application	37W LED - Non- Int. Ballast	Electronic	N/A	N/A	37	15
$\begin{aligned} & \text { LEDO38- } \\ & \text { FIXT } \end{aligned}$	LED38W	Non-Integrated Ballast LED, 38W, any bulb shape, any application	38W LED - Non- Int. Ballast	Electronic	N/A	N/A	38	15
$\begin{aligned} & \text { LED039- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED39W	Non-Integrated Ballast LED, 39W, any bulb shape, any application	39W LED - Non- Int. Ballast	Electronic	N/A	N/A	39	15
$\begin{aligned} & \text { LEDO40- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED40W	Non-Integrated Ballast LED, 40W, any bulb shape, any application	40W LED - NonInt. Ballast	Electronic	N/A	N/A	40	15
$\begin{aligned} & \text { LEDO41- } \\ & \text { FIXT } \end{aligned}$	LED41W	Non-Integrated Ballast LED, 41W, any bulb shape, any application	41W LED - Non- Int. Ballast	Electronic	N/A	N/A	41	15
$\begin{aligned} & \text { LEDO42- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED42W	Non-Integrated Ballast LED, 42W, any bulb shape, any application	42W LED - NonInt. Ballast	Electronic	N/A	N/A	42	15
$\begin{aligned} & \text { LEDO43- } \\ & \text { FIXT } \end{aligned}$	LED43W	Non-Integrated Ballast LED, 43W, any bulb shape, any application	43W LED - NonInt. Ballast	Electronic	N/A	N/A	43	15
$\begin{aligned} & \text { LED044- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED44W	Non-Integrated Ballast LED, 44W, any bulb shape, any application	44W LED - NonInt. Ballast	Electronic	N/A	N/A	44	15
$\begin{aligned} & \text { LED045- } \\ & \text { FIXT } \end{aligned}$	LED45W	Non-Integrated Ballast LED, 45W, any bulb shape, any application	45W LED - Non- Int. Ballast	Electronic	N/A	N/A	45	15
$\begin{aligned} & \text { LED046- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED46W	Non-Integrated Ballast LED, 46W, any bulb shape, any application	46W LED - NonInt. Ballast	Electronic	N/A	N/A	46	15
$\begin{aligned} & \text { LED047- } \\ & \text { FIXT } \end{aligned}$	LED47W	Non-Integrated Ballast LED, 47W, any bulb shape, any application	47W LED - NonInt. Ballast	Electronic	N/A	N/A	47	15
$\begin{aligned} & \text { LEDO48- } \\ & \text { FIXT } \end{aligned}$	LED48W	Non-Integrated Ballast LED, 48W, any bulb shape, any application	48W LED - NonInt. Ballast	Electronic	N/A	N/A	48	15
$\begin{aligned} & \text { LED049- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED49W	Non-Integrated Ballast LED, 49W, any bulb shape, any application	49W LED - Non- Int. Ballast	Electronic	N/A	N/A	49	15
$\begin{aligned} & \text { LED050- } \\ & \text { FIXT } \end{aligned}$	LED50W	Non-Integrated Ballast LED, 50W, any bulb shape, any application	50W LED - NonInt. Ballast	Electronic	N/A	N/A	50	15
$\begin{aligned} & \text { LED051- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED51W	Non-Integrated Ballast LED, 51W, any bulb shape, any application	51W LED - NonInt. Ballast	Electronic	N/A	N/A	51	15
$\begin{aligned} & \text { LED052- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED52W	Non-Integrated Ballast LED, 52W, any bulb shape, any application	52W LED - NonInt. Ballast	Electronic	N/A	N/A	52	15
$\begin{aligned} & \text { LED053- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED53W	Non-Integrated Ballast LED, 53W, any bulb shape, any application	53W LED - Non- Int. Ballast	Electronic	N/A	N/A	53	15
$\begin{aligned} & \text { LED054- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED54W	Non-Integrated Ballast LED, 54W, any bulb shape, any application	54W LED - NonInt. Ballast	Electronic	N/A	N/A	54	15
$\begin{aligned} & \text { LEDO55- } \\ & \text { FIXT } \end{aligned}$	LED55W	Non-Integrated Ballast LED, 55W, any bulb shape, any application	55W LED - Non- Int. Ballast	Electronic	N/A	N/A	55	15
$\begin{aligned} & \text { LED056- } \\ & \text { FIXT } \end{aligned}$	LED56W	Non-Integrated Ballast LED, 56W, any bulb shape, any application	56W LED - NonInt. Ballast	Electronic	N/A	N/A	56	15
$\begin{aligned} & \text { LED057- } \\ & \text { FIXT } \end{aligned}$	LED57W	Non-Integrated Ballast LED, 57W, any bulb shape, any application	57W LED - Non- Int. Ballast	Electronic	N/A	N/A	57	15
$\begin{aligned} & \text { LED058- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED58W	Non-Integrated Ballast LED, 58W, any bulb shape, any application	58W LED - NonInt. Ballast	Electronic	N/A	N/A	58	15
$\begin{aligned} & \text { LED059- } \\ & \text { FIXT } \end{aligned}$	LED59W	Non-Integrated Ballast LED, 59W, any bulb shape, any application	59W LED - Non- Int. Ballast	Electronic	N/A	N/A	59	15
LED060- FIXT	LED60W	Non-Integrated Ballast LED, 60W, any bulb shape, any application	60W LED - Non- Int. Ballast	Electronic	N/A	N/A	60	15
$\begin{aligned} & \text { LED061- } \\ & \text { FIXT } \end{aligned}$	LED61W	Non-Integrated Ballast LED, 61W, any bulb shape, any application	61W LED - Non- Int. Ballast	Electronic	N/A	N/A	61	15
$\begin{aligned} & \text { LED062- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED62W	Non-Integrated Ballast LED, 62W, any bulb shape, any application	62W LED - NonInt. Ballast	Electronic	N/A	N/A	62	15
$\begin{aligned} & \text { LED063- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED63W	Non-Integrated Ballast LED, 63W, any bulb shape, any application	63W LED - Non- Int. Ballast	Electronic	N/A	N/A	63	15
LED064- FIXT	LED64W	Non-Integrated Ballast LED, 64W, any bulb shape, any application	64W LED - NonInt. Ballast	Electronic	N/A	N/A	64	15
LED065- FIXT	LED65W	Non-Integrated Ballast LED, 65W, any bulb shape, any application	65W LED - NonInt. Ballast	Electronic	N/A	N/A	65	15
$\begin{aligned} & \text { LED066- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED66W	Non-Integrated Ballast LED, 66W, any bulb shape, any application	66W LED - NonInt. Ballast	Electronic	N/A	N/A	66	15
$\begin{aligned} & \text { LED067- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED67W	Non-Integrated Ballast LED, 67W, any bulb shape, any application	67W LED - NonInt. Ballast	Electronic	N/A	N/A	67	15
$\begin{aligned} & \text { LED068- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED68W	Non-Integrated Ballast LED, 68W, any bulb shape, any application	68W LED - Non- Int. Ballast	Electronic	N/A	N/A	68	15

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
$\begin{aligned} & \hline \text { LED069- } \\ & \text { FIXT } \end{aligned}$	LED69W	Non-Integrated Ballast LED, 69W, any bulb shape, any application	69W LED - Non- Int. Ballast	Electronic	N/A	N/A	69	15
$\begin{aligned} & \text { LEDO70- } \\ & \text { FIXT } \end{aligned}$	LED70W	Non-Integrated Ballast LED, 70W, any bulb shape, any application	70W LED - NonInt. Ballast	Electronic	N/A	N/A	70	15
$\begin{aligned} & \text { LED071- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED71W	Non-Integrated Ballast LED, 71W, any bulb shape, any application	71W LED - Non- Int. Ballast	Electronic	N/A	N/A	71	15
$\begin{aligned} & \text { LED072- } \\ & \text { FIXT } \end{aligned}$	LED72W	Non-Integrated Ballast LED, 72W, any bulb shape, any application	72W LED - Non- Int. Ballast	Electronic	N/A	N/A	72	15
$\begin{aligned} & \text { LED073- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED73W	Non-Integrated Ballast LED, 73W, any bulb shape, any application	73W LED - Non- Int. Ballast	Electronic	N/A	N/A	73	15
$\begin{aligned} & \text { LED074- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED74W	Non-Integrated Ballast LED, 74W, any bulb shape, any application	74W LED - NonInt. Ballast	Electronic	N/A	N/A	74	15
$\begin{aligned} & \text { LED075- } \\ & \text { FIXT } \end{aligned}$	LED75W	Non-Integrated Ballast LED, 75W, any bulb shape, any application	75W LED - NonInt. Ballast	Electronic	N/A	N/A	75	15
$\begin{aligned} & \text { LED076- } \\ & \text { FIXT } \end{aligned}$	LED76W	Non-Integrated Ballast LED, 76W, any bulb shape, any application	76W LED - NonInt. Ballast	Electronic	N/A	N/A	76	15
$\begin{aligned} & \text { LED077- } \\ & \text { FIXT } \end{aligned}$	LED77W	Non-Integrated Ballast LED, 77W, any bulb shape, any application	77W LED - Non- Int. Ballast	Electronic	N/A	N/A	77	15
$\begin{aligned} & \text { LED078- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED78W	Non-Integrated Ballast LED, 78W, any bulb shape, any application	78W LED - NonInt. Ballast	Electronic	N/A	N/A	78	15
$\begin{aligned} & \text { LED079- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED79W	Non-Integrated Ballast LED, 79W, any bulb shape, any application	79W LED - NonInt. Ballast	Electronic	N/A	N/A	79	15
$\begin{aligned} & \text { LED080- } \\ & \text { FIXT } \end{aligned}$	LED80W	Non-Integrated Ballast LED, 80W, any bulb shape, any application	80W LED - Non- Int. Ballast	Electronic	N/A	N/A	80	15
$\begin{aligned} & \text { LED081- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED81W	Non-Integrated Ballast LED, 81W, any bulb shape, any application	81W LED - Non- Int. Ballast	Electronic	N/A	N/A	81	15
$\begin{aligned} & \text { LED082- } \\ & \text { FIXT } \end{aligned}$	LED82W	Non-Integrated Ballast LED, 82W, any bulb shape, any application	82W LED - NonInt. Ballast	Electronic	N/A	N/A	82	15
$\begin{aligned} & \text { LED083- } \\ & \text { FIXT } \end{aligned}$	LED83W	Non-Integrated Ballast LED, 83W, any bulb shape, any application	83W LED - NonInt. Ballast	Electronic	N/A	N/A	83	15
$\begin{aligned} & \text { LED084- } \\ & \text { FIXT } \end{aligned}$	LED84W	Non-Integrated Ballast LED, 84W, any bulb shape, any application	84W LED - NonInt. Ballast	Electronic	N/A	N/A	84	15
$\begin{aligned} & \text { LED085- } \\ & \text { FIXT } \end{aligned}$	LED85W	Non-Integrated Ballast LED, 85W, any bulb shape, any application	85W LED - Non- Int. Ballast	Electronic	N/A	N/A	85	15
$\begin{aligned} & \text { LED086- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED86W	Non-Integrated Ballast LED, 86W, any bulb shape, any application	86W LED - NonInt. Ballast	Electronic	N/A	N/A	86	15
$\begin{aligned} & \text { LED087- } \\ & \text { FIXT } \end{aligned}$	LED87W	Non-Integrated Ballast LED, 87W, any bulb shape, any application	87W LED - Non- Int. Ballast	Electronic	N/A	N/A	87	15
$\begin{aligned} & \text { LED088- } \\ & \text { FIXT } \end{aligned}$	LED88W	Non-Integrated Ballast LED, 88W, any bulb shape, any application	88W LED - NonInt. Ballast	Electronic	N/A	N/A	88	15
$\begin{aligned} & \hline \text { LED089- } \\ & \text { FIXT } \end{aligned}$	LED89W	Non-Integrated Ballast LED, 89W, any bulb shape, any application	89W LED - Non- Int. Ballast	Electronic	N/A	N/A	89	15
$\begin{aligned} & \text { LED090- } \\ & \text { FIXT } \end{aligned}$	LED90W	Non-Integrated Ballast LED, 90W, any bulb shape, any application	90W LED - NonInt. Ballast	Electronic	N/A	N/A	90	15
$\begin{aligned} & \text { LED091- } \\ & \text { FIXT } \end{aligned}$	LED91W	Non-Integrated Ballast LED, 91W, any bulb shape, any application	91W LED - NonInt. Ballast	Electronic	N/A	N/A	91	15
$\begin{aligned} & \text { LED092- } \\ & \text { FIXT } \end{aligned}$	LED92W	Non-Integrated Ballast LED, 92W, any bulb shape, any application	92W LED - Non- Int. Ballast	Electronic	N/A	N/A	92	15
$\begin{aligned} & \text { LED093- } \\ & \text { FIXT } \end{aligned}$	LED93W	Non-Integrated Ballast LED, 93W, any bulb shape, any application	93W LED - Non- Int. Ballast	Electronic	N/A	N/A	93	15
$\begin{aligned} & \text { LED094- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED94W	Non-Integrated Ballast LED, 94W, any bulb shape, any application	94W LED - NonInt. Ballast	Electronic	N/A	N/A	94	15
$\begin{aligned} & \text { LED095- } \\ & \text { FIXT } \end{aligned}$	LED95W	Non-Integrated Ballast LED, 95W, any bulb shape, any application	95W LED - Non- Int. Ballast	Electronic	N/A	N/A	95	15
$\begin{aligned} & \text { LED096- } \\ & \text { FIXT } \end{aligned}$	LED96W	Non-Integrated Ballast LED, 96W, any bulb shape, any application	96W LED - Non- Int. Ballast	Electronic	N/A	N/A	96	15
$\begin{aligned} & \text { LED097- } \\ & \text { FIXT } \end{aligned}$	LED97W	Non-Integrated Ballast LED, 97W, any bulb shape, any application	97W LED - Non- Int. Ballast	Electronic	N/A	N/A	97	15
$\begin{aligned} & \text { LED098- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	LED98W	Non-Integrated Ballast LED, 98W, any bulb shape, any application	98W LED - NonInt. Ballast	Electronic	N/A	N/A	98	15
$\begin{aligned} & \text { LED099- } \\ & \text { FIXT } \end{aligned}$	LED99W	Non-Integrated Ballast LED, 99W, any bulb shape, any application	99W LED - Non- Int. Ballast	Electronic	N/A	N/A	99	15
$\begin{aligned} & \text { LED100- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED100 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 100W, any bulb shape, any application	100W LED - Non- Int. Ballast	Electronic	N/A	N/A	100	15

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
$\begin{aligned} & \text { LED101- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED101 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 101W, any bulb shape, any application	101W LED - Non- Int. Ballast	Electronic	N/A	N/A	101	15
$\begin{aligned} & \text { LED102- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED102 } \\ & \mathrm{w} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 102W, any bulb shape, any application	102W LED - Non- Int. Ballast	Electronic	N/A	N/A	102	15
$\begin{aligned} & \text { LED103- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED103 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 103W, any bulb shape, any application	103W LED - NonInt. Ballast	Electronic	N/A	N/A	103	15
$\begin{aligned} & \text { LED104- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED104 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 104W, any bulb shape, any application	104W LED - Non- Int. Ballast	Electronic	N/A	N/A	104	15
$\begin{aligned} & \text { LED105- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED105 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 105W, any bulb shape, any application	$\begin{aligned} & \text { 105W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	105	15
$\begin{aligned} & \text { LED106- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED106 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 106W, any bulb shape, any application	106W LED - NonInt. Ballast	Electronic	N/A	N/A	106	15
$\begin{aligned} & \text { LED107- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED107 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 107W, any bulb shape, any application	107W LED - Non- Int. Ballast	Electronic	N/A	N/A	107	15
$\begin{aligned} & \text { LED108- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED108 } \\ & \text { W } \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 108W, any bulb shape, any application	108W LED - Non- Int. Ballast	Electronic	N/A	N/A	108	15
$\begin{aligned} & \text { LED109- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED109 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 109W, any bulb shape, any application	109W LED - Non- Int. Ballast	Electronic	N/A	N/A	109	15
$\begin{aligned} & \text { LED110- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED110 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 110W, any bulb shape, any application	110W LED - NonInt. Ballast	Electronic	N/A	N/A	110	15
$\begin{aligned} & \text { LED111- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED111 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 111W, any bulb shape, any application	111W LED - Non- Int. Ballast	Electronic	N/A	N/A	111	15
$\begin{aligned} & \text { LED112- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED112 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 112W, any bulb shape, any application	$\begin{aligned} & \text { 112W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	112	15
$\begin{aligned} & \text { LED113- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED113 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 113W, any bulb shape, any application	113W LED - Non- Int. Ballast	Electronic	N/A	N/A	113	15
$\begin{aligned} & \text { LED114- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED114 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 114W, any bulb shape, any application	114W LED - NonInt. Ballast	Electronic	N/A	N/A	114	15
$\begin{aligned} & \text { LED115- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED115 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 115W, any bulb shape, any application	115W LED - Non- Int. Ballast	Electronic	N/A	N/A	115	15
$\begin{aligned} & \text { LED116- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED116 } \\ & \text { W } \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 116W, any bulb shape, any application	116W LED - Non- Int. Ballast	Electronic	N/A	N/A	116	15
$\begin{aligned} & \text { LED117- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED117 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 117W, any bulb shape, any application	117W LED - Non- Int. Ballast	Electronic	N/A	N/A	117	15
$\begin{aligned} & \text { LED118- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED118 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 118W, any bulb shape, any application	118W LED - Non- Int. Ballast	Electronic	N/A	N/A	118	15
$\begin{aligned} & \text { LED119- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED119 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 119W, any bulb shape, any application	119W LED - Non- Int. Ballast	Electronic	N/A	N/A	119	15
$\begin{aligned} & \text { LED120- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED120 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 120W, any bulb shape, any application	120W LED - Non- Int. Ballast	Electronic	N/A	N/A	120	15
$\begin{aligned} & \text { LED121- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED121 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 121W, any bulb shape, any application	121W LED - Non- Int. Ballast	Electronic	N/A	N/A	121	15
$\begin{aligned} & \text { LED122- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED122 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 122W, any bulb shape, any application	122W LED - Non- Int. Ballast	Electronic	N/A	N/A	122	15
$\begin{aligned} & \text { LED123- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED123 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 123W, any bulb shape, any application	123W LED - Non- Int. Ballast	Electronic	N/A	N/A	123	15
$\begin{aligned} & \text { LED124- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED124 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 124W, any bulb shape, any application	124W LED - Non- Int. Ballast	Electronic	N/A	N/A	124	15
$\begin{aligned} & \text { LED125- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED125 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 125W, any bulb shape, any application	125W LED - Non- Int. Ballast	Electronic	N/A	N/A	125	15
$\begin{aligned} & \text { LED126- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED126 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 126W, any bulb shape, any application	126W LED - Non- Int. Ballast	Electronic	N/A	N/A	126	15
$\begin{aligned} & \text { LED127- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED127 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 127W, any bulb shape, any application	127W LED - Non- Int. Ballast	Electronic	N/A	N/A	127	15
$\begin{aligned} & \text { LED128- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED128 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 128W, any bulb shape, any application	128W LED - Non- Int. Ballast	Electronic	N/A	N/A	128	15
$\begin{aligned} & \text { LED129- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED129 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 129W, any bulb shape, any application	129W LED - Non- Int. Ballast	Electronic	N/A	N/A	129	15
$\begin{aligned} & \text { LED130- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED130 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 130W, any bulb shape, any application	130W LED - Non- Int. Ballast	Electronic	N/A	N/A	130	15
$\begin{aligned} & \text { LED131- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED131 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 131W, any bulb shape, any application	131W LED - Non- Int. Ballast	Electronic	N/A	N/A	131	15
$\begin{aligned} & \text { LED132- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED132 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 132W, any bulb shape, any application	132W LED - Non- Int. Ballast	Electronic	N/A	N/A	132	15

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
$\begin{aligned} & \text { LED133- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED133 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 133W, any bulb shape, any application	$\begin{aligned} & \text { 133W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	133	15
$\begin{aligned} & \text { LED134- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED134 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 134W, any bulb shape, any application	134W LED - Non- Int. Ballast	Electronic	N/A	N/A	134	15
$\begin{aligned} & \text { LED135- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED135 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 135W, any bulb shape, any application	$\begin{aligned} & \text { 135W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	135	15
$\begin{aligned} & \text { LED136- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED136 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 136W, any bulb shape, any application	136W LED - Non- Int. Ballast	Electronic	N/A	N/A	136	15
$\begin{aligned} & \text { LED137- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED137 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 137W, any bulb shape, any application	$\begin{aligned} & \text { 137W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	137	15
$\begin{aligned} & \text { LED138- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED138 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 138W, any bulb shape, any application	138W LED - Non- Int. Ballast	Electronic	N/A	N/A	138	15
$\begin{aligned} & \text { LED139- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED139 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 139W, any bulb shape, any application	$\begin{aligned} & \text { 139W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	139	15
$\begin{aligned} & \text { LED140- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED140 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 140W, any bulb shape, any application	140W LED - NonInt. Ballast	Electronic	N/A	N/A	140	15
$\begin{aligned} & \text { LED141- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED141 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 141W, any bulb shape, any application	141W LED - NonInt. Ballast	Electronic	N/A	N/A	141	15
$\begin{aligned} & \text { LED142- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED142 } \\ & \text { W } \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 142W, any bulb shape, any application	142W LED - Non- Int. Ballast	Electronic	N/A	N/A	142	15
$\begin{aligned} & \text { LED143- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED143 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 143W, any bulb shape, any application	143W LED - Non- Int. Ballast	Electronic	N/A	N/A	143	15
$\begin{aligned} & \text { LED144- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED144 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 144W, any bulb shape, any application	144W LED - NonInt. Ballast	Electronic	N/A	N/A	144	15
$\begin{aligned} & \text { LED145- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED145 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 145W, any bulb shape, any application	145W LED - NonInt. Ballast	Electronic	N/A	N/A	145	15
$\begin{aligned} & \text { LED146- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED146 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 146W, any bulb shape, any application	146W LED - NonInt. Ballast	Electronic	N/A	N/A	146	15
$\begin{aligned} & \text { LED147- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED147 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 147W, any bulb shape, any application	147W LED - NonInt. Ballast	Electronic	N/A	N/A	147	15
$\begin{aligned} & \text { LED148- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED148 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 148W, any bulb shape, any application	148W LED - NonInt. Ballast	Electronic	N/A	N/A	148	15
$\begin{aligned} & \text { LED149- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED149 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 149W, any bulb shape, any application	149W LED - Non- Int. Ballast	Electronic	N/A	N/A	149	15
$\begin{aligned} & \text { LED150- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED150 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 150W, any bulb shape, any application	150W LED - Non- Int. Ballast	Electronic	N/A	N/A	150	15
$\begin{aligned} & \text { LED151- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED151 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 151W, any bulb shape, any application	151W LED - Non- Int. Ballast	Electronic	N/A	N/A	151	15
$\begin{aligned} & \text { LED152- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED152 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 152W, any bulb shape, any application	$\begin{aligned} & \text { 152W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	152	15
$\begin{aligned} & \text { LED153- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED153 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 153W, any bulb shape, any application	153W LED - Non- Int. Ballast	Electronic	N/A	N/A	153	15
$\begin{aligned} & \text { LED154- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED154 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 154W, any bulb shape, any application	154W LED - Non- Int. Ballast	Electronic	N/A	N/A	154	15
$\begin{aligned} & \text { LED155- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED155 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 155W, any bulb shape, any application	155W LED - Non- Int. Ballast	Electronic	N/A	N/A	155	15
$\begin{aligned} & \text { LED156- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED156 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 156W, any bulb shape, any application	156W LED - Non- Int. Ballast	Electronic	N/A	N/A	156	15
$\begin{aligned} & \text { LED157- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED157 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 157W, any bulb shape, any application	$\begin{aligned} & \text { 157W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	157	15
$\begin{aligned} & \text { LED158- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED158 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 158W, any bulb shape, any application	$\begin{aligned} & \text { 158W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	158	15
$\begin{aligned} & \text { LED159- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED159 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 159W, any bulb shape, any application	159W LED - Non- Int. Ballast	Electronic	N/A	N/A	159	15
$\begin{aligned} & \text { LED160- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED160 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 160W, any bulb shape, any application	160W LED - Non- Int. Ballast	Electronic	N/A	N/A	160	15
$\begin{aligned} & \text { LED161- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED161 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 161W, any bulb shape, any application	$\begin{aligned} & \text { 161W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	161	15
$\begin{aligned} & \text { LED162- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED162 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 162W, any bulb shape, any application	$\begin{aligned} & \text { 162W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	162	15
$\begin{aligned} & \text { LED163- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED163 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 163W, any bulb shape, any application	163W LED - Non- Int. Ballast	Electronic	N/A	N/A	163	15
$\begin{aligned} & \text { LED164- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED164 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 164W, any bulb shape, any application	164W LED - NonInt. Ballast	Electronic	N/A	N/A	164	15

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
$\begin{aligned} & \text { LED165- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED165 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 165W, any bulb shape, any application	165W LED - Non- Int. Ballast	Electronic	N/A	N/A	165	15
$\begin{aligned} & \text { LED166- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED166 } \\ & \text { W } \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 166W, any bulb shape, any application	166W LED - Non- Int. Ballast	Electronic	N/A	N/A	166	15
$\begin{aligned} & \text { LED167- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED167 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 167W, any bulb shape, any application	167W LED - Non- Int. Ballast	Electronic	N/A	N/A	167	15
$\begin{aligned} & \text { LED168- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED168 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 168W, any bulb shape, any application	168W LED - Non- Int. Ballast	Electronic	N/A	N/A	168	15
$\begin{aligned} & \hline \text { LED169- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED169 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 169W, any bulb shape, any application	$\begin{aligned} & \text { 169W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	169	15
$\begin{aligned} & \text { LED170- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED170 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 170W, any bulb shape, any application	170W LED - NonInt. Ballast	Electronic	N/A	N/A	170	15
$\begin{aligned} & \text { LED171- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED171 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 171W, any bulb shape, any application	171W LED - Non- Int. Ballast	Electronic	N/A	N/A	171	15
$\begin{aligned} & \text { LED172- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED172 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 172W, any bulb shape, any application	172W LED - Non- Int. Ballast	Electronic	N/A	N/A	172	15
$\begin{aligned} & \text { LED173- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED173 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 173W, any bulb shape, any application	173W LED - Non- Int. Ballast	Electronic	N/A	N/A	173	15
$\begin{aligned} & \text { LED174- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED174 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 174W, any bulb shape, any application	174W LED - NonInt. Ballast	Electronic	N/A	N/A	174	15
$\begin{aligned} & \text { LED175- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED175 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 175W, any bulb shape, any application	175W LED - NonInt. Ballast	Electronic	N/A	N/A	175	15
$\begin{aligned} & \text { LED176- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED176 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 176W, any bulb shape, any application	176W LED - Non- Int. Ballast	Electronic	N/A	N/A	176	15
$\begin{aligned} & \text { LED177- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED177 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 177W, any bulb shape, any application	177W LED - Non- Int. Ballast	Electronic	N/A	N/A	177	15
$\begin{aligned} & \text { LED178- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED178 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 178W, any bulb shape, any application	178W LED - NonInt. Ballast	Electronic	N/A	N/A	178	15
$\begin{aligned} & \text { LED179- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED179 } \\ & \text { W } \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 179W, any bulb shape, any application	179W LED - Non- Int. Ballast	Electronic	N/A	N/A	179	15
$\begin{aligned} & \text { LED180- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED180 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 180W, any bulb shape, any application	180W LED - Non- Int. Ballast	Electronic	N/A	N/A	180	15
$\begin{aligned} & \text { LED181- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED181 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 181W, any bulb shape, any application	181W LED - Non- Int. Ballast	Electronic	N/A	N/A	181	15
$\begin{aligned} & \text { LED182- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED182 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 182W, any bulb shape, any application	182W LED - Non- Int. Ballast	Electronic	N/A	N/A	182	15
$\begin{aligned} & \text { LED183- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED183 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 183W, any bulb shape, any application	183W LED - Non- Int. Ballast	Electronic	N/A	N/A	183	15
$\begin{aligned} & \text { LED184- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED184 } \\ & \text { W } \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 184W, any bulb shape, any application	184W LED - Non- Int. Ballast	Electronic	N/A	N/A	184	15
$\begin{aligned} & \text { LED185- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED185 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 185W, any bulb shape, any application	185W LED - Non- Int. Ballast	Electronic	N/A	N/A	185	15
$\begin{aligned} & \text { LED186- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED186 } \\ & \text { W } \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 186W, any bulb shape, any application	186W LED - Non- Int. Ballast	Electronic	N/A	N/A	186	15
$\begin{aligned} & \text { LED187- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED187 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 187W, any bulb shape, any application	187W LED - Non- Int. Ballast	Electronic	N/A	N/A	187	15
$\begin{aligned} & \text { LED188- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED188 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 188W, any bulb shape, any application	188W LED - Non- Int. Ballast	Electronic	N/A	N/A	188	15
$\begin{aligned} & \text { LED189- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED189 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 189W, any bulb shape, any application	189W LED - Non- Int. Ballast	Electronic	N/A	N/A	189	15
$\begin{aligned} & \text { LED190- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED190 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 190W, any bulb shape, any application	190W LED - Non- Int. Ballast	Electronic	N/A	N/A	190	15
$\begin{aligned} & \text { LED191- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED191 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 191W, any bulb shape, any application	191W LED - Non- Int. Ballast	Electronic	N/A	N/A	191	15
$\begin{aligned} & \text { LED192- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED192 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 192W, any bulb shape, any application	192W LED - Non- Int. Ballast	Electronic	N/A	N/A	192	15
$\begin{aligned} & \text { LED193- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED193 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 193W, any bulb shape, any application	193W LED - Non- Int. Ballast	Electronic	N/A	N/A	193	15
$\begin{aligned} & \text { LED194- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED194 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 194W, any bulb shape, any application	194W LED - Non- Int. Ballast	Electronic	N/A	N/A	194	15
$\begin{aligned} & \text { LED195- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED195 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 195W, any bulb shape, any application	195W LED - Non- Int. Ballast	Electronic	N/A	N/A	195	15
$\begin{aligned} & \text { LED196- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED196 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 196W, any bulb shape, any application	196W LED - Non- Int. Ballast	Electronic	N/A	N/A	196	15

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
$\begin{aligned} & \text { LED197- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED197 } \\ & \text { W } \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 197W, any bulb shape, any application	197W LED - Non- Int. Ballast	Electronic	N/A	N/A	197	15
$\begin{aligned} & \text { LED198- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED198 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 198W, any bulb shape, any application	198W LED - Non- Int. Ballast	Electronic	N/A	N/A	198	15
$\begin{aligned} & \text { LED199- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED199 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 199W, any bulb shape, any application	$\begin{aligned} & \text { 199W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	199	15
$\begin{aligned} & \text { LED200- } \\ & \text { FIXT } \end{aligned}$	LED200	Non-Integrated Ballast LED, 200W, any bulb shape, any application	200W LED - Non- Int. Ballast	Electronic	N/A	N/A	200	15
$\begin{aligned} & \text { LED201- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED201 } \\ & \mathrm{w} \end{aligned}$	Non-Integrated Ballast LED, 201W, any bulb shape, any application	201W LED - Non- Int. Ballast	Electronic	N/A	N/A	201	15
$\begin{aligned} & \text { LED202- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED202 } \\ & \mathrm{w} \end{aligned}$	Non-Integrated Ballast LED, 202W, any bulb shape, any application	202W LED - NonInt. Ballast	Electronic	N/A	N/A	202	15
$\begin{aligned} & \text { LED203- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED203 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 203W, any bulb shape, any application	203W LED - Non- Int. Ballast	Electronic	N/A	N/A	203	15
$\begin{aligned} & \text { LED204- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED204 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 204W, any bulb shape, any application	204W LED - Non- Int. Ballast	Electronic	N/A	N/A	204	15
$\begin{aligned} & \text { LED205- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED205 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 205W, any bulb shape, any application	205W LED - Non- Int. Ballast	Electronic	N/A	N/A	205	15
$\begin{aligned} & \text { LED206- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED206 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 206W, any bulb shape, any application	206W LED - NonInt. Ballast	Electronic	N/A	N/A	206	15
$\begin{aligned} & \text { LED207- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED207 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 207W, any bulb shape, any application	207W LED - Non- Int. Ballast	Electronic	N/A	N/A	207	15
$\begin{aligned} & \text { LED208- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED208 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 208W, any bulb shape, any application	208W LED - Non- Int. Ballast	Electronic	N/A	N/A	208	15
$\begin{aligned} & \text { LED209- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED209 } \\ & \mathrm{w} \end{aligned}$	Non-Integrated Ballast LED, 209W, any bulb shape, any application	209W LED - Non- Int. Ballast	Electronic	N/A	N/A	209	15
$\begin{aligned} & \text { LED210- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED210 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 210W, any bulb shape, any application	210W LED - NonInt. Ballast	Electronic	N/A	N/A	210	15
$\begin{aligned} & \text { LED211- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED211 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 211W, any bulb shape, any application	211W LED - NonInt. Ballast	Electronic	N/A	N/A	211	15
$\begin{aligned} & \text { LED212- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED212 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 212W, any bulb shape, any application	212W LED - Non- Int. Ballast	Electronic	N/A	N/A	212	15
$\begin{aligned} & \text { LED213- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED213 } \\ & \mathrm{w} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 213W, any bulb shape, any application	213W LED - Non- Int. Ballast	Electronic	N/A	N/A	213	15
$\begin{aligned} & \text { LED214- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED214 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 214W, any bulb shape, any application	214W LED - NonInt. Ballast	Electronic	N/A	N/A	214	15
$\begin{aligned} & \text { LED215- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED215 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 215W, any bulb shape, any application	215W LED - Non- Int. Ballast	Electronic	N/A	N/A	215	15
$\begin{aligned} & \text { LED216- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED216 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 216W, any bulb shape, any application	216W LED - Non- Int. Ballast	Electronic	N/A	N/A	216	15
$\begin{aligned} & \text { LED217- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED217 } \\ & \mathrm{w} \end{aligned}$	Non-Integrated Ballast LED, 217W, any bulb shape, any application	217W LED - Non- Int. Ballast	Electronic	N/A	N/A	217	15
$\begin{aligned} & \text { LED218- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED218 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 218W, any bulb shape, any application	218W LED - Non- Int. Ballast	Electronic	N/A	N/A	218	15
$\begin{aligned} & \text { LED219- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED219 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 219W, any bulb shape, any application	219W LED - Non- Int. Ballast	Electronic	N/A	N/A	219	15
$\begin{aligned} & \text { LED220- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED220 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 220W, any bulb shape, any application	220W LED - Non- Int. Ballast	Electronic	N/A	N/A	220	15
$\begin{aligned} & \text { LED221- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED221 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 221W, any bulb shape, any application	221W LED - Non- Int. Ballast	Electronic	N/A	N/A	221	15
$\begin{aligned} & \text { LED222- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED222 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 222W, any bulb shape, any application	222W LED - Non- Int. Ballast	Electronic	N/A	N/A	222	15
$\begin{aligned} & \text { LED223- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED223 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 223W, any bulb shape, any application	223W LED - Non- Int. Ballast	Electronic	N/A	N/A	223	15
$\begin{aligned} & \text { LED224- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED224 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 224W, any bulb shape, any application	224W LED - Non- Int. Ballast	Electronic	N/A	N/A	224	15
$\begin{aligned} & \text { LED225- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED225 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 225W, any bulb shape, any application	225W LED - Non- Int. Ballast	Electronic	N/A	N/A	225	15
$\begin{aligned} & \text { LED226- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED226 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 226W, any bulb shape, any application	226W LED - Non- Int. Ballast	Electronic	N/A	N/A	226	15
$\begin{aligned} & \text { LED227- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED227 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 227W, any bulb shape, any application	227W LED - Non- Int. Ballast	Electronic	N/A	N/A	227	15
$\begin{aligned} & \text { LED228- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED228 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 228W, any bulb shape, any application	228W LED - Non- Int. Ballast	Electronic	N/A	N/A	228	15

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
$\begin{aligned} & \text { LED229- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED229 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 229W, any bulb shape, any application	229W LED - Non- Int. Ballast	Electronic	N/A	N/A	229	15
$\begin{aligned} & \text { LED230- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED230 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 230W, any bulb shape, any application	230W LED - Non- Int. Ballast	Electronic	N/A	N/A	230	15
$\begin{aligned} & \text { LED231- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED231 } \\ & \mathrm{w} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 231W, any bulb shape, any application	231W LED - Non- Int. Ballast	Electronic	N/A	N/A	231	15
$\begin{aligned} & \text { LED232- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED232 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 232W, any bulb shape, any application	232W LED - Non- Int. Ballast	Electronic	N/A	N/A	232	15
$\begin{aligned} & \text { LED233- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED233 } \\ & \mathrm{w} \end{aligned}$	Non-Integrated Ballast LED, 233W, any bulb shape, any application	$\begin{aligned} & \text { 233W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	233	15
$\begin{aligned} & \text { LED234- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED234 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 234W, any bulb shape, any application	234W LED - NonInt. Ballast	Electronic	N/A	N/A	234	15
$\begin{aligned} & \text { LED235- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED235 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 235W, any bulb shape, any application	235W LED - Non- Int. Ballast	Electronic	N/A	N/A	235	15
$\begin{aligned} & \text { LED236- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED236 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 236W, any bulb shape, any application	236W LED - Non- Int. Ballast	Electronic	N/A	N/A	236	15
$\begin{aligned} & \text { LED237- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED237 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 237W, any bulb shape, any application	237W LED - Non- Int. Ballast	Electronic	N/A	N/A	237	15
$\begin{aligned} & \text { LED238- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED238 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 238W, any bulb shape, any application	238W LED - NonInt. Ballast	Electronic	N/A	N/A	238	15
$\begin{aligned} & \text { LED239- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED239 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 239W, any bulb shape, any application	239W LED - Non- Int. Ballast	Electronic	N/A	N/A	239	15
$\begin{aligned} & \text { LED240- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED240 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 240W, any bulb shape, any application	240W LED - Non- Int. Ballast	Electronic	N/A	N/A	240	15
$\begin{aligned} & \text { LED241- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED241 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 241W, any bulb shape, any application	241W LED - Non- Int. Ballast	Electronic	N/A	N/A	241	15
$\begin{aligned} & \text { LED242- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED242 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 242W, any bulb shape, any application	242W LED - NonInt. Ballast	Electronic	N/A	N/A	242	15
$\begin{aligned} & \text { LED243- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED243 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 243W, any bulb shape, any application	243W LED - Non- Int. Ballast	Electronic	N/A	N/A	243	15
$\begin{aligned} & \text { LED244- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED244 } \\ & \text { W } \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 244W, any bulb shape, any application	244W LED - NonInt. Ballast	Electronic	N/A	N/A	244	15
$\begin{aligned} & \text { LED245- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED245 } \\ & \mathrm{w} \end{aligned}$	Non-Integrated Ballast LED, 245W, any bulb shape, any application	245W LED - Non- Int. Ballast	Electronic	N/A	N/A	245	15
$\begin{aligned} & \text { LED246- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED246 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 246W, any bulb shape, any application	246W LED - NonInt. Ballast	Electronic	N/A	N/A	246	15
$\begin{aligned} & \text { LED247- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED247 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 247W, any bulb shape, any application	247W LED - Non- Int. Ballast	Electronic	N/A	N/A	247	15
$\begin{aligned} & \text { LED248- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED248 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 248W, any bulb shape, any application	248W LED - Non- Int. Ballast	Electronic	N/A	N/A	248	15
$\begin{aligned} & \text { LED249- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED249 } \\ & \mathrm{w} \end{aligned}$	Non-Integrated Ballast LED, 249W, any bulb shape, any application	249W LED - Non- Int. Ballast	Electronic	N/A	N/A	249	15
$\begin{aligned} & \text { LED250- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED250 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 250W, any bulb shape, any application	250W LED - Non- Int. Ballast	Electronic	N/A	N/A	250	15
$\begin{aligned} & \text { LED251- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED251 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 251W, any bulb shape, any application	251W LED - Non- Int. Ballast	Electronic	N/A	N/A	251	15
$\begin{aligned} & \text { LED252- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED252 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 252W, any bulb shape, any application	252W LED - Non- Int. Ballast	Electronic	N/A	N/A	252	15
$\begin{aligned} & \text { LED253- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED253 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 253W, any bulb shape, any application	253W LED - Non- Int. Ballast	Electronic	N/A	N/A	253	15
$\begin{aligned} & \text { LED254- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED254 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 254W, any bulb shape, any application	254W LED - NonInt. Ballast	Electronic	N/A	N/A	254	15
$\begin{aligned} & \text { LED255- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED255 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 255W, any bulb shape, any application	255W LED - Non- Int. Ballast	Electronic	N/A	N/A	255	15
$\begin{aligned} & \text { LED256- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED256 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 256W, any bulb shape, any application	256W LED - Non- Int. Ballast	Electronic	N/A	N/A	256	15
$\begin{aligned} & \text { LED257- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED257 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 257W, any bulb shape, any application	257W LED - Non- Int. Ballast	Electronic	N/A	N/A	257	15
$\begin{aligned} & \text { LED258- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED258 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 258W, any bulb shape, any application	258W LED - Non- Int. Ballast	Electronic	N/A	N/A	258	15
$\begin{aligned} & \text { LED259- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED259 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 259W, any bulb shape, any application	259W LED - Non- Int. Ballast	Electronic	N/A	N/A	259	15
$\begin{aligned} & \text { LED260- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED260 } \\ & \mathrm{w} \end{aligned}$	Non-Integrated Ballast LED, 260W, any bulb shape, any application	260W LED - Non- Int. Ballast	Electronic	N/A	N/A	260	15

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
$\begin{aligned} & \text { LED261- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED261 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 261W, any bulb shape, any application	261W LED - Non- Int. Ballast	Electronic	N/A	N/A	261	15
$\begin{aligned} & \hline \text { LED262- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED262 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 262W, any bulb shape, any application	262W LED - Non- Int. Ballast	Electronic	N/A	N/A	262	15
$\begin{aligned} & \text { LED263- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED263 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 263W, any bulb shape, any application	263W LED - Non- Int. Ballast	Electronic	N/A	N/A	263	15
$\begin{aligned} & \text { LED264- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED264 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 264W, any bulb shape, any application	264W LED - Non- Int. Ballast	Electronic	N/A	N/A	264	15
$\begin{aligned} & \text { LED265- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED265 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 265W, any bulb shape, any application	$\begin{aligned} & \text { 265W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	265	15
$\begin{aligned} & \text { LED266- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED266 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 266W, any bulb shape, any application	266W LED - NonInt. Ballast	Electronic	N/A	N/A	266	15
$\begin{aligned} & \text { LED267- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED267 } \\ & \mathrm{w} \end{aligned}$	Non-Integrated Ballast LED, 267W, any bulb shape, any application	267W LED - Non- Int. Ballast	Electronic	N/A	N/A	267	15
$\begin{aligned} & \text { LED268- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED268 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 268W, any bulb shape, any application	268W LED - Non- Int. Ballast	Electronic	N/A	N/A	268	15
$\begin{aligned} & \text { LED269- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED269 } \\ & \text { W } \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 269W, any bulb shape, any application	269W LED - Non- Int. Ballast	Electronic	N/A	N/A	269	15
$\begin{aligned} & \text { LED270- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED270 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 270W, any bulb shape, any application	270W LED - NonInt. Ballast	Electronic	N/A	N/A	270	15
$\begin{aligned} & \text { LED271- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED271 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 271W, any bulb shape, any application	271W LED - NonInt. Ballast	Electronic	N/A	N/A	271	15
$\begin{aligned} & \text { LED272- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED272 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 272W, any bulb shape, any application	272W LED - Non- Int. Ballast	Electronic	N/A	N/A	272	15
$\begin{aligned} & \text { LED273- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED273 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 273W, any bulb shape, any application	273W LED - Non- Int. Ballast	Electronic	N/A	N/A	273	15
$\begin{aligned} & \text { LED274- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED274 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 274W, any bulb shape, any application	274W LED - NonInt. Ballast	Electronic	N/A	N/A	274	15
$\begin{aligned} & \text { LED275- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED275 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 275W, any bulb shape, any application	275W LED - Non- Int. Ballast	Electronic	N/A	N/A	275	15
$\begin{aligned} & \text { LED276- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED276 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 276W, any bulb shape, any application	276W LED - Non- Int. Ballast	Electronic	N/A	N/A	276	15
$\begin{aligned} & \text { LED277- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED277 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 277W, any bulb shape, any application	277W LED - Non- Int. Ballast	Electronic	N/A	N/A	277	15
$\begin{aligned} & \text { LED278- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED278 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 278W, any bulb shape, any application	278W LED - Non- Int. Ballast	Electronic	N/A	N/A	278	15
$\begin{aligned} & \text { LED279- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED279 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 279W, any bulb shape, any application	279W LED - Non- Int. Ballast	Electronic	N/A	N/A	279	15
$\begin{aligned} & \text { LED280- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED280 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 280W, any bulb shape, any application	280W LED - Non- Int. Ballast	Electronic	N/A	N/A	280	15
$\begin{aligned} & \text { LED281- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED281 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 281W, any bulb shape, any application	281W LED - Non- Int. Ballast	Electronic	N/A	N/A	281	15
$\begin{aligned} & \text { LED282- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED282 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 282W, any bulb shape, any application	282W LED - Non- Int. Ballast	Electronic	N/A	N/A	282	15
$\begin{aligned} & \text { LED283- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED283 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 283W, any bulb shape, any application	283W LED - Non- Int. Ballast	Electronic	N/A	N/A	283	15
$\begin{aligned} & \text { LED284- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED284 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 284W, any bulb shape, any application	284W LED - Non- Int. Ballast	Electronic	N/A	N/A	284	15
$\begin{aligned} & \text { LED285- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED285 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 285W, any bulb shape, any application	285W LED - Non- Int. Ballast	Electronic	N/A	N/A	285	15
$\begin{aligned} & \text { LED286- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED286 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 286W, any bulb shape, any application	286W LED - Non- Int. Ballast	Electronic	N/A	N/A	286	15
$\begin{aligned} & \text { LED287- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED287 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 287W, any bulb shape, any application	287W LED - Non- Int. Ballast	Electronic	N/A	N/A	287	15
$\begin{aligned} & \text { LED288- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED288 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 288W, any bulb shape, any application	288W LED - Non- Int. Ballast	Electronic	N/A	N/A	288	15
$\begin{aligned} & \text { LED289- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED289 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 289W, any bulb shape, any application	289W LED - Non- Int. Ballast	Electronic	N/A	N/A	289	15
$\begin{aligned} & \text { LED290- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED290 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 290W, any bulb shape, any application	290W LED - Non- Int. Ballast	Electronic	N/A	N/A	290	15
$\begin{aligned} & \text { LED291- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED291 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 291W, any bulb shape, any application	291W LED - Non- Int. Ballast	Electronic	N/A	N/A	291	15
$\begin{aligned} & \text { LED292- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED292 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 292W, any bulb shape, any application	292W LED - Non- Int. Ballast	Electronic	N/A	N/A	292	15

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
$\begin{aligned} & \text { LED293- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED293 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 293W, any bulb shape, any application	293W LED - Non- Int. Ballast	Electronic	N/A	N/A	293	15
$\begin{aligned} & \text { LED294- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED294 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 294W, any bulb shape, any application	294W LED - Non- Int. Ballast	Electronic	N/A	N/A	294	15
$\begin{aligned} & \text { LED295- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED295 } \\ & \text { w } \end{aligned}$	Non-Integrated Ballast LED, 295W, any bulb shape, any application	$\begin{aligned} & \text { 295W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	295	15
$\begin{aligned} & \text { LED296- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED296 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 296W, any bulb shape, any application	296W LED - Non- Int. Ballast	Electronic	N/A	N/A	296	15
$\begin{aligned} & \text { LED297- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED297 } \\ & \mathrm{w} \end{aligned}$	Non-Integrated Ballast LED, 297W, any bulb shape, any application	$\begin{aligned} & \text { 297W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	297	15
$\begin{aligned} & \text { LED298- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED298 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 298W, any bulb shape, any application	298W LED - Non- Int. Ballast	Electronic	N/A	N/A	298	15
$\begin{aligned} & \text { LED299- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED299 } \\ & \mathrm{w} \end{aligned}$	Non-Integrated Ballast LED, 299W, any bulb shape, any application	$\begin{aligned} & \text { 299W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	299	15
$\begin{aligned} & \text { LED300- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED300 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 300W, any bulb shape, any application	300W LED - Non- Int. Ballast	Electronic	N/A	N/A	300	15
$\begin{aligned} & \text { LED301- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED301 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 301W, any bulb shape, any application	301W LED - Non- Int. Ballast	Electronic	N/A	N/A	301	15
$\begin{aligned} & \text { LED302- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED302 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 302W, any bulb shape, any application	302W LED - Non- Int. Ballast	Electronic	N/A	N/A	302	15
$\begin{aligned} & \text { LED303- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED303 } \\ & \text { W } \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 303W, any bulb shape, any application	303W LED - Non- Int. Ballast	Electronic	N/A	N/A	303	15
$\begin{aligned} & \text { LED304- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED304 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 304W, any bulb shape, any application	304W LED - Non- Int. Ballast	Electronic	N/A	N/A	304	15
$\begin{aligned} & \text { LED305- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED305 } \\ & \text { w } \end{aligned}$	Non-Integrated Ballast LED, 305W, any bulb shape, any application	305W LED - Non- Int. Ballast	Electronic	N/A	N/A	305	15
$\begin{aligned} & \text { LED306- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED306 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 306W, any bulb shape, any application	306W LED - NonInt. Ballast	Electronic	N/A	N/A	306	15
$\begin{aligned} & \text { LED307- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED307 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 307W, any bulb shape, any application	307W LED - NonInt. Ballast	Electronic	N/A	N/A	307	15
$\begin{aligned} & \text { LED308- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED308 } \\ & \text { W } \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 308W, any bulb shape, any application	308W LED - Non- Int. Ballast	Electronic	N/A	N/A	308	15
$\begin{aligned} & \text { LED309- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED309 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 309W, any bulb shape, any application	309W LED - Non- Int. Ballast	Electronic	N/A	N/A	309	15
$\begin{aligned} & \text { LED310- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED310 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 310W, any bulb shape, any application	310W LED - Non- Int. Ballast	Electronic	N/A	N/A	310	15
$\begin{aligned} & \text { LED311- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED311 } \\ & \mathrm{w} \end{aligned}$	Non-Integrated Ballast LED, 311W, any bulb shape, any application	311W LED - Non- Int. Ballast	Electronic	N/A	N/A	311	15
$\begin{aligned} & \text { LED312- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED312 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 312W, any bulb shape, any application	312W LED - Non- Int. Ballast	Electronic	N/A	N/A	312	15
$\begin{aligned} & \text { LED313- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED313 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 313W, any bulb shape, any application	313W LED - Non- Int. Ballast	Electronic	N/A	N/A	313	15
$\begin{aligned} & \text { LED314- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED314 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 314W, any bulb shape, any application	314W LED - Non- Int. Ballast	Electronic	N/A	N/A	314	15
$\begin{aligned} & \text { LED315- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED315 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 315W, any bulb shape, any application	315W LED - Non- Int. Ballast	Electronic	N/A	N/A	315	15
$\begin{aligned} & \text { LED316- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED316 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 316W, any bulb shape, any application	316W LED - Non- Int. Ballast	Electronic	N/A	N/A	316	15
$\begin{aligned} & \text { LED317- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED317 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 317W, any bulb shape, any application	317W LED - Non- Int. Ballast	Electronic	N/A	N/A	317	15
$\begin{aligned} & \text { LED318- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED318 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 318W, any bulb shape, any application	318W LED - Non- Int. Ballast	Electronic	N/A	N/A	318	15
$\begin{aligned} & \text { LED319- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED319 } \\ & \text { W } \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 319W, any bulb shape, any application	319W LED - Non- Int. Ballast	Electronic	N/A	N/A	319	15
$\begin{aligned} & \text { LED320- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED320 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 320W, any bulb shape, any application	320W LED - Non- Int. Ballast	Electronic	N/A	N/A	320	15
$\begin{aligned} & \text { LED321- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED321 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 321W, any bulb shape, any application	321W LED - Non- Int. Ballast	Electronic	N/A	N/A	321	15
$\begin{aligned} & \text { LED322- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED322 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 322W, any bulb shape, any application	322W LED - Non- Int. Ballast	Electronic	N/A	N/A	322	15
$\begin{aligned} & \text { LED323- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED323 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 323W, any bulb shape, any application	323W LED - Non- Int. Ballast	Electronic	N/A	N/A	323	15
$\begin{aligned} & \text { LED324- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED324 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 324W, any bulb shape, any application	324W LED - Non- Int. Ballast	Electronic	N/A	N/A	324	15

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
$\begin{aligned} & \text { LED325- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED325 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 325W, any bulb shape, any application	325W LED - Non- Int. Ballast	Electronic	N/A	N/A	325	15
$\begin{aligned} & \text { LED326- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED326 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 326W, any bulb shape, any application	326W LED - Non- Int. Ballast	Electronic	N/A	N/A	326	15
$\begin{aligned} & \text { LED327- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED327 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 327W, any bulb shape, any application	327W LED - Non- Int. Ballast	Electronic	N/A	N/A	327	15
$\begin{aligned} & \text { LED328- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED328 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 328W, any bulb shape, any application	328W LED - Non- Int. Ballast	Electronic	N/A	N/A	328	15
$\begin{aligned} & \text { LED329- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED329 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 329W, any bulb shape, any application	$\begin{aligned} & \text { 329W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	329	15
$\begin{aligned} & \text { LED330- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED330 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 330W, any bulb shape, any application	330W LED - Non- Int. Ballast	Electronic	N/A	N/A	330	15
$\begin{aligned} & \text { LED331- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED331 } \\ & \text { w } \end{aligned}$	Non-Integrated Ballast LED, 331W, any bulb shape, any application	$\begin{aligned} & \text { 331W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	331	15
$\begin{aligned} & \text { LED332- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED332 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 332W, any bulb shape, any application	332W LED - Non- Int. Ballast	Electronic	N/A	N/A	332	15
$\begin{aligned} & \text { LED333- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED333 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 333W, any bulb shape, any application	333W LED - Non- Int. Ballast	Electronic	N/A	N/A	333	15
$\begin{aligned} & \text { LED334- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED334 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 334W, any bulb shape, any application	334W LED - Non- Int. Ballast	Electronic	N/A	N/A	334	15
$\begin{aligned} & \text { LED335- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED335 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 335W, any bulb shape, any application	335W LED - Non- Int. Ballast	Electronic	N/A	N/A	335	15
$\begin{aligned} & \text { LED336- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED336 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 336W, any bulb shape, any application	336W LED - Non- Int. Ballast	Electronic	N/A	N/A	336	15
$\begin{aligned} & \text { LED337- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED337 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 337W, any bulb shape, any application	337W LED - Non- Int. Ballast	Electronic	N/A	N/A	337	15
$\begin{aligned} & \text { LED338- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED338 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 338W, any bulb shape, any application	338W LED - Non- Int. Ballast	Electronic	N/A	N/A	338	15
$\begin{aligned} & \text { LED339- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED339 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 339W, any bulb shape, any application	339W LED - Non- Int. Ballast	Electronic	N/A	N/A	339	15
$\begin{aligned} & \text { LED340- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED340 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 340W, any bulb shape, any application	340W LED - Non- Int. Ballast	Electronic	N/A	N/A	340	15
$\begin{aligned} & \text { LED341- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED341 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 341W, any bulb shape, any application	341W LED - Non- Int. Ballast	Electronic	N/A	N/A	341	15
$\begin{aligned} & \text { LED342- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED342 } \\ & \mathrm{w} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 342W, any bulb shape, any application	342W LED - Non- Int. Ballast	Electronic	N/A	N/A	342	15
$\begin{aligned} & \text { LED343- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED343 } \\ & \text { w } \end{aligned}$	Non-Integrated Ballast LED, 343W, any bulb shape, any application	343W LED - Non- Int. Ballast	Electronic	N/A	N/A	343	15
$\begin{aligned} & \text { LED344- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED344 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 344W, any bulb shape, any application	344W LED - Non- Int. Ballast	Electronic	N/A	N/A	344	15
$\begin{aligned} & \text { LED345- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED345 } \\ & \text { w } \end{aligned}$	Non-Integrated Ballast LED, 345W, any bulb shape, any application	345W LED - Non- Int. Ballast	Electronic	N/A	N/A	345	15
$\begin{aligned} & \text { LED346- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED346 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 346W, any bulb shape, any application	346W LED - Non- Int. Ballast	Electronic	N/A	N/A	346	15
$\begin{aligned} & \text { LED347- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED347 } \\ & \text { W } \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 347W, any bulb shape, any application	347W LED - Non- Int. Ballast	Electronic	N/A	N/A	347	15
$\begin{aligned} & \text { LED348- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED348 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 348W, any bulb shape, any application	348W LED - Non- Int. Ballast	Electronic	N/A	N/A	348	15
$\begin{aligned} & \text { LED349- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED349 } \\ & \text { W } \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 349W, any bulb shape, any application	349W LED - Non- Int. Ballast	Electronic	N/A	N/A	349	15
$\begin{aligned} & \text { LED350- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED350 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 350W, any bulb shape, any application	350W LED - Non- Int. Ballast	Electronic	N/A	N/A	350	15
$\begin{aligned} & \text { LED351- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED351 } \\ & \text { W } \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 351W, any bulb shape, any application	351W LED - Non- Int. Ballast	Electronic	N/A	N/A	351	15
$\begin{aligned} & \text { LED352- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED352 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 352W, any bulb shape, any application	352W LED - Non- Int. Ballast	Electronic	N/A	N/A	352	15
$\begin{aligned} & \text { LED353- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED353 } \\ & \text { w } \end{aligned}$	Non-Integrated Ballast LED, 353W, any bulb shape, any application	353W LED - Non- Int. Ballast	Electronic	N/A	N/A	353	15
$\begin{aligned} & \text { LED354- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED354 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 354W, any bulb shape, any application	354W LED - Non- Int. Ballast	Electronic	N/A	N/A	354	15
$\begin{aligned} & \text { LED355- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED355 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 355W, any bulb shape, any application	355W LED - Non- Int. Ballast	Electronic	N/A	N/A	355	15
$\begin{aligned} & \text { LED356- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED356 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 356W, any bulb shape, any application	356W LED - Non- Int. Ballast	Electronic	N/A	N/A	356	15

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
$\begin{aligned} & \text { LED357- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED357 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 357W, any bulb shape, any application	357W LED - Non- Int. Ballast	Electronic	N/A	N/A	357	15
$\begin{aligned} & \text { LED358- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED358 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 358W, any bulb shape, any application	358W LED - Non- Int. Ballast	Electronic	N/A	N/A	358	15
$\begin{aligned} & \text { LED359- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED359 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 359W, any bulb shape, any application	$\begin{aligned} & \text { 359W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	359	15
$\begin{aligned} & \text { LED360- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED360 } \\ & \mathrm{w} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 360W, any bulb shape, any application	360W LED - Non- Int. Ballast	Electronic	N/A	N/A	360	15
$\begin{aligned} & \text { LED361- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED361 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 361W, any bulb shape, any application	$\begin{aligned} & \text { 361W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	361	15
$\begin{aligned} & \text { LED362- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED362 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 362W, any bulb shape, any application	362W LED - Non- Int. Ballast	Electronic	N/A	N/A	362	15
$\begin{aligned} & \text { LED363- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED363 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 363W, any bulb shape, any application	363W LED - Non- Int. Ballast	Electronic	N/A	N/A	363	15
$\begin{aligned} & \text { LED364- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED364 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 364W, any bulb shape, any application	364W LED - NonInt. Ballast	Electronic	N/A	N/A	364	15
$\begin{aligned} & \text { LED365- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED365 } \\ & \text { W } \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 365W, any bulb shape, any application	365W LED - Non- Int. Ballast	Electronic	N/A	N/A	365	15
$\begin{aligned} & \text { LED366- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED366 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 366W, any bulb shape, any application	366W LED - Non- Int. Ballast	Electronic	N/A	N/A	366	15
$\begin{aligned} & \text { LED367- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED367 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 367W, any bulb shape, any application	367W LED - Non- Int. Ballast	Electronic	N/A	N/A	367	15
$\begin{aligned} & \text { LED368- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED368 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 368W, any bulb shape, any application	368W LED - Non- Int. Ballast	Electronic	N/A	N/A	368	15
$\begin{aligned} & \text { LED369- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED369 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 369W, any bulb shape, any application	369W LED - Non- Int. Ballast	Electronic	N/A	N/A	369	15
$\begin{aligned} & \text { LED370- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED370 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 370W, any bulb shape, any application	370W LED - NonInt. Ballast	Electronic	N/A	N/A	370	15
$\begin{aligned} & \text { LED371- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED371 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 371W, any bulb shape, any application	371W LED - Non- Int. Ballast	Electronic	N/A	N/A	371	15
$\begin{aligned} & \text { LED372- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED372 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 372W, any bulb shape, any application	372W LED - Non- Int. Ballast	Electronic	N/A	N/A	372	15
$\begin{aligned} & \text { LED373- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED373 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 373W, any bulb shape, any application	373W LED - Non- Int. Ballast	Electronic	N/A	N/A	373	15
$\begin{aligned} & \text { LED374- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED374 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 374W, any bulb shape, any application	374W LED - Non- Int. Ballast	Electronic	N/A	N/A	374	15
$\begin{aligned} & \text { LED375- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED375 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 375W, any bulb shape, any application	375W LED - Non- Int. Ballast	Electronic	N/A	N/A	375	15
$\begin{aligned} & \text { LED376- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED376 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 376W, any bulb shape, any application	376W LED - Non- Int. Ballast	Electronic	N/A	N/A	376	15
$\begin{aligned} & \text { LED377- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED377 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 377W, any bulb shape, any application	377W LED - Non- Int. Ballast	Electronic	N/A	N/A	377	15
$\begin{aligned} & \text { LED378- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED378 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 378W, any bulb shape, any application	378W LED - Non- Int. Ballast	Electronic	N/A	N/A	378	15
$\begin{aligned} & \text { LED379- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED379 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 379W, any bulb shape, any application	379W LED - Non- Int. Ballast	Electronic	N/A	N/A	379	15
$\begin{aligned} & \text { LED380- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED380 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 380W, any bulb shape, any application	380W LED - Non- Int. Ballast	Electronic	N/A	N/A	380	15
$\begin{aligned} & \text { LED381- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED381 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 381W, any bulb shape, any application	381W LED - Non- Int. Ballast	Electronic	N/A	N/A	381	15
$\begin{aligned} & \text { LED382- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED382 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 382W, any bulb shape, any application	382W LED - Non- Int. Ballast	Electronic	N/A	N/A	382	15
$\begin{aligned} & \text { LED383- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED383 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 383W, any bulb shape, any application	383W LED - Non- Int. Ballast	Electronic	N/A	N/A	383	15
$\begin{aligned} & \text { LED384- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED384 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 384W, any bulb shape, any application	384W LED - Non- Int. Ballast	Electronic	N/A	N/A	384	15
$\begin{aligned} & \text { LED385- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED385 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 385W, any bulb shape, any application	385W LED - Non- Int. Ballast	Electronic	N/A	N/A	385	15
$\begin{aligned} & \text { LED386- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED386 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 386W, any bulb shape, any application	386W LED - Non- Int. Ballast	Electronic	N/A	N/A	386	15
$\begin{aligned} & \text { LED387- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED387 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 387W, any bulb shape, any application	387W LED - Non- Int. Ballast	Electronic	N/A	N/A	387	15
$\begin{aligned} & \text { LED388- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED388 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 388W, any bulb shape, any application	388W LED - Non- Int. Ballast	Electronic	N/A	N/A	388	15

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
$\begin{aligned} & \text { LED389- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED389 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 389W, any bulb shape, any application	389W LED - Non- Int. Ballast	Electronic	N/A	N/A	389	15
$\begin{aligned} & \text { LED390- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED390 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 390W, any bulb shape, any application	390W LED - Non- Int. Ballast	Electronic	N/A	N/A	390	15
$\begin{aligned} & \text { LED391- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED391 } \\ & \text { w } \end{aligned}$	Non-Integrated Ballast LED, 391W, any bulb shape, any application	$\begin{aligned} & \text { 391W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	391	15
$\begin{aligned} & \text { LED392- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED392 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 392W, any bulb shape, any application	392W LED - Non- Int. Ballast	Electronic	N/A	N/A	392	15
$\begin{aligned} & \text { LED393- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED393 } \\ & \text { W } \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 393W, any bulb shape, any application	$\begin{aligned} & \text { 393W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	393	15
$\begin{aligned} & \text { LED394- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED394 } \\ & \text { W } \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 394W, any bulb shape, any application	394W LED - Non- Int. Ballast	Electronic	N/A	N/A	394	15
$\begin{aligned} & \text { LED395- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED395 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 395W, any bulb shape, any application	395W LED - Non- Int. Ballast	Electronic	N/A	N/A	395	15
$\begin{aligned} & \text { LED396- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED396 } \\ & \text { W } \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 396W, any bulb shape, any application	396W LED - Non- Int. Ballast	Electronic	N/A	N/A	396	15
$\begin{aligned} & \text { LED397- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED397 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 397W, any bulb shape, any application	397W LED - Non- Int. Ballast	Electronic	N/A	N/A	397	15
$\begin{aligned} & \text { LED398- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED398 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 398W, any bulb shape, any application	398W LED - Non- Int. Ballast	Electronic	N/A	N/A	398	15
$\begin{aligned} & \text { LED399- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED399 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 399W, any bulb shape, any application	399W LED - Non- Int. Ballast	Electronic	N/A	N/A	399	15
$\begin{aligned} & \text { LED400- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED400 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 400W, any bulb shape, any application	400W LED - NonInt. Ballast	Electronic	N/A	N/A	400	15
$\begin{aligned} & \text { LED401- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED401 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 401W, any bulb shape, any application	401W LED - Non- Int. Ballast	Electronic	N/A	N/A	401	15
$\begin{aligned} & \text { LED402- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED402 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 402W, any bulb shape, any application	402W LED - NonInt. Ballast	Electronic	N/A	N/A	402	15
$\begin{aligned} & \text { LED403- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED403 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 403W, any bulb shape, any application	403W LED - NonInt. Ballast	Electronic	N/A	N/A	403	15
$\begin{aligned} & \hline \text { LED404- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED404 } \\ & \mathrm{w} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 404W, any bulb shape, any application	404W LED - NonInt. Ballast	Electronic	N/A	N/A	404	15
$\begin{aligned} & \text { LED405- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED405 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 405W, any bulb shape, any application	405W LED - Non- Int. Ballast	Electronic	N/A	N/A	405	15
$\begin{aligned} & \text { LED406- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED406 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 406W, any bulb shape, any application	406W LED - NonInt. Ballast	Electronic	N/A	N/A	406	15
$\begin{aligned} & \text { LED407- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED407 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 407W, any bulb shape, any application	407W LED - Non- Int. Ballast	Electronic	N/A	N/A	407	15
$\begin{aligned} & \text { LED408- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED408 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 408W, any bulb shape, any application	408W LED - Non- Int. Ballast	Electronic	N/A	N/A	408	15
$\begin{aligned} & \text { LED409- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED409 } \\ & \mathrm{w} \end{aligned}$	Non-Integrated Ballast LED, 409W, any bulb shape, any application	409W LED - NonInt. Ballast	Electronic	N/A	N/A	409	15
$\begin{aligned} & \text { LED410- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED410 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 410W, any bulb shape, any application	410W LED - NonInt. Ballast	Electronic	N/A	N/A	410	15
$\begin{aligned} & \text { LED411- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED411 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 411W, any bulb shape, any application	411W LED - Non- Int. Ballast	Electronic	N/A	N/A	411	15
$\begin{aligned} & \text { LED412- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED412 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 412W, any bulb shape, any application	412W LED - Non- Int. Ballast	Electronic	N/A	N/A	412	15
$\begin{aligned} & \text { LED413- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED413 } \\ & \mathrm{w} \end{aligned}$	Non-Integrated Ballast LED, 413W, any bulb shape, any application	413W LED - Non- Int. Ballast	Electronic	N/A	N/A	413	15
$\begin{aligned} & \text { LED414- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED414 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 414W, any bulb shape, any application	414W LED - Non- Int. Ballast	Electronic	N/A	N/A	414	15
$\begin{aligned} & \text { LED415- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED415 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 415W, any bulb shape, any application	415W LED - Non- Int. Ballast	Electronic	N/A	N/A	415	15
$\begin{aligned} & \text { LED416- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED416 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 416W, any bulb shape, any application	416W LED - Non- Int. Ballast	Electronic	N/A	N/A	416	15
$\begin{aligned} & \text { LED417- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED417 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 417W, any bulb shape, any application	417W LED - Non- Int. Ballast	Electronic	N/A	N/A	417	15
$\begin{aligned} & \text { LED418- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED418 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 418W, any bulb shape, any application	418W LED - Non- Int. Ballast	Electronic	N/A	N/A	418	15
$\begin{aligned} & \text { LED419- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED419 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 419W, any bulb shape, any application	419W LED - Non- Int. Ballast	Electronic	N/A	N/A	419	15
$\begin{aligned} & \text { LED420- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED420 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 420W, any bulb shape, any application	420W LED - Non- Int. Ballast	Electronic	N/A	N/A	420	15

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
$\begin{aligned} & \text { LED421- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED421 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 421W, any bulb shape, any application	$\begin{aligned} & \text { 421W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	421	15
$\begin{aligned} & \text { LED422- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED422 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 422W, any bulb shape, any application	$\begin{aligned} & \text { 422W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	422	15
$\begin{aligned} & \text { LED423- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED423 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 423W, any bulb shape, any application	$\begin{aligned} & \text { 423W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	423	15
$\begin{aligned} & \text { LED424- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED424 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 424W, any bulb shape, any application	424W LED - Non- Int. Ballast	Electronic	N/A	N/A	424	15
$\begin{aligned} & \text { LED425- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED425 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 425W, any bulb shape, any application	$\begin{aligned} & \text { 425W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	425	15
$\begin{aligned} & \text { LED426- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED426 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 426W, any bulb shape, any application	426W LED - Non- Int. Ballast	Electronic	N/A	N/A	426	15
$\begin{aligned} & \text { LED427- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED427 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 427W, any bulb shape, any application	427W LED - Non- Int. Ballast	Electronic	N/A	N/A	427	15
$\begin{aligned} & \text { LED428- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED428 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 428W, any bulb shape, any application	428W LED - Non- Int. Ballast	Electronic	N/A	N/A	428	15
$\begin{aligned} & \text { LED429- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED429 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 429W, any bulb shape, any application	429W LED - NonInt. Ballast	Electronic	N/A	N/A	429	15
$\begin{aligned} & \text { LED430- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED430 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 430W, any bulb shape, any application	430W LED - Non- Int. Ballast	Electronic	N/A	N/A	430	15
$\begin{aligned} & \text { LED431- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED431 } \\ & \mathrm{w} \end{aligned}$	Non-Integrated Ballast LED, 431W, any bulb shape, any application	431W LED - Non- Int. Ballast	Electronic	N/A	N/A	431	15
$\begin{aligned} & \text { LED432- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED432 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 432W, any bulb shape, any application	432W LED - Non- Int. Ballast	Electronic	N/A	N/A	432	15
$\begin{aligned} & \text { LED433- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED433 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 433W, any bulb shape, any application	433W LED - Non- Int. Ballast	Electronic	N/A	N/A	433	15
$\begin{aligned} & \text { LED434- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED434 } \\ & \mathrm{w} \end{aligned}$	Non-Integrated Ballast LED, 434W, any bulb shape, any application	434W LED - Non- Int. Ballast	Electronic	N/A	N/A	434	15
$\begin{aligned} & \text { LED435- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED435 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 435W, any bulb shape, any application	435W LED - Non- Int. Ballast	Electronic	N/A	N/A	435	15
$\begin{aligned} & \text { LED436- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED436 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 436W, any bulb shape, any application	436W LED - Non- Int. Ballast	Electronic	N/A	N/A	436	15
$\begin{aligned} & \text { LED437- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED437 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 437W, any bulb shape, any application	437W LED - Non- Int. Ballast	Electronic	N/A	N/A	437	15
$\begin{aligned} & \text { LED438- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED438 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 438W, any bulb shape, any application	$\begin{aligned} & \text { 438W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	438	15
$\begin{aligned} & \text { LED439- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED439 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 439W, any bulb shape, any application	439W LED - Non- Int. Ballast	Electronic	N/A	N/A	439	15
$\begin{aligned} & \text { LED440- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED440 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 440W, any bulb shape, any application	440W LED - NonInt. Ballast	Electronic	N/A	N/A	440	15
$\begin{aligned} & \text { LED441- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED441 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 441W, any bulb shape, any application	441W LED - Non- Int. Ballast	Electronic	N/A	N/A	441	15
$\begin{aligned} & \text { LED442- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED442 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 442W, any bulb shape, any application	442W LED - Non- Int. Ballast	Electronic	N/A	N/A	442	15
$\begin{aligned} & \text { LED443- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED443 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 443W, any bulb shape, any application	443W LED - Non- Int. Ballast	Electronic	N/A	N/A	443	15
$\begin{aligned} & \text { LED444- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED444 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 444W, any bulb shape, any application	444W LED - NonInt. Ballast	Electronic	N/A	N/A	444	15
$\begin{aligned} & \text { LED445- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED445 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 445W, any bulb shape, any application	445W LED - Non- Int. Ballast	Electronic	N/A	N/A	445	15
$\begin{aligned} & \text { LED446- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED446 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 446W, any bulb shape, any application	446W LED - Non- Int. Ballast	Electronic	N/A	N/A	446	15
$\begin{aligned} & \text { LED447- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED447 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 447W, any bulb shape, any application	447W LED - Non- Int. Ballast	Electronic	N/A	N/A	447	15
$\begin{aligned} & \text { LED448- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED448 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 448W, any bulb shape, any application	448W LED - Non- Int. Ballast	Electronic	N/A	N/A	448	15
$\begin{aligned} & \text { LED449- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED449 } \\ & \mathrm{w} \end{aligned}$	Non-Integrated Ballast LED, 449W, any bulb shape, any application	449W LED - Non- Int. Ballast	Electronic	N/A	N/A	449	15
$\begin{aligned} & \text { LED450- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED450 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 450W, any bulb shape, any application	450W LED - Non- Int. Ballast	Electronic	N/A	N/A	450	15
$\begin{aligned} & \text { LED451- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED451 } \\ & \mathrm{w} \end{aligned}$	Non-Integrated Ballast LED, 451W, any bulb shape, any application	451W LED - Non- Int. Ballast	Electronic	N/A	N/A	451	15
$\begin{aligned} & \text { LED452- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED452 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 452W, any bulb shape, any application	$\begin{aligned} & \text { 452W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	452	15

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
$\begin{aligned} & \text { LED453- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED453 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 453W, any bulb shape, any application	453W LED - Non- Int. Ballast	Electronic	N/A	N/A	453	15
$\begin{aligned} & \text { LED454- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED454 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 454W, any bulb shape, any application	454W LED - Non- Int. Ballast	Electronic	N/A	N/A	454	15
$\begin{aligned} & \text { LED455- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED455 } \\ & \mathrm{w} \end{aligned}$	Non-Integrated Ballast LED, 455W, any bulb shape, any application	$\begin{aligned} & \text { 455W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	455	15
$\begin{aligned} & \text { LED456- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED456 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 456W, any bulb shape, any application	456W LED - Non- Int. Ballast	Electronic	N/A	N/A	456	15
$\begin{aligned} & \text { LED457- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED457 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 457W, any bulb shape, any application	$\begin{aligned} & \text { 457W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	457	15
$\begin{aligned} & \text { LED458- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED458 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 458W, any bulb shape, any application	458W LED - Non- Int. Ballast	Electronic	N/A	N/A	458	15
$\begin{aligned} & \text { LED459- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED459 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 459W, any bulb shape, any application	$\begin{aligned} & \text { 459W LED - Non- } \\ & \text { Int. Ballast } \end{aligned}$	Electronic	N/A	N/A	459	15
$\begin{aligned} & \text { LED460- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED460 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 460W, any bulb shape, any application	460W LED - Non- Int. Ballast	Electronic	N/A	N/A	460	15
$\begin{aligned} & \text { LED461- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED461 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 461W, any bulb shape, any application	461W LED - NonInt. Ballast	Electronic	N/A	N/A	461	15
$\begin{aligned} & \text { LED462- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED462 } \\ & \mathrm{w} \end{aligned}$	Non-Integrated Ballast LED, 462W, any bulb shape, any application	462W LED - Non- Int. Ballast	Electronic	N/A	N/A	462	15
$\begin{aligned} & \text { LED463- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED463 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 463W, any bulb shape, any application	463W LED - Non- Int. Ballast	Electronic	N/A	N/A	463	15
$\begin{aligned} & \text { LED464- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED464 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 464W, any bulb shape, any application	464W LED - NonInt. Ballast	Electronic	N/A	N/A	464	15
$\begin{aligned} & \text { LED465- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED465 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 465W, any bulb shape, any application	465W LED - NonInt. Ballast	Electronic	N/A	N/A	465	15
$\begin{aligned} & \text { LED466- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED466 } \\ & \text { W } \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 466W, any bulb shape, any application	466W LED - NonInt. Ballast	Electronic	N/A	N/A	466	15
$\begin{aligned} & \text { LED467- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED467 } \\ & \text { W } \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 467W, any bulb shape, any application	467W LED - NonInt. Ballast	Electronic	N/A	N/A	467	15
$\begin{aligned} & \text { LED468- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED468 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 468W, any bulb shape, any application	468W LED - NonInt. Ballast	Electronic	N/A	N/A	468	15
$\begin{aligned} & \text { LED469- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED469 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 469W, any bulb shape, any application	469W LED - Non- Int. Ballast	Electronic	N/A	N/A	469	15
$\begin{aligned} & \text { LED470- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED470 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 470W, any bulb shape, any application	470W LED - NonInt. Ballast	Electronic	N/A	N/A	470	15
$\begin{aligned} & \text { LED471- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED471 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 471W, any bulb shape, any application	471W LED - NonInt. Ballast	Electronic	N/A	N/A	471	15
$\begin{aligned} & \text { LED472- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED472 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 472W, any bulb shape, any application	472W LED - Non- Int. Ballast	Electronic	N/A	N/A	472	15
$\begin{aligned} & \text { LED473- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED473 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 473W, any bulb shape, any application	473W LED - Non- Int. Ballast	Electronic	N/A	N/A	473	15
$\begin{aligned} & \text { LED474- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED474 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 474W, any bulb shape, any application	474W LED - NonInt. Ballast	Electronic	N/A	N/A	474	15
$\begin{aligned} & \text { LED475- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED475 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 475W, any bulb shape, any application	475W LED - Non- Int. Ballast	Electronic	N/A	N/A	475	15
$\begin{aligned} & \text { LED476- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED476 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 476W, any bulb shape, any application	476W LED - Non- Int. Ballast	Electronic	N/A	N/A	476	15
$\begin{aligned} & \text { LED477- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED477 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 477W, any bulb shape, any application	477W LED - Non- Int. Ballast	Electronic	N/A	N/A	477	15
$\begin{aligned} & \text { LED478- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED478 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 478W, any bulb shape, any application	478W LED - Non- Int. Ballast	Electronic	N/A	N/A	478	15
$\begin{aligned} & \text { LED479- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED479 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 479W, any bulb shape, any application	479W LED - Non- Int. Ballast	Electronic	N/A	N/A	479	15
$\begin{aligned} & \text { LED480- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED480 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 480W, any bulb shape, any application	480W LED - Non- Int. Ballast	Electronic	N/A	N/A	480	15
$\begin{aligned} & \text { LED481- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED481 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 481W, any bulb shape, any application	481W LED - Non- Int. Ballast	Electronic	N/A	N/A	481	15
$\begin{aligned} & \text { LED482- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED482 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 482W, any bulb shape, any application	482W LED - Non- Int. Ballast	Electronic	N/A	N/A	482	15
$\begin{aligned} & \text { LED483- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED483 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 483W, any bulb shape, any application	483W LED - Non- Int. Ballast	Electronic	N/A	N/A	483	15
$\begin{aligned} & \text { LED484- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED484 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 484W, any bulb shape, any application	484W LED - Non- Int. Ballast	Electronic	N/A	N/A	484	15

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
$\begin{aligned} & \text { LED485- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED485 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 485W, any bulb shape, any application	485W LED - Non- Int. Ballast	Electronic	N/A	N/A	485	15
$\begin{aligned} & \text { LED486- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED486 } \\ & \text { W } \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 486W, any bulb shape, any application	486W LED - Non- Int. Ballast	Electronic	N/A	N/A	486	15
$\begin{aligned} & \text { LED487- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED487 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 487W, any bulb shape, any application	487W LED - Non- Int. Ballast	Electronic	N/A	N/A	487	15
$\begin{aligned} & \text { LED488- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED488 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 488W, any bulb shape, any application	488W LED - Non- Int. Ballast	Electronic	N/A	N/A	488	15
$\begin{aligned} & \text { LED489- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED489 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 489W, any bulb shape, any application	489W LED - Non- Int. Ballast	Electronic	N/A	N/A	489	15
$\begin{aligned} & \text { LED490- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED490 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 490W, any bulb shape, any application	490W LED - Non- Int. Ballast	Electronic	N/A	N/A	490	15
$\begin{aligned} & \text { LED491- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED491 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 491W, any bulb shape, any application	491W LED - Non- Int. Ballast	Electronic	N/A	N/A	491	15
$\begin{aligned} & \text { LED492- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED492 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 492W, any bulb shape, any application	492W LED - Non- Int. Ballast	Electronic	N/A	N/A	492	15
$\begin{aligned} & \text { LED493- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED493 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 493W, any bulb shape, any application	493W LED - Non- Int. Ballast	Electronic	N/A	N/A	493	15
$\begin{aligned} & \text { LED494- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED494 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 494W, any bulb shape, any application	494W LED - Non- Int. Ballast	Electronic	N/A	N/A	494	15
$\begin{aligned} & \text { LED495- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED495 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 495W, any bulb shape, any application	495W LED - Non- Int. Ballast	Electronic	N/A	N/A	495	15
$\begin{aligned} & \text { LED496- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED496 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 496W, any bulb shape, any application	496W LED - Non- Int. Ballast	Electronic	N/A	N/A	496	15
$\begin{aligned} & \text { LED497- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED497 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 497W, any bulb shape, any application	497W LED - Non- Int. Ballast	Electronic	N/A	N/A	497	15
$\begin{aligned} & \text { LED498- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED498 } \\ & \mathrm{w} \end{aligned}$	Non-Integrated Ballast LED, 498W, any bulb shape, any application	498W LED - Non- Int. Ballast	Electronic	N/A	N/A	498	15
$\begin{aligned} & \text { LED499- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED499 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 499W, any bulb shape, any application	499W LED - Non- Int. Ballast	Electronic	N/A	N/A	499	15
$\begin{aligned} & \text { LED500- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED500 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 500W, any bulb shape, any application	500W LED - Non- Int. Ballast	Electronic	N/A	N/A	500	15
$\begin{aligned} & \text { LED505- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED505 } \\ & \text { w } \end{aligned}$	Non-Integrated Ballast LED, 505W, any bulb shape, any application	505W LED - Non- Int. Ballast	Electronic	N/A	N/A	505	15
$\begin{aligned} & \text { LED510- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED510 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 510W, any bulb shape, any application	510W LED - NonInt. Ballast	Electronic	N/A	N/A	510	15
$\begin{aligned} & \text { LED515- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED515 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 515W, any bulb shape, any application	515W LED - Non- Int. Ballast	Electronic	N/A	N/A	515	15
$\begin{aligned} & \text { LED520- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED520 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	Non-Integrated Ballast LED, 520W, any bulb shape, any application	520W LED - Non- Int. Ballast	Electronic	N/A	N/A	520	15
$\begin{aligned} & \text { LED525- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED525 } \\ & \text { w } \end{aligned}$	Non-Integrated Ballast LED, 525W, any bulb shape, any application	525W LED - Non- Int. Ballast	Electronic	N/A	N/A	525	15
$\begin{aligned} & \text { LED530- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED530 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 530W, any bulb shape, any application	530W LED - Non- Int. Ballast	Electronic	N/A	N/A	530	15
$\begin{aligned} & \text { LED535- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED535 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 535W, any bulb shape, any application	535W LED - Non- Int. Ballast	Electronic	N/A	N/A	535	15
$\begin{aligned} & \text { LED540- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED540 } \\ & \text { W } \end{aligned}$	Non-Integrated Ballast LED, 540W, any bulb shape, any application	540W LED - Non- Int. Ballast	Electronic	N/A	N/A	540	15
$\begin{aligned} & \text { LED545- } \\ & \text { FIXT } \end{aligned}$	$\begin{aligned} & \text { LED545 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 545W, any bulb shape, any application	545W LED - Non- Int. Ballast	Electronic	N/A	N/A	545	15
$\begin{aligned} & \text { LED550- } \\ & \text { FIXT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LED550 } \\ & \mathrm{W} \end{aligned}$	Non-Integrated Ballast LED, 550W, any bulb shape, any application	550W LED - Non- Int. Ballast	Electronic	N/A	N/A	550	15
Compact Fluorescent Fixtures								
$\begin{aligned} & \text { CF2/1- } \\ & \text { SCRW } \end{aligned}$	CF2W	Compact Fluorescent, (1) 2W screw-in lamp/base w/ permanent disk installed, any bulb shape	2W CFL	Mag. or Elec.	1	2	2	N/A
$\begin{aligned} & \text { CF3/1- } \\ & \text { SCRW } \end{aligned}$	CF3W	Compact Fluorescent, (1) 3W screw-in lamp/base w/ permanent disk installed, any bulb shape	3W CFL	Mag. or Elec.	1	3	3	N/A
$\begin{aligned} & \text { CF4/1- } \\ & \text { SCRW } \end{aligned}$	CF4W	Compact Fluorescent, (1) 4W screw-in lamp/base w/ permanent disk installed, any bulb shape	4W CFL	Mag. or Elec.	1	4	4	N/A

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
$\begin{aligned} & \text { CF5/1- } \\ & \text { SCRW } \end{aligned}$	CF5W	Compact Fluorescent, (1) 5W screw-in lamp/base w/ permanent disk installed, any bulb shape	5W CFL	Mag. or Elec.	1	5	5	N/A
$\begin{aligned} & \text { CF6/1- } \\ & \text { SCRW } \end{aligned}$	CF6W	Compact Fluorescent, (1) 6W screw-in lamp/base w/ permanent disk installed, any bulb shape	6W CFL	Mag. or Elec.	1	6	6	N/A
$\begin{aligned} & \text { CF7/1- } \\ & \text { SCRW } \end{aligned}$	CF7W	Compact Fluorescent, (1) 7W screw-in lamp/base w/ permanent disk installed, any bulb shape	7W CFL	Mag. or Elec.	1	7	7	N/A
$\begin{aligned} & \text { CF8/1- } \\ & \text { SCRW } \end{aligned}$	CF8W	Compact Fluorescent, (1) 8W screw-in lamp/base w/ permanent disk installed, any bulb shape	8W CFL	Mag. or Elec.	1	8	8	N/A
$\begin{aligned} & \text { CF9/1- } \\ & \text { SCRW } \end{aligned}$	CF9W	Compact Fluorescent, (1) 9W screw-in lamp/base w/ permanent disk installed, any bulb shape	9W CFL	Mag. or Elec.	1	9	9	N/A
$\begin{aligned} & \text { CF10/1- } \\ & \text { SCRW } \end{aligned}$	CF10W	Compact Fluorescent, (1) 10W screw-in lamp/base w/ permanent disk installed, any bulb shape	10W CFL	Mag. or Elec.	1	10	10	N/A
$\begin{aligned} & \text { CF11/1- } \\ & \text { SCRW } \end{aligned}$	CF11W	Compact Fluorescent, (1) 11 W screw-in lamp/base w/ permanent disk installed, any bulb shape	11W CFL	Mag. or Elec.	1	11	11	N/A
$\begin{aligned} & \text { CF12/1- } \\ & \text { SCRW } \end{aligned}$	CF12W	Compact Fluorescent, (1) 12 W screw-in lamp/base w/ permanent disk installed, any bulb shape	12W CFL	Mag. or Elec.	1	12	12	N/A
$\begin{aligned} & \text { CF13/1- } \\ & \text { SCRW } \end{aligned}$	CF13W	Compact Fluorescent, (1) 13W screw-in lamp/base w/ permanent disk installed, any bulb shape	13W CFL	Mag. or Elec.	1	13	13	N/A
$\begin{aligned} & \text { CF14/1- } \\ & \text { SCRW } \end{aligned}$	CF14W	Compact Fluorescent, (1) 14 W screw-in lamp/base w/ permanent disk installed, any bulb shape	14W CFL	Mag. or Elec.	1	14	14	N/A
$\begin{aligned} & \text { CF15/1- } \\ & \text { SCRW } \end{aligned}$	CF15W	Compact Fluorescent, (1) 15 W screw-in lamp/base w/ permanent disk installed, any bulb shape	15W CFL	Mag. or Elec.	1	15	15	N/A
$\begin{aligned} & \text { CF16/1- } \\ & \text { SCRW } \end{aligned}$	CF16W	Compact Fluorescent, (1) 16 W screw-in lamp/base w/ permanent disk installed, any bulb shape	16W CFL	Mag. or Elec.	1	16	16	N/A
$\begin{aligned} & \text { CF17/1- } \\ & \text { SCRW } \end{aligned}$	CF17W	Compact Fluorescent, (1) 17 W screw-in lamp/base w/ permanent disk installed, any bulb shape	17W CFL	Mag. or Elec.	1	17	17	N/A
$\begin{aligned} & \text { CF18/1- } \\ & \text { SCRW } \end{aligned}$	CF18W	Compact Fluorescent, (1) 18 W screw-in lamp/base w/ permanent disk installed, any bulb shape	18W CFL	Mag. or Elec.	1	18	18	N/A
$\begin{aligned} & \text { CF19/1- } \\ & \text { SCRW } \end{aligned}$	CF19W	Compact Fluorescent, (1) 19W screw-in lamp/base w/ permanent disk installed, any bulb shape	19W CFL	Mag. or Elec.	1	19	19	N/A
$\begin{aligned} & \text { CF20/1- } \\ & \text { SCRW } \end{aligned}$	CF20W	Compact Fluorescent, (1) 20W screw-in lamp/base w/ permanent disk installed, any bulb shape	20W CFL	Mag. or Elec.	1	20	20	N/A
$\begin{aligned} & \text { CF21/1- } \\ & \text { SCRW } \end{aligned}$	CF21W	Compact Fluorescent, (1) 21W screw-in lamp/base w/ permanent disk installed, any bulb shape	21 W CFL	Mag. or Elec.	1	21	21	N/A
$\begin{aligned} & \text { CF22/1- } \\ & \text { SCRW } \end{aligned}$	CF22W	Compact Fluorescent, (1) 22 W screw-in lamp/base w/ permanent disk installed, any bulb shape	22W CFL	Mag. or Elec.	1	22	22	N/A
$\begin{aligned} & \text { CF23/1- } \\ & \text { SCRW } \end{aligned}$	CF23W	Compact Fluorescent, (1) 23W screw-in lamp/base w/ permanent disk installed, any bulb shape	23W CFL	Mag. or Elec.	1	23	23	N/A
$\begin{aligned} & \text { CF24/1- } \\ & \text { SCRW } \end{aligned}$	CF24W	Compact Fluorescent, (1) 24 W screw-in lamp/base w/ permanent disk installed, any bulb shape	24W CFL	Mag. or Elec.	1	24	24	N/A
$\begin{aligned} & \text { CF25/1- } \\ & \text { SCRW } \end{aligned}$	CF25W	Compact Fluorescent, (1) 25 W screw-in lamp/base w/ permanent disk installed, any bulb shape	25W CFL	Mag. or Elec.	1	25	25	N/A

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
$\begin{aligned} & \text { CF26/1- } \\ & \text { SCRW } \end{aligned}$	CF26W	Compact Fluorescent, (1) 26W screw-in lamp/base w/ permanent disk installed, any bulb shape	26W CFL	Mag. or Elec.	1	26	26	N/A
$\begin{aligned} & \text { CF27/1- } \\ & \text { SCRW } \end{aligned}$	CF27W	Compact Fluorescent, (1) 27W screw-in lamp/base w/ permanent disk installed, any bulb shape	27W CFL	Mag. or Elec.	1	27	27	N/A
$\begin{aligned} & \text { CF28/1- } \\ & \text { SCRW } \end{aligned}$	CF28W	Compact Fluorescent, (1) 28 W screw-in lamp/base w/ permanent disk installed, any bulb shape	28W CFL	Mag. or Elec.	1	28	28	N/A
$\begin{aligned} & \text { CF29/1- } \\ & \text { SCRW } \end{aligned}$	CF29W	Compact Fluorescent, (1) 29W screw-in lamp/base w/ permanent disk installed, any bulb shape	29W CFL	Mag. or Elec.	1	29	29	N/A
$\begin{aligned} & \text { CF30/1- } \\ & \text { SCRW } \end{aligned}$	CF30W	Compact Fluorescent, (1) 30W screw-in lamp/base w/ permanent disk installed, any bulb shape	30W CFL	Mag. or Elec.	1	30	30	N/A
$\begin{aligned} & \text { CF31/1- } \\ & \text { SCRW } \end{aligned}$	CF31W	Compact Fluorescent, (1) 31W screw-in lamp/base w/ permanent disk installed, any bulb shape	31 W CFL	Mag. or Elec.	1	31	31	N/A
$\begin{aligned} & \text { CF32/1- } \\ & \text { SCRW } \end{aligned}$	CF32W	Compact Fluorescent, (1) 32 W screw-in lamp/base w/ permanent disk installed, any bulb shape	32 W CFL	Mag. or Elec.	1	32	32	N/A
CF33/1- SCRW	CF33W	Compact Fluorescent, (1) 33W screw-in lamp/base w/ permanent disk installed, any bulb shape	33 W CFL	Mag. or Elec.	1	33	33	N/A
$\begin{aligned} & \text { CF34/1- } \\ & \text { SCRW } \end{aligned}$	CF34W	Compact Fluorescent, (1) 34W screw-in lamp/base w/ permanent disk installed, any bulb shape	34 W CFL	Mag. or Elec.	1	34	34	N/A
$\begin{aligned} & \text { CF35/1- } \\ & \text { SCRW } \end{aligned}$	CF35W	Compact Fluorescent, (1) 35W screw-in lamp/base w/ permanent disk installed, any bulb shape	35W CFL	Mag. or Elec.	1	35	35	N/A
CF36/1- SCRW	CF36W	Compact Fluorescent, (1) 36 W screw-in lamp/base w/ permanent disk installed, any bulb shape	36W CFL	Mag. or Elec.	1	36	36	N/A
$\begin{aligned} & \text { CF37/1- } \\ & \text { SCRW } \end{aligned}$	CF37W	Compact Fluorescent, (1) 37W screw-in lamp/base w/ permanent disk installed, any bulb shape	37W CFL	Mag. or Elec.	1	37	37	N/A
$\begin{aligned} & \text { CF38/1- } \\ & \text { SCRW } \end{aligned}$	CF38W	Compact Fluorescent, (1) 38 W screw-in lamp/base w/ permanent disk installed, any bulb shape	38 W CFL	Mag. or Elec.	1	38	38	N/A
CF39/1- SCRW	CF39W	Compact Fluorescent, (1) 39 W screw-in lamp/base w/ permanent disk installed, any bulb shape	39W CFL	Mag. or Elec.	1	39	39	N/A
$\begin{aligned} & \text { CF40/1- } \\ & \text { SCRW } \end{aligned}$	CF40W	Compact Fluorescent, (1) 40W screw-in lamp/base w/ permanent disk installed, any bulb shape	40W CFL	Mag. or Elec.	1	40	40	N/A
$\begin{aligned} & \text { CF41/1- } \\ & \text { SCRW } \end{aligned}$	CF41W	Compact Fluorescent, (1) 41W screw-in lamp/base w/ permanent disk installed, any bulb shape	41 W CFL	Mag. or Elec.	1	41	41	N/A
$\begin{aligned} & \text { CF42/1- } \\ & \text { SCRW } \end{aligned}$	CF42W	Compact Fluorescent, (1) 42W screw-in lamp/base w/ permanent disk installed, any bulb shape	42 W CFL	Mag. or Elec.	1	42	42	N/A
$\begin{aligned} & \text { CF43/1- } \\ & \text { SCRW } \end{aligned}$	CF43W	Compact Fluorescent, (1) 43W screw-in lamp/base w/ permanent disk installed, any bulb shape	43 W CFL	Mag. or Elec.	1	43	43	N/A
$\begin{aligned} & \text { CF44/1- } \\ & \text { SCRW } \end{aligned}$	CF44W	Compact Fluorescent, (1) 44W screw-in lamp/base w/permanent disk installed, any bulb shape	44 W CFL	Mag. or Elec.	1	44	44	N/A
$\begin{aligned} & \text { CF45/1- } \\ & \text { SCRW } \end{aligned}$	CF45W	Compact Fluorescent, (1) 45W screw-in lamp/base w/permanent disk installed, any bulb shape	45 W CFL	Mag. or Elec.	1	45	45	N/A
$\begin{aligned} & \text { CF46/1- } \\ & \text { SCRW } \end{aligned}$	CF46W	Compact Fluorescent, (1) 46W screw-in lamp/base w/permanent disk installed, any bulb shape	46 W CFL	Mag. or Elec.	1	46	46	N/A

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
$\begin{aligned} & \text { CF47/1- } \\ & \text { SCRW } \end{aligned}$	CF47W	Compact Fluorescent, (1) 47W screw-in lamp/base w/permanent disk installed, any bulb shape	47W CFL	Mag. or Elec.	1	47	47	N/A
$\begin{aligned} & \text { CF48/1- } \\ & \text { SCRW } \end{aligned}$	CF48W	Compact Fluorescent, (1) 48W screw-in lamp/base w/permanent disk installed, any bulb shape	48W CFL	Mag. or Elec.	1	48	48	N/A
$\begin{aligned} & \text { CF49/1- } \\ & \text { SCRW } \end{aligned}$	CF49W	Compact Fluorescent, (1) 49W screw-in lamp/base w/permanent disk installed, any bulb shape	49W CFL	Mag. or Elec.	1	49	49	N/A
$\begin{aligned} & \text { CF50/1- } \\ & \text { SCRW } \end{aligned}$	CF50W	Compact Fluorescent, (1) 50W screw-in lamp/base w/permanent disk installed, any bulb shape	50W CFL	Mag. or Elec.	1	50	50	N/A
$\begin{aligned} & \text { CF51/1- } \\ & \text { SCRW } \end{aligned}$	CF51W	Compact Fluorescent, (1) 51W screw-in lamp/base w/permanent disk installed, any bulb shape	51W CFL	Mag. or Elec.	1	51	51	N/A
$\begin{aligned} & \text { CF52/1- } \\ & \text { SCRW } \end{aligned}$	CF52W	Compact Fluorescent, (1) 52 W screw-in lamp/base w/permanent disk installed, any bulb shape	52W CFL	Mag. or Elec.	1	52	52	N/A
$\begin{aligned} & \text { CF53/1- } \\ & \text { SCRW } \end{aligned}$	CF53W	Compact Fluorescent, (1) 53W screw-in lamp/base w/permanent disk installed, any bulb shape	53W CFL	Mag. or Elec.	1	53	53	N/A
$\begin{aligned} & \text { CF54/1- } \\ & \text { SCRW } \end{aligned}$	CF54W	Compact Fluorescent, (1) 54 W screw-in lamp/base w/permanent disk installed, any bulb shape	54W CFL	Mag. or Elec.	1	54	54	N/A
$\begin{aligned} & \text { CF55/1- } \\ & \text { SCRW } \end{aligned}$	CF55W	Compact Fluorescent, (1) 55W screw-in lamp/base w/permanent disk installed, any bulb shape	55W CFL	Mag. or Elec.	1	55	55	N/A
$\begin{aligned} & \text { CF56/1- } \\ & \text { SCRW } \end{aligned}$	CF56W	Compact Fluorescent, (1) 56W screw-in lamp/base w/permanent disk installed, any bulb shape	56W CFL	Mag. or Elec.	1	56	56	N/A
$\begin{aligned} & \text { CF57/1- } \\ & \text { SCRW } \end{aligned}$	CF57W	Compact Fluorescent, (1) 57W screw-in lamp/base w/permanent disk installed, any bulb shape	57W CFL	Mag. or Elec.	1	57	57	N/A
$\begin{aligned} & \text { CF58/1- } \\ & \text { SCRW } \end{aligned}$	CF58W	Compact Fluorescent, (1) 58W screw-in lamp/base w/permanent disk installed, any bulb shape	58W CFL	Mag. or Elec.	1	58	58	N/A
$\begin{aligned} & \text { CF59/1- } \\ & \text { SCRW } \end{aligned}$	CF59W	Compact Fluorescent, (1) 59W screw-in lamp/base w/permanent disk installed, any bulb shape	59W CFL	Mag. or Elec.	1	59	59	N/A
$\begin{aligned} & \text { CF60/1- } \\ & \text { SCRW } \end{aligned}$	CF60W	Compact Fluorescent, (1) 60 W screw-in lamp/base w/permanent disk installed, any bulb shape	60W CFL	Mag. or Elec.	1	60	60	N/A
$\begin{aligned} & \text { CF61/1- } \\ & \text { SCRW } \end{aligned}$	CF61W	Compact Fluorescent, (1) 61 W screw-in lamp/base w/permanent disk installed, any bulb shape	61W CFL	Mag. or Elec.	1	61	61	N/A
$\begin{aligned} & \text { CF62/1- } \\ & \text { SCRW } \end{aligned}$	CF62W	Compact Fluorescent, (1) 62 W screw-in lamp/base w/permanent disk installed, any bulb shape	62W CFL	Mag. or Elec.	1	62	62	N/A
$\begin{aligned} & \text { CF63/1- } \\ & \text { SCRW } \end{aligned}$	CF63W	Compact Fluorescent, (1) 63 W screw-in lamp/base w/permanent disk installed, any bulb shape	63W CFL	Mag. or Elec.	1	63	63	N/A
$\begin{aligned} & \text { CF64/1- } \\ & \text { SCRW } \end{aligned}$	CF64W	Compact Fluorescent, (1) 64 W screw-in lamp/base w/permanent disk installed, any bulb shape	64W CFL	Mag. or Elec.	1	64	64	N/A
$\begin{aligned} & \text { CF65/1- } \\ & \text { SCRW } \end{aligned}$	CF65W	Compact Fluorescent, (1) 65 W screw-in lamp/base w/permanent disk installed, any bulb shape	65W CFL	Mag. or Elec.	1	65	65	N/A
$\begin{aligned} & \text { CF66/1- } \\ & \text { SCRW } \end{aligned}$	CF66W	Compact Fluorescent, (1) 66 W screw-in lamp/base w/permanent disk installed, any bulb shape	66W CFL	Mag. or Elec.	1	66	66	N/A
$\begin{aligned} & \text { CF67/1- } \\ & \text { SCRW } \end{aligned}$	CF67W	Compact Fluorescent, (1) 67W screw-in lamp/base w/permanent disk installed, any bulb shape	67W CFL	Mag. or Elec.	1	67	67	N/A

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
$\begin{aligned} & \text { CF68/1- } \\ & \text { SCRW } \end{aligned}$	CF68W	Compact Fluorescent, (1) 68 W screw-in lamp/base w/permanent disk installed, any bulb shape	68W CFL	Mag. or Elec.	1	68	68	N/A
CF69/1- SCRW	CF69W	Compact Fluorescent, (1) 69W screw-in lamp/base w/permanent disk installed, any bulb shape	69W CFL	Mag. or Elec.	1	69	69	N/A
$\begin{aligned} & \text { CF70/1- } \\ & \text { SCRW } \end{aligned}$	CF70W	Compact Fluorescent, (1) 70W screw-in lamp/base w/permanent disk installed, any bulb shape	70W CFL	Mag. or Elec.	1	70	70	N/A
$\begin{aligned} & \text { CF71/1- } \\ & \text { SCRW } \end{aligned}$	CF71W	Compact Fluorescent, (1) 71W screw-in lamp/base w/permanent disk installed, any bulb shape	71W CFL	Mag. or Elec.	1	71	71	N/A
$\begin{aligned} & \text { CF72/1- } \\ & \text { SCRW } \end{aligned}$	CF72W	Compact Fluorescent, (1) 72 W screw-in lamp/base w/permanent disk installed, any bulb shape	72W CFL	Mag. or Elec.	1	72	72	N/A
$\begin{aligned} & \text { CF73/1- } \\ & \text { SCRW } \end{aligned}$	CF73W	Compact Fluorescent, (1) 73W screw-in lamp/base w/permanent disk installed, any bulb shape	73W CFL	Mag. or Elec.	1	73	73	N/A
$\begin{aligned} & \text { CF74/1- } \\ & \text { SCRW } \end{aligned}$	CF74W	Compact Fluorescent, (1) 74W screw-in lamp/base w/permanent disk installed, any bulb shape	74W CFL	Mag. or Elec.	1	74	74	N/A
$\begin{aligned} & \text { CF75/1- } \\ & \text { SCRW } \end{aligned}$	CF75W	Compact Fluorescent, (1) 75 W screw-in lamp/base w/permanent disk installed, any bulb shape	75W CFL	Mag. or Elec.	1	75	75	N/A
$\begin{aligned} & \text { CF80/1- } \\ & \text { SCRW } \end{aligned}$	CF80W	Compact Fluorescent, (1) 80W screw-in lamp/base w/permanent disk installed, any bulb shape	80W CFL	Mag. or Elec.	1	80	80	N/A
$\begin{aligned} & \text { CF85/1- } \\ & \text { SCRW } \end{aligned}$	CF85W	Compact Fluorescent, (1) 85W screw-in lamp/base w/permanent disk installed, any bulb shape	85W CFL	Mag. or Elec.	1	85	85	N/A
$\begin{aligned} & \text { CF100/1- } \\ & \text { SCRW } \end{aligned}$	CF100W	Compact Fluorescent, (1) 100W screwin lamp/base w/ permanent disk installed, any bulb shape	100W CFL	Mag. or Elec.	1	100	100	N/A
$\begin{aligned} & \text { CF125/1- } \\ & \text { SCRW } \end{aligned}$	CF125W	Compact Fluorescent, (1) 125W screwin lamp/base w/ permanent disk installed, any bulb shape	125W CFL	Mag. or Elec.	1	125	125	N/A
$\begin{aligned} & \text { CF150/1- } \\ & \text { SCRW } \end{aligned}$	CF150W	Compact Fluorescent, (1) 150W screwin lamp/base w/ permanent disk installed, any bulb shape	150W CFL	Mag. or Elec.	1	150	150	N/A
$\begin{aligned} & \text { CF200/1- } \\ & \text { SCRW } \end{aligned}$	CF200W	Compact Fluorescent, (1) 200W screwin lamp/base w/ permanent disk installed, any bulb shape	200W CFL	Mag. or Elec.	1	200	200	N/A
$\begin{aligned} & \text { CFC2/1- } \\ & \text { SCRW } \end{aligned}$	CFC2W	Compact Fluorescent, Cold Cathode, (1) 2W screw-in lamp/base w/ permanent locking device, any bulb shape	2W Cold Cathode	Electronic	1	2	2	N/A
$\begin{aligned} & \text { CFC2/2- } \\ & \text { SCRW } \end{aligned}$	CFC2W	Compact Fluorescent, Cold Cathode, (2) 2W screw-in lamp/base w/ permanent locking device, any bulb shape	4W Cold Cathode	Electronic	2	2	4	N/A
$\begin{aligned} & \text { CFC3/1- } \\ & \text { SCRW } \end{aligned}$	CFC3W	Compact Fluorescent, Cold Cathode, (1) 3W screw-in lamp/base w/ permanent locking device, any bulb shape	3W Cold Cathode	Electronic	1	3	3	N/A
$\begin{aligned} & \text { CFC3/2- } \\ & \text { SCRW } \end{aligned}$	CFC3W	Compact Fluorescent, Cold Cathode, (2) 3W screw-in lamp/base w/ permanent locking device, any bulb shape	6W Cold Cathode	Electronic	2	3	6	N/A
$\begin{aligned} & \text { CFC4/1- } \\ & \text { SCRW } \end{aligned}$	CFC4W	Compact Fluorescent, Cold Cathode, (1) 4W screw-in lamp/base w/ permanent locking device, any bulb shape	4W Cold Cathode	Electronic	1	4	4	N/A
CFC4/2SCRW	CFC4W	Compact Fluorescent, Cold Cathode, (2) 4W screw-in lamp/base w/ permanent locking device, any bulb shape	8W Cold Cathode	Electronic	2	4	8	N/A
$\begin{aligned} & \text { CFC5/1- } \\ & \text { SCRW } \end{aligned}$	CFC5W	Compact Fluorescent, Cold Cathode, (1) 5W screw-in lamp/base w/ permanent locking device, any bulb shape	5W Cold Cathode	Electronic	1	5	5	N/A

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
$\begin{aligned} & \text { CFC5/2- } \\ & \text { SCRW } \end{aligned}$	CFC5W	Compact Fluorescent, Cold Cathode, (2) 5W screw-in lamp/base w/ permanent locking device, any bulb shape	10W Cold Cathode	Electronic	2	5	10	N/A
$\begin{aligned} & \text { CFC8/1- } \\ & \text { SCRW } \end{aligned}$	CFC8W	Compact Fluorescent, Cold Cathode, (1) 8W screw-in lamp/base w/ permanent locking device, any bulb shape	8W Cold Cathode	Electronic	1	8	8	N/A
$\begin{aligned} & \text { CFC8/2- } \\ & \text { SCRW } \end{aligned}$	CFC8W	Compact Fluorescent, Cold Cathode, (2) 8W screw-in lamp/base w/ permanent locking device, any bulb shape	16W Cold Cathode	Electronic	2	8	16	N/A
$\begin{aligned} & \text { CFC13/1- } \\ & \text { SCRW } \end{aligned}$	CFC13W	Compact Fluorescent, Cold Cathode, (1) 13W screw-in lamp/base w/ permanent locking device, any bulb shape	13W Cold Cathode	Electronic	1	13	13	N/A
$\begin{aligned} & \text { CFC18/1- } \\ & \text { SCRW } \end{aligned}$	CFC18W	Compact Fluorescent, Cold Cathode, (1) 18W screw-in lamp/base w/ permanent locking device, any bulb shape	18W Cold Cathode	Electronic	1	18	18	N/A
CFD10/1	CFD10W	Compact Fluorescent, 2D, (1) 10W lamp	$\begin{aligned} & \text { 1-Lamp 10W CFL } \\ & \text { 2D } \end{aligned}$	Mag-STD	1	10	16	N/A
$\begin{aligned} & \text { CFD10/1- } \\ & \text { L } \end{aligned}$	CFD10W	Compact Fluorescent, 2D, (1) 10W lamp	```1-Lamp 10W CFL 2D```	Electronic	1	10	14	N/A
CFD16/1	CFD16W	Compact Fluorescent, 2D, (1) 16W lamp	```1-Lamp 16W CFL 2D```	Mag-STD	1	16	26	N/A
$\begin{aligned} & \text { CFD16/1- } \\ & \text { L } \end{aligned}$	CFD16W	Compact Fluorescent, 2D, (1) 16W lamp	$\begin{aligned} & \text { 1-Lamp 16W CFL } \\ & \text { 2D } \end{aligned}$	Electronic	1	16	18	N/A
CFD21/1	CFD21W	Compact Fluorescent, 2D, (1) 21W lamp	$\begin{aligned} & \text { 1-Lamp 21W CFL } \\ & \text { 2D } \end{aligned}$	Mag-STD	1	21	26	N/A
$\begin{aligned} & \text { CFD21/1- } \\ & \text { L } \end{aligned}$	CFD21W	Compact Fluorescent, 2D, (1) 21W lamp	```1-Lamp 21W CFL 2D```	Electronic	1	21	22	N/A
CFD28/1	CFD28W	Compact Fluorescent, 2D, (1) 28W lamp	```1-Lamp 28W CFL 2D```	Mag-STD	1	28	35	N/A
CFD28/1- L	CFD28W	Compact Fluorescent, 2D, (1) 28W lamp	$\begin{aligned} & \text { 1-Lamp 28W CFL } \\ & \text { 2D } \end{aligned}$	Electronic	1	28	29	N/A
CFD38/1	CFD38W	Compact Fluorescent, 2D, (1) 38W lamp	$\begin{aligned} & \text { 1-Lamp 38W CFL } \\ & \text { 2D } \end{aligned}$	Mag-STD	1	38	46	N/A
CFD38/1-	CFD38W	Compact Fluorescent, 2D, (1) 38W lamp	$\begin{aligned} & \text { 1-Lamp 38W CFL } \\ & \text { 2D } \end{aligned}$	Electronic	1	38	32	N/A
CFG13/1-	CFG13W	Compact Fluorescent, Multi, GU24 with Integrated Ballast, (1) 13W lamp	$\begin{aligned} & \text { 1-Lamp 13W CFL } \\ & \text { Multi } \end{aligned}$	Electronic	1	13	13	N/A
$\begin{aligned} & \text { CFG18/1- } \\ & \text { L } \end{aligned}$	CFG18W	Compact Fluorescent, Multi, GU24 with Integrated Ballast, (1) 18W lamp	$\begin{aligned} & \text { 1-Lamp 18W CFL } \\ & \text { Multi } \end{aligned}$	Electronic	1	18	18	N/A
$\begin{aligned} & \text { CFG23/1- } \\ & \text { L } \end{aligned}$	CFG23W	Compact Fluorescent, Multi, GU24 with Integrated Ballast, (1) 23W lamp	$\begin{aligned} & \text { 1-Lamp 23W CFL } \\ & \text { Multi } \end{aligned}$	Electronic	1	23	23	N/A
$\begin{aligned} & \text { CFG26/1- } \\ & \text { L } \end{aligned}$	CFG26W	Compact Fluorescent, Multi, GU24 with Integrated Ballast, (1) 26W lamp	$\begin{aligned} & \text { 1-Lamp 26W CFL } \\ & \text { Multi } \end{aligned}$	Electronic	1	26	26	N/A
$\begin{aligned} & \text { CFG32/1- } \\ & \text { L } \end{aligned}$	CFG32W	Compact Fluorescent, Multi, GU24 with Integrated Ballast, (1) 32W lamp	$\begin{aligned} & \text { 1-Lamp 32W CFL } \\ & \text { Multi } \end{aligned}$	Electronic	1	32	32	N/A
$\begin{aligned} & \text { CFG42/1- } \\ & \text { L } \end{aligned}$	CFG42W	Compact Fluorescent, Multi, GU24 with Integrated Ballast, (1) 42W lamp	1-Lamp 42W CFL	Electronic	1	42	42	N/A
$\begin{aligned} & \text { CFM13/1- } \\ & \text { L } \end{aligned}$	$\begin{aligned} & \text { CFM13 } \\ & \text { W } \end{aligned}$	Compact Fluorescent, Multi, 4-pin, (1) 13W lamp	$\begin{aligned} & \text { 1-Lamp 13W CFL } \\ & \text { Multi 4-Pin } \end{aligned}$	Electronic	1	13	16	N/A
$\begin{aligned} & \text { CFM13/2- } \\ & \text { L } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CFM13 } \\ & \text { W } \\ & \hline \end{aligned}$	Compact Fluorescent, Multi, 4-pin, (2) 13W lamps	$\begin{aligned} & \text { 2-Lamp 13W CFL } \\ & \text { Multi 4-Pin } \end{aligned}$	Electronic	2	13	30	N/A
$\begin{aligned} & \text { CFM15/1- } \\ & \text { L } \end{aligned}$	$\begin{aligned} & \text { CFM15 } \\ & \text { W } \\ & \hline \end{aligned}$	Compact Fluorescent, Multi, 4-pin, (1) 15W lamp	$\begin{aligned} & \text { 1-Lamp 15W CFL } \\ & \text { Multi 4-Pin } \end{aligned}$	Electronic	1	15	18	N/A
$\begin{aligned} & \text { CFM18/1- } \\ & \text { L } \end{aligned}$	$\begin{aligned} & \text { CFM18 } \\ & \text { W } \end{aligned}$	Compact Fluorescent, Multi, 4-pin, (1) 18W lamp	$\begin{aligned} & \text { 1-Lamp 18W CFL } \\ & \text { Multi 4-Pin } \end{aligned}$	Electronic	1	18	20	N/A
CFM18/2L	$\begin{aligned} & \text { CFM18 } \\ & \text { W } \end{aligned}$	Compact Fluorescent, Multi, 4-pin, (2) 18W lamps	$\begin{aligned} & \text { 2-Lamp 18W CFL } \\ & \text { Multi 4-Pin } \end{aligned}$	Electronic	2	18	40	N/A
$\begin{aligned} & \text { CFM21/1- } \\ & \mathrm{L} \end{aligned}$	$\begin{aligned} & \text { CFM21 } \\ & \text { W } \end{aligned}$	Compact Fluorescent, Multi, 4-pin, (1) 21W lamp	$\begin{aligned} & \text { 1-Lamp 21W CFL } \\ & \text { Multi 4-Pin } \end{aligned}$	Electronic	1	21	23	N/A
$\begin{aligned} & \text { CFM26/1- } \\ & \mathrm{L} \end{aligned}$	$\begin{aligned} & \text { CFM26 } \\ & \text { W } \end{aligned}$	Compact Fluorescent, Multi, 4-pin, (1) 26W lamp	$\begin{aligned} & \text { 1-Lamp 26W CFL } \\ & \text { Multi 4-Pin } \end{aligned}$	Electronic	1	26	29	N/A

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
CFM26/2- L	$\begin{aligned} & \text { CFM26 } \\ & \text { W } \end{aligned}$	Compact Fluorescent, Multi, 4-pin, (2) 26W lamps	$\begin{aligned} & \text { 2-Lamp 26W CFL } \\ & \text { Multi 4-Pin } \end{aligned}$	Electronic	2	26	51	N/A
$\begin{aligned} & \text { CFM28/1- } \\ & \text { L } \end{aligned}$	$\begin{aligned} & \text { CFM28 } \\ & \text { W } \end{aligned}$	Compact Fluorescent, Multi, 4-pin, (1) 28W lamp	$\begin{aligned} & \text { 1-Lamp 28W CFL } \\ & \text { Multi 4-Pin } \end{aligned}$	Electronic	1	28	31	N/A
$\begin{aligned} & \text { CFM32/1- } \\ & \mathrm{L} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CFM32 } \\ & \text { w } \end{aligned}$	Compact Fluorescent, Multi, 4-pin, (1) 32W lamp	$\begin{aligned} & \text { 1-Lamp 32W CFL } \\ & \text { Multi 4-Pin } \\ & \hline \end{aligned}$	Electronic	1	32	35	N/A
$\begin{aligned} & \text { CFM42/1- } \\ & \text { L } \end{aligned}$	$\begin{aligned} & \text { CFM42 } \\ & \text { W } \end{aligned}$	Compact Fluorescent, Multi, 4-pin, (1) 42W lamp	$\begin{aligned} & \text { 1-Lamp 42W CFL } \\ & \text { Multi 4-Pin } \end{aligned}$	Electronic	1	42	46	N/A
$\begin{aligned} & \text { CFM42/2- } \\ & \text { L } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CFM42 } \\ & \text { W } \end{aligned}$	Compact Fluorescent, Multi, 4-pin, (2) 42W lamps	$\begin{aligned} & \text { 2-Lamp 42W CFL } \\ & \text { Multi 4-Pin } \end{aligned}$	Electronic	2	42	93	N/A
CFM42/8- L	$\begin{aligned} & \text { CFM42 } \\ & \text { W } \end{aligned}$	Compact Fluorescent, Multi, 4-pin, (8) 42W lamps, (4) 2-lamp ballasts	8-Lamp 42W CFL Multi 4-Pin	Electronic	8	42	372	N/A
CFM57/1- L	$\begin{aligned} & \text { CFM57 } \\ & \text { W } \end{aligned}$	Compact Fluorescent, Multi, 4-pin, (1) 57W lamp	$\begin{aligned} & \text { 1-Lamp 57W CFL } \\ & \text { Multi 4-Pin } \end{aligned}$	Electronic	1	57	59	N/A
CFM60/1- L	$\begin{aligned} & \text { CFM60 } \\ & \text { W } \\ & \hline \end{aligned}$	Compact Fluorescent, Multi, 4-pin, (1) 60W lamp	1-Lamp 60W CFL Multi 4-Pin	Electronic	1	60	70	N/A
$\begin{aligned} & \text { CFM70/1- } \\ & \text { L } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CFM70 } \\ & \text { W } \end{aligned}$	Compact Fluorescent, Multi, 4-pin, (1) 70W lamp	$\begin{aligned} & \text { 1-Lamp 70W CFL } \\ & \text { Multi 4-Pin } \end{aligned}$	Electronic	1	70	73	N/A
CFM85/1- L	$\begin{aligned} & \text { CFM85 } \\ & \text { W } \end{aligned}$	Compact Fluorescent, Multi, 4-pin, (1) 85W lamp	1-Lamp 85W CFL Multi 4-Pin	Electronic	1	85	96	N/A
$\begin{aligned} & \text { CFM120/ } \\ & 1-L \end{aligned}$	$\begin{aligned} & \text { CFM120 } \\ & \text { W } \end{aligned}$	Compact Fluorescent, Multi, 4-pin, (1) 120W lamp	1-Lamp 120W CFL Multi 4-Pin	Electronic	1	120	135	N/A
CFQ9/1	CFQ9w	Compact Fluorescent, Quad, (1) 9W lamp	$\begin{aligned} & \text { 1-Lamp 9W CFL } \\ & \text { Quad } \end{aligned}$	Mag-STD	1	9	14	N/A
CFQ9/2	CFQ9w	Compact Fluorescent, Quad, (2) 9W lamps	$\begin{aligned} & \text { 2-Lamp 9W CFL } \\ & \text { Quad } \end{aligned}$	Mag-STD	2	9	23	N/A
CFQ10/1	CFQ10W	Compact Fluorescent, quad, (1) 10W lamp	$\begin{aligned} & \text { 1-Lamp 10W CFL } \\ & \text { Quad } \end{aligned}$	Mag-STD	1	10	15	N/A
CFQ13/1	CFQ13W	Compact Fluorescent, quad, (1) 13W lamp	$\begin{aligned} & \text { 1-Lamp 13W CFL } \\ & \text { Quad } \end{aligned}$	Mag-STD	1	13	17	N/A
$\begin{aligned} & \text { CFQ13/1- } \\ & \text { L } \end{aligned}$	CFQ13W	Compact Fluorescent, quad, (1) 13W lamp, BF=1.05	$\begin{aligned} & \text { 1-Lamp 13W CFL } \\ & \text { Quad } \end{aligned}$	Electronic	1	13	15	N/A
CFQ13/2	CFQ13W	Compact Fluorescent, quad, (2) 13W lamps	$\begin{aligned} & \text { 2-Lamp 13W CFL } \\ & \text { Quad } \end{aligned}$	Mag-STD	2	13	31	N/A
$\begin{aligned} & \text { CFQ13/2- } \\ & \text { L } \end{aligned}$	CFQ13W	Compact Fluorescent, quad, (2) 13W lamps, BF=1.0	$\begin{aligned} & \text { 2-Lamp 13W CFL } \\ & \text { Quad } \end{aligned}$	Electronic	2	13	28	N/A
CFQ13/3	CFQ13W	Compact Fluorescent, quad, (3) 13W lamps	$\begin{aligned} & \text { 3-Lamp 13W CFL } \\ & \text { Quad } \end{aligned}$	Mag-STD	3	13	48	N/A
CFQ15/1	CFQ15W	Compact Fluorescent, quad, (1) 15W lamp	1-Lamp 15W CFL Quad	Mag-STD	1	15	20	N/A
CFQ17/1	CFQ17W	Compact Fluorescent, quad, (1) 17W lamp	$\begin{aligned} & \text { 1-Lamp 17W CFL } \\ & \text { Quad } \end{aligned}$	Mag-STD	1	17	24	N/A
CFQ17/2	CFQ17W	Compact Fluorescent, quad, (2) 17W lamps	$\begin{aligned} & \text { 2-Lamp 17W CFL } \\ & \text { Quad } \end{aligned}$	Mag-STD	2	17	48	N/A
CFQ18/1	CFQ18W	Compact Fluorescent, quad, (1) 18 W lamp	1-Lamp 18W CFL Quad	Mag-STD	1	18	26	N/A
$\begin{aligned} & \text { CFQ18/1- } \\ & \text { L } \end{aligned}$	CFQ18W	Compact Fluorescent, quad, (1) 18W lamp, BF=1.0	1-Lamp 18W CFL Quad	Electronic	1	18	20	N/A
CFQ18/2	CFQ18W	Compact Fluorescent, quad, (2) 18W lamps	$\begin{aligned} & \text { 2-Lamp 18W CFL } \\ & \text { Quad } \end{aligned}$	Mag-STD	2	18	45	N/A
CFQ18/2-	CFQ18W	Compact Fluorescent, quad, (2) 18 W lamp, $B F=1.0$	2-Lamp 18W CFL Quad	Electronic	2	18	38	N/A
CFQ18/4	CFQ18W	Compact Fluorescent, quad, (4) 18W lamps	4-Lamp 18W CFL Quad	Mag-STD	2	18	90	N/A
CFQ20/1	CFQ20W	Compact Fluorescent, quad, (1) 20W lamp	1-Lamp 20W CFL Quad	Mag-STD	1	20	23	N/A
CFQ20/2	CFQ20W	Compact Fluorescent, quad, (2) 20W lamps	$\begin{aligned} & \text { 2-Lamp 20W CFL } \\ & \text { Quad } \end{aligned}$	Mag-STD	2	20	46	N/A
CFQ22/1	CFQ22W	Compact Fluorescent, Quad, (1) 22W lamp	$\begin{aligned} & \text { 1-Lamp 22W CFL } \\ & \text { Quad } \end{aligned}$	Mag-STD	1	22	24	N/A
CFQ22/2	CFQ22W	Compact Fluorescent, Quad, (2) 22W lamps	$\begin{aligned} & \text { 2-Lamp 22W CFL } \\ & \text { Quad } \end{aligned}$	Mag-STD	2	22	48	N/A
CFQ22/3	CFQ22W	Compact Fluorescent, Quad, (3) 22W lamps	$\begin{aligned} & \text { 3-Lamp 22W CFL } \\ & \text { Quad } \end{aligned}$	Mag-STD	3	22	72	N/A

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
CFQ23/1	CFQ23W	Compact Fluorescent, Quad, (1) 23W lamp	$\begin{aligned} & \text { 1-Lamp 23W CFL } \\ & \text { Quad } \end{aligned}$	Mag-STD	1	23	27	N/A
CFQ25/1	CFQ25W	Compact Fluorescent, Quad, (1) 25W lamp	$\begin{aligned} & \text { 1-Lamp 25W CFL } \\ & \text { Quad } \end{aligned}$	Mag-STD	1	25	33	N/A
CFQ25/2	CFQ25W	Compact Fluorescent, Quad, (2) 25W lamps	$\begin{aligned} & \text { 2-Lamp 25W CFL } \\ & \text { Quad } \end{aligned}$	Mag-STD	2	25	66	N/A
CFQ26/1	CFQ26W	Compact Fluorescent, quad, (1) 26W lamp	$\begin{aligned} & \text { 1-Lamp 26W CFL } \\ & \text { Quad } \end{aligned}$	Mag-STD	1	26	33	N/A
$\begin{aligned} & \text { CFQ26/1- } \\ & \text { L } \end{aligned}$	CFQ26W	Compact Fluorescent, quad, (1) 26W lamp, $\mathrm{BF}=0.95$	$\begin{aligned} & \text { 1-Lamp 26W CFL } \\ & \text { Quad } \end{aligned}$	Electronic	1	26	27	N/A
CFQ26/2	CFQ26W	Compact Fluorescent, quad, (2) 26W lamps	$\begin{aligned} & \text { 2-Lamp 26W CFL } \\ & \text { Quad } \end{aligned}$	Mag-STD	2	26	66	N/A
CFQ26/2-	CFQ26W	Compact Fluorescent, quad, (2) 26W lamps, BF=0.95	$\begin{aligned} & \text { 2-Lamp 26W CFL } \\ & \text { Quad } \end{aligned}$	Electronic	2	26	50	N/A
CFQ26/3	CFQ26W	Compact Fluorescent, quad, (3) 26W lamps	$\begin{aligned} & \text { 3-Lamp 26W CFL } \\ & \text { Quad } \end{aligned}$	Mag-STD	3	26	99	N/A
$\begin{aligned} & \text { CFQ26/6- } \\ & \text { L } \end{aligned}$	CFQ26W	Compact Fluorescent, quad, (6) 26 W lamps, BF=0.95	$\begin{aligned} & \text { 6-Lamp 26W CFL } \\ & \text { Quad } \end{aligned}$	Electronic	6	26	150	N/A
CFQ28/1	CFQ28W	Compact Fluorescent, quad, (1) 28 W lamp	$\begin{aligned} & \text { 1-Lamp 28W CFL } \\ & \text { Quad } \end{aligned}$	Mag-STD	1	28	33	N/A
$\begin{aligned} & \text { CFQ28/1- } \\ & \mathrm{L} \end{aligned}$	CFQ28W	Compact Fluorescent, quad, (1) 28 W lamp	$\begin{aligned} & \text { 1-Lamp 28W CFL } \\ & \text { Quad } \end{aligned}$	Electronic	1	28	31	N/A
CFQ28/2-	CFQ28W	Compact Fluorescent, quad, (2) 28W lamps	$\begin{aligned} & \text { 2-Lamp 28W CFL } \\ & \text { Quad } \end{aligned}$	Electronic	2	28	60	N/A
CFT5/1	CFT5W	Compact Fluorescent, twin, (1) 5W lamp	$\begin{aligned} & \text { 1-Lamp 5W CFL } \\ & \text { Twin } \end{aligned}$	Mag-STD	1	5	9	N/A
CFT5/2	CFT5W	Compact Fluorescent, long twin, (2) 5W lamps	$\begin{aligned} & \text { 2-Lamp 5W CFL } \\ & \text { Twin } \end{aligned}$	Mag-STD	2	5	18	N/A
CFT7/1	CFT7W	Compact Fluorescent, twin, (1) 7W lamp	$\begin{aligned} & \text { 1-Lamp 7W CFL } \\ & \text { Twin } \end{aligned}$	Mag-STD	1	7	10	N/A
CFT7/2	CFT7W	Compact Fluorescent, twin, (2) 7W lamps	$\begin{aligned} & \text { 2-Lamp 7W CFL } \\ & \text { Twin } \end{aligned}$	Mag-STD	2	7	21	N/A
CFT9/1	CFT9W	Compact Fluorescent, twin, (1) 9W lamp	$\begin{aligned} & \text { 1-Lamp 9W CFL } \\ & \text { Twin } \end{aligned}$	Mag-STD	1	9	12	N/A
CFT9/2	CFT9W	Compact Fluorescent, twin, (2) 9W lamps	$\begin{aligned} & \text { 2-Lamp 9W CFL } \\ & \text { Twin } \end{aligned}$	Mag-STD	2	9	23	N/A
CFT9/3	CFT9W	Compact Fluorescent, twin, (3) 9 W lamps	$\begin{aligned} & \text { 3-Lamp 9W CFL } \\ & \text { Twin } \end{aligned}$	Mag-STD	3	9	34	N/A
CFT13/1	CFT13W	Compact Fluorescent, twin, (1) 13W lamp	$\begin{aligned} & \text { 1-Lamp 13W CFL } \\ & \text { Twin } \end{aligned}$	Mag-STD	1	13	17	N/A
CFT13/1-L	CFT13W	Compact Fluorescent, twin, (1) 13W lamp	$\begin{aligned} & \text { 1-Lamp 13W CFL } \\ & \text { Twin } \end{aligned}$	Electronic	1	13	15	N/A
CFT13/2	CFT13W	Compact Fluorescent, twin, (2) 13W lamps	$\begin{aligned} & \text { 2-Lamp 13W CFL } \\ & \text { Twin } \end{aligned}$	Mag-STD	2	13	31	N/A
CFT13/2-L	CFT13W	Compact Fluorescent, twin, (2) 13W lamps	$\begin{aligned} & \text { 2-Lamp 13W CFL } \\ & \text { Twin } \end{aligned}$	Electronic	2	13	28	N/A
CFT13/3	CFT13W	Compact Fluorescent, twin, (3) 13 W lamps	$\begin{aligned} & \text { 3-Lamp 13W CFL } \\ & \text { Twin } \end{aligned}$	Mag-STD	3	13	48	N/A
CFT18/1	CFT18W	Compact Fluorescent, Long twin., (1) 18 W lamp	$\begin{aligned} & \text { 1-Lamp 18W CFL } \\ & \text { Twin } \end{aligned}$	Mag-STD	1	18	24	N/A
CFT18/1-L	CFT18W	Compact Fluorescent, twin, (1) 18W lamp	$\begin{aligned} & \text { 1-Lamp 18W CFL } \\ & \text { Twin } \end{aligned}$	Electronic	1	18	20	N/A
CFT18/2	CFT18W	Compact Fluorescent, twin, (2) 18 W lamps	$\begin{aligned} & \text { 2-Lamp 18W CFL } \\ & \text { Twin } \end{aligned}$	Mag-STD	2	18	38	N/A
CFT22/1	CFT22W	Compact Fluorescent, twin, (1) 22W lamp	$\begin{aligned} & \text { 1-Lamp 22W CFL } \\ & \text { Twin } \end{aligned}$	Mag-STD	1	22	27	N/A
CFT22/2	CFT22W	Compact Fluorescent, twin, (2) 22W lamps	$\begin{aligned} & \text { 2-Lamp 22W CFL } \\ & \text { Twin } \end{aligned}$	Mag-STD	2	22	54	N/A
CFT22/4	CFT22W	Compact Fluorescent, twin, (4) 22W lamps	$\begin{aligned} & \text { 4-Lamp 22W CFL } \\ & \text { Twin } \end{aligned}$	Mag-STD	4	22	108	N/A
CFT24/1	CFT24W	Compact Fluorescent, long twin, (1) 24 W lamp	$\begin{aligned} & \text { 1-Lamp 24W CFL } \\ & \text { Twin } \end{aligned}$	Mag-STD	1	24	32	N/A
CFT26/1	CFT26W	Compact Fluorescent, twin, (1) 26W lamp	$\begin{aligned} & \text { 1-Lamp 26W CFL } \\ & \text { Twin } \end{aligned}$	Mag-STD	1	26	32	N/A

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
CFT26/1-L	CFT26W	Compact Fluorescent, twin, (1) 26W lamp	$\begin{aligned} & \text { 1-Lamp 26W CFL } \\ & \text { Twin } \end{aligned}$	Electronic	1	26	27	N/A
CFT26/2-L	CFT26W	Compact Fluorescent, twin, (2) 26W lamps	$\begin{aligned} & \text { 2-Lamp 26W CFL } \\ & \text { Twin } \end{aligned}$	Electronic	2	26	51	N/A
CFT28/1	CFT28W	Compact Fluorescent, twin, (1) 28 W lamp	$\begin{aligned} & \text { 1-Lamp 28W CFL } \\ & \text { Twin } \end{aligned}$	Mag-STD	1	28	33	N/A
CFT28/2	CFT28W	Compact Fluorescent, twin, (2) 28 W lamps	$\begin{aligned} & \text { 2-Lamp 28W CFL } \\ & \text { Twin } \end{aligned}$	Mag-STD	2	28	66	N/A
CFT32/1-L	CFT32W	Compact Fluorescent, twin, (1) 32W lamp	$\begin{aligned} & \text { 1-Lamp 32W CFL } \\ & \text { Twin } \end{aligned}$	Electronic	1	32	34	N/A
CFT32/2-L	CFT32W	Compact Fluorescent, twin, (2) 32W lamps	$\begin{aligned} & \text { 2-Lamp 32W CFL } \\ & \text { Twin } \end{aligned}$	Electronic	2	32	62	N/A
CFT32/6-L	CFT32W	Compact Fluorescent, twin, (6) 32W lamps	$\begin{aligned} & \text { 6-Lamp 32W CFL } \\ & \text { Twin } \end{aligned}$	Electronic	6	32	186	N/A
CFT36/1	CFT36W	Compact Fluorescent, long twin, (1) 36W lamp	1-Lamp 36W CFL Long Twin	Mag-STD	1	36	51	N/A
CFT40/1	CFT40W	Compact Fluorescent, long twin, (1) 40W lamp	1-Lamp 40W CFL Long Twin	Mag-STD	1	40	46	N/A
CFT40/1-L	CFT40W	Compact Fluorescent, long twin, (1) 40W lamp	1-Lamp 40W CFL Long Twin	Electronic	1	40	43	N/A
CFT40/2	CFT40W	Compact Fluorescent, long twin, (2) 40W lamps	2-Lamp 40W CFL Long Twin	Mag-STD	2	40	85	N/A
CFT40/2-L	CFT40W	Compact Fluorescent, long twin, (2) 40W lamps	2-Lamp 40W CFL Long Twin	Electronic	2	40	72	N/A
CFT40/3	CFT40W	Compact Fluorescent, long twin, (3) 40 W lamps	3-Lamp 40W CFL Long Twin	Mag-STD	3	40	133	N/A
CFT40/3-L	CFT40W	Compact Fluorescent, long twin, (3) 40W lamps	3-Lamp 40W CFL Long Twin	Electronic	3	40	105	N/A
CFT40/5-L	CFT40W	Compact Fluorescent, long twin, (5) 40W lamps	5-Lamp 40W CFL Long Twin	Electronic	5	40	177	N/A
CFT50/1-L	CFT50W	Compact Fluorescent, long twin, (1) 50W lamp	$\begin{aligned} & \text { 1-Lamp 50W CFL } \\ & \text { Long Twin } \end{aligned}$	Electronic	1	50	54	N/A
CFT50/2-L	CFT50W	Compact Fluorescent, long twin, (2) 50W lamps	1-Lamp 50W CFL Long Twin	Electronic	1	50	108	N/A
CFT55/1-L	CFT55W	Compact Fluorescent, long twin, (1) 55W lamp	$\begin{aligned} & \text { 1-Lamp 55W CFL } \\ & \text { Long Twin } \end{aligned}$	Electronic	1	55	58	N/A
CFT55/2-L	CFT55W	Compact Fluorescent, long twin, (2) 55W lamps	2-Lamp 55W CFL Long Twin	Electronic	2	55	108	N/A
CFT55/3-L	CFT55W	Compact Fluorescent, long twin, (3) 55W lamps	3-Lamp 55W CFL Long Twin	Electronic	3	55	168	N/A
CFT55/4-L	CFT55W	Compact Fluorescent, long twin, (4) 55W lamps	4-Lamp 55W CFL Long Twin	Electronic	4	55	220	N/A
CFT80/1-L	CFT80W	Compact Fluorescent, long twin, (1) 80W lamp	1-Lamp 80W CFL Long Twin	Electronic	1	80	90	N/A
EXIT Sign Fixtures								
ECF5/1	CFT5W	EXIT Compact Fluorescent, (1) 5W lamp	$\begin{aligned} & \text { 1-Lamp 5W CFL } \\ & \text { Exit } \end{aligned}$	Mag-STD	1	5	9	16
ECF5/2	CFT5W	EXIT Compact Fluorescent, (2) 5W lamps	$\begin{aligned} & \text { 2-Lamp 5W CFL } \\ & \text { Exit } \end{aligned}$	Mag-STD	2	5	20	16
ECF6/1	CFT6W	EXIT Compact Fluorescent, (1) 6W lamp	$\begin{aligned} & \text { 1-Lamp 6W CFL } \\ & \text { Exit } \end{aligned}$	Mag-STD	1	6	13	16
ECF6/2	CFT6W	EXIT Compact Fluorescent, (2) 6W lamps, (2) ballasts	$\begin{aligned} & \text { 2-Lamp 6W CFL } \\ & \text { Exit } \end{aligned}$	Mag-STD	2	6	26	16
ECF7/1	CFT7W	EXIT Compact Fluorescent, (1) 7W lamp	$\begin{aligned} & \text { 1-Lamp 7W CFL } \\ & \text { Exit } \end{aligned}$	Mag-STD	1	7	10	16
ECF7/2	CFT7W	EXIT Compact Fluorescent, (2) 7W lamps	$\begin{aligned} & \text { 2-Lamp 7W CFL } \\ & \text { Exit } \end{aligned}$	Mag-STD	2	7	21	16
ECF9/1	CFT9W	EXIT Compact Fluorescent, (1) 9W lamp	$\begin{aligned} & \text { 1-Lamp 9W CFL } \\ & \text { Exit } \end{aligned}$	Mag-STD	1	9	12	16
ECF9/2	CFT9W	EXIT Compact Fluorescent, (2) 9W lamps	$\begin{aligned} & \text { 2-Lamp 9W CFL } \\ & \text { Exit } \end{aligned}$	Mag-STD	2	9	20	16
EF2/2	F2T1	EXIT Sub-miniature T-1 Fluorescent, (2) lamps	$\begin{aligned} & \text { 2-Lamp 2W T-1 } \\ & \text { Exit } \end{aligned}$	Electronic	2	2	5	16

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
EF6/1	F6T5	EXIT Miniature Bi-pin Fluorescent, (1) 6W lamp, (1) ballast	1-Lamp 6W BiPin Fluorescent Exit	Mag-STD	1	6	9	16
EF6/2	F6T5	EXIT Miniature Bi-pin Fluorescent, (2) 6W lamps, (2) ballasts	2-Lamp 6W BiPin Fluorescent Exit	Mag-STD	2	6	18	16
EF8/1	F8T5	EXIT T5 Fluorescent, (1) 8W lamp	$\begin{aligned} & \text { 1-Lamp 8W T-5 } \\ & \text { Exit } \end{aligned}$	Mag-STD	1	8	12	16
EF8/2	F8T5	EXIT T5 Fluorescent, (2) 8W lamps	$\begin{aligned} & \text { 2-Lamp 8W T-5 } \\ & \text { Exit } \end{aligned}$	Mag-STD	2	8	24	16
EI5/1	15	EXIT Incandescent, (1) 5W lamp	1-Lamp 5W incandescent Exit		1	5	5	1.5
El5/2	15	EXIT Incandescent, (2) 5W lamps	2-Lamp 5W incandescent Exit		2	5	10	1.5
EI7.5/1	17.5	EXIT Tungsten, (1) 7.5 W lamp	$\begin{aligned} & \text { 1-Lamp 7.5W } \\ & \text { Tungsten Exit } \\ & \hline \end{aligned}$		1	7.5	8	1.5
EI7.5/2	17.5	EXIT Tungsten, (2) 7.5 W lamps	$\begin{aligned} & \text { 2-Lamp 7.5W } \\ & \text { Tungsten Exit } \\ & \hline \end{aligned}$		2	7.5	15	1.5
El10/2	110	EXIT Incandescent, (2) 10W lamps	2-Lamp 10W incandescent Exit		2	10	20	1.5
El15/1	115	EXIT Incandescent, (1) 15W lamp	1-Lamp 15W incandescent Exit		1	15	15	1.5
El15/2	115	EXIT Incandescent, (2) 15W lamps	2-Lamp 15W incandescent Exit		2	15	30	1.5
El20/1	120	EXIT Incandescent, (1) 20W lamp	1-Lamp 20W incandescent Exit		1	20	20	1.5
El20/2	120	EXIT Incandescent, (2) 20W lamps	2-Lamp 20W incandescent Exit		2	20	40	1.5
El25/1	125	EXIT Incandescent, (1) 25W lamp	1-Lamp 25W incandescent Exit		1	25	25	1.5
El25/2	125	EXIT Incandescent, (2) 25W lamps	2-Lamp 25W incandescent Exit		2	25	50	1.5
EI34/1	134	EXIT Incandescent, (1) 34W lamp	1-Lamp 34W incandescent Exit		1	34	34	1.5
EI34/2	134	EXIT Incandescent, (2) 34W lamps	2-Lamp 34W incandescent Exit		2	34	68	1.5
El40/1	140	EXIT Incandescent, (1) 40W lamp	1-Lamp 40W incandescent Exit		1	40	40	1.5
El40/2	140	EXIT Incandescent, (2) 40W lamps	2-Lamp 40W incandescent Exit		2	40	80	1.5
El50/2	150	EXIT Incandescent, (2) 50W lamps	2-Lamp 50W incandescent Exit		2	50	100	1.5
E16/1	656	EXIT Incandescent, (1) 6 W lamp	1-Lamp 6W incandescent Exit		1	6	6	1.5
EI6/2	6S6	EXIT Incandescent, (2) 6 W lamps	2-Lamp 6W incandescent Exit		2	6	12	1.5
ELED2/1	LED2W	EXIT Light Emitting Diode, (1) 2 W lamp, Single Sided	1-Lamp 2W LED Exit		1	2	2	15

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
ELED2/2	LED2W	EXIT Light Emitting Diode, (2) 2W lamps, Dual Sided	$\begin{aligned} & \text { 2-Lamp 2W LED } \\ & \text { Exit } \end{aligned}$		2	2	4	15
ELED3	LED3W	EXIT Light Emitting Diode, (1) 3W lamp, Single Sided	$\begin{aligned} & \text { 1-Lamp 3W LED } \\ & \text { Exit } \end{aligned}$		1	3	3	15
EP	POW	EXIT Photoluminescent, OW	Photoluminesce nt Exit Sign		0	0	0	15
T5 Linear Fluorescent Systems								
F22PS	F13T5	Fluorescent, (2) 21", Preheat T5 lamps, (1) Magnetic ballasts with integral starter, ($\mathrm{BF}=0.80$)	2' 2-Lamp T5	Mag-STD	2	13	26	15.5
F24PS	F13T5	Fluorescent, (4) 21", Preheat T5 lamps, (2) Magnetic ballasts with integral starter ($\mathrm{BF}=0.80$)	2' 4-Lamp T5	Mag-STD	4	13	53	15.5
F21GPL-H	F14T5	Fluorescent (1) 22" (563 mm) T-5 lamp; (1) Prog.Start or PRS Ballast, HLO (. 95 < $B F<1.1$)	2' 1-Lamp T5	PRS Elec.	1	14	18	15.5
F22GPL-H	F14T5	Fluorescent (2) 22" (563mm) T-5 lamps; (1) Prog.Start or PRS Ballast, HLO (. 95 < BF < 1.1)	2' 2-Lamp T5	PRS Elec.	2	14	33	15.5
F23GPL-H	F14T5	Fluorescent (3) 22" (563mm)T-5 lamps; (1) Prog.Start or PRS Ballast, HLO (. 95 < $B F<1.1$)	2' 3-Lamp T5	PRS Elec.	3	14	50	15.5
$\begin{aligned} & \text { F23GPL/2 } \\ & -H \end{aligned}$	F14T5	Fluorescent (3) 22" (563mm)T-5 lamps; (2) Prog.Start or PRS Ballasts, HLO (. 95 < $\mathrm{BF}<1.1$)	2' 3-Lamp T5	PRS Elec.	3	14	51	15.5
$\begin{aligned} & \text { F24GPL/2 } \\ & -H \end{aligned}$	F14T5	Fluorescent (4) 22" (563mm)T-5 lamps; (2) Prog.Start or PRS Ballasts, HLO (. 95 $<B F<1.1)$	2' 4-Lamp T5	PRS Elec.	4	14	66	15.5
F31GPL-H	F21T5	Fluorescent (1) 34" (863mm) T-5 lamp; (1) Prog.Start or PRS Ballast, HLO (. 95 < $B F<1.1$)	3' 1-Lamp T5	PRS Elec.	1	21	25	15.5
F32GPL-H	F21T5	Fluorescent (2) 34" (863mm) T-5 lamps; (1) Prog.Start or PRS Ballast, HLO (. 95 < BF < 1.1)	3' 2-Lamp T5	PRS Elec.	2	21	48	15.5
$\begin{aligned} & \text { F33GPL/2 } \\ & \text {-H } \end{aligned}$	F21T5	Fluorescent (3) 34 " (863 mm)T-5 lamps; (2) Prog.Start or PRS Ballasts, HLO (. 95 $<\mathrm{BF}<1.1)$	3' 3-Lamp T5	PRS Elec.	3	21	73	15.5
$\begin{aligned} & \text { F34GPL/2 } \\ & -H \end{aligned}$	F21T5	Fluorescent (4) 34" (863mm)T-5 lamps; (2) Prog.Start or PRS Ballasts, HLO (. 95 < $\mathrm{BF}<1.1$)	3' 4-Lamp T5	PRS Elec.	4	21	96	15.5
F21GPHL- H	$\begin{aligned} & \text { F24T5/H } \\ & \mathrm{O} \end{aligned}$	Fluorescent (1) 22" (563 mm) T-5 HO lamp; (1) Prog.Start or PRS Ballast, HLO (. $95<B F<1.1$)	2' 1-Lamp T5HO	PRS Elec.	1	24	27	15.5
$\begin{aligned} & \text { F22GPHL- } \\ & \text { H } \end{aligned}$	$\begin{aligned} & \text { F24T5/H } \\ & \text { O } \end{aligned}$	Fluorescent (2) 22" (563 mm) T-5 HO lamps; (1) Prog.Start or PRS Ballast, HLO (. 95 < BF < 1.1)	2' 2-Lamp T5HO	PRS Elec.	2	24	52	15.5
$\begin{aligned} & \text { F23GPHL/ } \\ & \text { 2-H } \end{aligned}$	$\begin{aligned} & \text { F24T5/H } \\ & \mathrm{O} \end{aligned}$	Fluorescent (3) 22" (563 mm)T-5 HO lamps; (2) Prog.Start or PRS Ballasts, HLO (. 95 < BF < 1.1)	2' 3-Lamp T5HO	PRS Elec.	3	24	79	15.5
$\begin{aligned} & \text { F24GPHL/ } \\ & \text { 2-H } \end{aligned}$	$\begin{aligned} & \text { F24T5/H } \\ & \text { O } \end{aligned}$	Fluorescent (4) 22" (563 mm)T-5 HO lamps; (2) Prog.Start or PRS Ballasts, HLO (. 95 < BF < 1.1)	2' 4-Lamp T5HO	PRS Elec.	4	24	104	15.5
$\begin{aligned} & \text { F26GPHL/ } \\ & 3-\mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{F} 24 \mathrm{~T} 5 / \mathrm{H} \\ & \mathrm{O} \end{aligned}$	Fluorescent (4) 22" (563 mm) T-5 HO lamps; (3) Prog.Start or PRS Ballasts, HLO (. 95 < BF < 1.1)	2' 6-Lamp T5HO	PRS Elec.	6	24	156	15.5
F41GPL-H	F28T5	Fluorescent (1) $45.8^{\prime \prime}(1163 \mathrm{~mm})$ T-5 lamp; (1) PRS Electronic Ballast, HLO (. 95 < BF < 1.1)	4' 1-Lamp T5	PRS Elec.	1	28	33	15.5
$\begin{aligned} & \text { F41GPL/T } \\ & 2-H \end{aligned}$	F28T5	Fluorescent (1) 45.8" (1163mm) T-5 lamp; Tandem 2-lamp PRS Ballast,HLO (. $95<B F<1.1$)	4' 1-Lamp T5	PRS Elec.	1	28	32	15.5
F42GPL-H	F28T5	Fluorescent (2) 45.8" (1163 mm) T-5 lamps; (1) PRS Electronic Ballast, HLO (. $95<\mathrm{BF}<1.1$)	4' 2-Lamp T5	PRS Elec.	2	28	63	15.5

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
$\begin{aligned} & \text { F43GPL/2 } \\ & -H \end{aligned}$	F28T5	Fluorescent (3) 45.8" (1163 mm)T-5 lamps; (2) PRS Electronic Ballasts, HLO (. $95<\mathrm{BF}<1.1$)	4' 3-Lamp T5	PRS Elec.	3	28	96	15.5
$\begin{aligned} & \text { F44GPL/2 } \\ & -H \end{aligned}$	F28T5	Fluorescent (4) 45.8" (1163mm)T-5 lamps; (2) PRS Electronic Ballasts, HLO (. $95<\mathrm{BF}<1.1$)	4' 4-Lamp T5	PRS Elec.	4	28	126	15.5
F51GPL-H	F35T5	Fluorescent (1) $57.6^{\prime \prime}(1463 \mathrm{~mm})$ T-5 lamp; (1) Prog.Start or PRS Ballast, HLO (. $95<B F<1.1$)	5' 1-Lamp T5	PRS Elec.	1	35	40	15.5
F52GPL-H	F35T5	Fluorescent (2) 57.6" (1463mm) T-5 lamps; (1) Prog.Start or PRS Ballast, HLO (. 95 < BF < 1.1)	5' 2-Lamp T5	PRS Elec.	2	35	78	15.5
$\begin{aligned} & \text { F53GPL/2 } \\ & \text {-H } \end{aligned}$	F35T5	Fluorescent (3) 57.6" (1463mm)T-5 lamps; (2) Prog.Start or PRS Ballasts, HLO (. 95 < BF < 1.1)	5' 3-Lamp T5	PRS Elec.	3	35	118	15.5
$\begin{aligned} & \text { F54GPL/2 } \\ & -H \end{aligned}$	F35T5	Fluorescent (4) 57.6" (1463mm)T-5 lamps; (2) Prog.Start or PRS Ballasts, HLO (. 95 < BF < 1.1)	5' 4-Lamp T5	PRS Elec.	4	35	156	15.5
F31GPHL- H	$\begin{aligned} & \text { F39T5/H } \\ & \text { O } \end{aligned}$	Fluorescent (1) 34 " (863 mm) T-5 HO lamp; (1) Prog.Start or PRS Ballast, HLO (. $95<B F<1.1$)	3' 1-Lamp T5	PRS Elec.	1	39	44	15.5
F32GPHL- H	$\begin{aligned} & \text { F39T5/H } \\ & \text { O } \end{aligned}$	Fluorescent (2) $34^{\prime \prime}$ (863 mm) T-5 HO lamps; (1) Prog.Start or PRS Ballast, HLO (. 95 < BF < 1.1)	3' 2-Lamp T5	PRS Elec.	2	39	86	15.5
$\begin{aligned} & \text { F33GPHL/ } \\ & 2-\mathrm{H} \end{aligned}$	$\begin{aligned} & \text { F39T5/H } \\ & \text { O } \end{aligned}$	Fluorescent (3) 34 " (863 mm)T-5 HO lamps; (2) Prog.Start or PRS Ballasts, HLO (. 95 < BF < 1.1)	3' 3-Lamp T5	PRS Elec.	3	39	130	15.5
$\begin{aligned} & \text { F34GPHL/ } \\ & \text { 2-H } \end{aligned}$	$\begin{aligned} & \text { F39T5/H } \\ & \text { O } \end{aligned}$	Fluorescent (4) 34" (863mm)T-5 HO lamps; (2) Prog.Start or PRS Ballasts, HLO (. $95<\mathrm{BF}<1.1$)	3' 4-Lamp T5	PRS Elec.	4	39	172	15.5
$\begin{aligned} & \text { F46GPRL/ } \\ & 2-H \end{aligned}$	$\begin{aligned} & \text { F45T5/H } \\ & \text { O-RW } \end{aligned}$	Fluorescent, (6) 45.8" T-5 HO reducedwattage lamps, (2) PRS Electronic Ballasts, HLO (. $95<\mathrm{BF}<1.1$)	4' 6-Lamp T5HO	PRS Elec.	6	54	332	15.5
$\begin{aligned} & \text { F46GPRL/ } \\ & 3-H \end{aligned}$	$\begin{aligned} & \text { F45T5/H } \\ & \text { O-RW } \end{aligned}$	Fluorescent, (6) 45.8" T-5 HO reducedwattage lamps, (3) PRS Electronic Ballasts, HLO (. 95 < BF < 1.1)	4' 6-Lamp T5HO	PRS Elec.	6	54	330	15.5
F41GPHL- H	$\begin{aligned} & \text { F54T5/H } \\ & \text { O } \end{aligned}$	Fluorescent (1) 45.8" T-5 HO lamp, (1) PRS Electronic Ballast, HLO (. 95 < BF < 1.1)	4' 1-Lamp T5HO	PRS Elec.	1	54	64	15.5
$\begin{aligned} & \text { F41GPHL/ } \\ & \text { T2-H } \end{aligned}$	$\begin{aligned} & \text { F54T5/H } \\ & \text { O } \end{aligned}$	Fluorescent (1) 45.8" T-5 HO lamp, Tandem 2-lamp PRS Ballast, HLO (. 95 < $\mathrm{BF}<1.1$)	4' 1-Lamp T5HO	PRS Elec.	1	54	59	15.5
F42GPHL-	$\begin{aligned} & \text { F54T5/H } \\ & \text { O } \end{aligned}$	Fluorescent (2) 45.8" T-5 HO lamps, (1) PRS Electronic Ballast, HLO (. 95 < BF < 1.1)	4' 2-Lamp T5HO	PRS Elec.	2	54	117	15.5
F43GPHL- H	$\begin{aligned} & \text { F54T5/H } \\ & \mathrm{O} \end{aligned}$	Fluorescent, (3) 45.8" T-5 HO lamps, (1) PRS Electronic Ballast, HLO (. 95 < BF < 1.1)	4' 3-Lamp T5HO	PRS Elec.	3	54	181	15.5
$\begin{aligned} & \text { F43GPHL/ } \\ & 2-\mathrm{H} \end{aligned}$	$\begin{aligned} & \text { F54T5/H } \\ & \text { O } \end{aligned}$	Fluorescent (3) 45.8" T-5 HO lamps, (2) PRS Electronic Ballasts, HLO (. 95 < BF < 1.1)	4' 3-Lamp T5HO	PRS Elec.	3	54	181	15.5
F44GPHL- H	$\begin{aligned} & \text { F54T5/H } \\ & \text { O } \end{aligned}$	Fluorescent, (4) 45.8" T-5 HO lamps, (1) PRS Electronic Ballast, HLO (. 95 < BF < 1.1)	4' 4-Lamp T5HO	PRS Elec.	4	54	230	15.5
$\begin{aligned} & \text { F44GPHL/ } \\ & 2-\mathrm{H} \end{aligned}$	$\begin{aligned} & \text { F54T5/H } \\ & \mathrm{O} \end{aligned}$	Fluorescent (4) 45.8" T-5 HO lamps, (2) PRS Electronic Ballasts, HLO (. 95 < BF < 1.1)	4' 4-Lamp T5HO	PRS Elec.	4	54	234	15.5
$\begin{aligned} & \text { F45GPHL/ } \\ & 2-H \end{aligned}$	$\begin{aligned} & \text { F54T5/H } \\ & \text { O } \end{aligned}$	Fluorescent (5) 45.8" T-5 HO lamps, (2) PRS Electronic Ballast, HLO (. 95 < BF < 1.1)	4' 5-Lamp T5HO	PRS Elec.	5	54	298	15.5
$\begin{aligned} & \text { F45GPRL/ } \\ & 2-H \end{aligned}$	$\begin{aligned} & \text { F54T5/H } \\ & \text { O-RW } \end{aligned}$	Fluorescent (5) 45.2" T-5 HO reducedwattage lamp, (2) PRS Electronic Ballast, HLO (. 95 < BF < 1.1)	4' 5-Lamp T5HO	PRS Elec.	5	47-51	276	15.5

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
$\begin{aligned} & \text { F46GPHL/ } \\ & \text { 2-H } \end{aligned}$	$\begin{aligned} & \text { F54T5/H } \\ & \text { O } \end{aligned}$	Fluorescent, (6) 45.8" T-5 HO lamps, (2) PRS Electronic Ballasts, HLO (. 95 < BF < 1.1)	4' 6-Lamp T5HO	PRS Elec.	6	54	362	15.5
$\begin{aligned} & \text { F46GPHL/ } \\ & 3-\mathrm{H} \end{aligned}$	$\begin{aligned} & \text { F54T5/H } \\ & \text { O } \end{aligned}$	Fluorescent, (6) 45.8" T-5 HO lamps, (3) PRS Electronic Ballasts, HLO (. 95 < BF < 1.1)	4' 6-Lamp T5HO	PRS Elec.	6	54	351	15.5
$\begin{aligned} & \text { F48GPHL/ } \\ & \text { 2-H } \end{aligned}$	$\begin{aligned} & \text { F54T5/H } \\ & \text { O } \end{aligned}$	Fluorescent, (8) 45.8" T-5 HO lamps, (2) PRS Electronic Ballasts, HLO (. 95 < BF < 1.1)	4' 8-Lamp T5HO	PRS Elec.	8	54	460	15.5
$\begin{aligned} & \text { F48GPHL/ } \\ & 4-\mathrm{H} \end{aligned}$	$\begin{aligned} & \text { F54T5/H } \\ & \text { O } \end{aligned}$	Fluorescent, (8) 45.8" T-5 HO lamps, (4) PRS Electronic Ballasts, HLO (. 95 < BF < 1.1)	4' 8-Lamp T5HO	PRS Elec.	8	54	468	15.5
$\begin{aligned} & \text { F410GPHL } \\ & / 3-\mathrm{H} \end{aligned}$	$\begin{aligned} & \text { F54T5/H } \\ & \text { O } \end{aligned}$	Fluorescent, (10) 45.8" T-5 HO lamps, (3) PRS Electronic Ballasts, HLO (. 95 < BF < 1.1)	4' 10L T5HO	PRS Elec.	10	54	577	15.5
$\begin{aligned} & \text { F410GPHL } \\ & \text { /5-H } \end{aligned}$	$\begin{aligned} & \text { F54T5/H } \\ & \text { O } \end{aligned}$	Fluorescent, (10) 45.8" T-5 HO lamps, (5) PRS Electronic Ballasts, HLO (. 95 < $B F<1.1$)	4' 10L T5HO	PRS Elec.	10	54	585	15.5
$\begin{aligned} & \text { F412GPHL } \\ & / 3-\mathrm{H} \end{aligned}$	$\begin{aligned} & \text { F54T5/H } \\ & \text { O } \end{aligned}$	Fluorescent, (12) 45.8" T-5 HO lamps, (3) PRS Electronic Ballasts, HLO (. 95 < BF < 1.1)	4' 12 T5HO	PRS Elec.	12	54	690	15.5
$\begin{aligned} & \text { F412GPHL } \\ & / 6-\mathrm{H} \end{aligned}$	$\begin{aligned} & \text { F54T5/H } \\ & \text { O } \end{aligned}$	Fluorescent, (12) 45.8" T-5 HO lamps, (6) PRS Electronic Ballasts, HLO (. 95 < $B F<1.1$)	4' 12-Lamp T5HO	PRS Elec.	12	54	702	15.5
F41GPRL- H	$\begin{aligned} & \text { F54T5/H } \\ & \text { O-RW } \end{aligned}$	Fluorescent (1) 45.2" T-5 HO reducedwattage lamp, (1) PRS Electronic Ballast, HLO (. 95 < BF < 1.1)	4' 1-Lamp T5HO	PRS Elec.	1	47-51	61	15.5
F42GPRL- H	$\begin{aligned} & \text { F54T5/H } \\ & \text { O-RW } \end{aligned}$	Fluorescent (2) 45.2" T-5 HO reducedwattage lamp, (1) PRS Electronic Ballast, HLO (. 95 < BF < 1.1)	4' 2-Lamp T5HO	PRS Elec.	2	47-51	110	15.5
F43GPRLH	$\begin{aligned} & \text { F54T5/H } \\ & \text { O-RW } \end{aligned}$	Fluorescent (3) 45.2" T-5 HO reducedwattage lamp, (1) PRS Electronic Ballast, HLO (. 95 < BF < 1.1)	4' 3-Lamp T5HO	PRS Elec.	3	47-51	166	15.5
F44GPRL- H	$\begin{aligned} & \text { F54T5/H } \\ & \text { O-RW } \end{aligned}$	Fluorescent (4) 45.2" T-5 HO reducedwattage lamp, (1) PRS Electronic Ballast, HLO (. 95 < BF < 1.1)	4' 4-Lamp T5HO	PRS Elec.	4	47-51	211	15.5
$\begin{aligned} & \text { F48GPRL/ } \\ & 2-\mathrm{H} \end{aligned}$	$\begin{aligned} & \text { F54T5/H } \\ & \text { O-RW } \end{aligned}$	Fluorescent, (8) 45.8" T-5 HO reducedwattage lamps, (2) PRS Electronic Ballasts, HLO (. 95 < BF < 1.1)	4' 8-Lamp T5HO	PRS Elec.	8	50	428	15.5
$\begin{aligned} & \text { F48GPRL/ } \\ & 4-H \end{aligned}$	$\begin{aligned} & \text { F54T5/H } \\ & \text { O-RW } \end{aligned}$	Fluorescent, (8) 45.8" T-5 HO reducedwattage lamps, (4) PRS Electronic Ballasts, HLO (. 95 < BF < 1.1)	4' 8-Lamp T5HO	PRS Elec.	8	50	436	15.5
$\begin{aligned} & \text { F410GPRL } \\ & \text { /3-H } \end{aligned}$	$\begin{aligned} & \text { F54T5/H } \\ & \text { O-RW } \end{aligned}$	Fluorescent, (10) 45.8" T-5 HO reducedwattage lamps, (3) PRS Electronic Ballast, HLO (. 95 < BF < 1.1)	4' 10L T5HO	PRS Elec.	10	50	537	15.5
$\begin{aligned} & \text { F410GPRL } \\ & \text { /5-H } \end{aligned}$	$\begin{aligned} & \text { F54T5/H } \\ & \text { O-RW } \end{aligned}$	Fluorescent, (10) 45.8" T-5 HO reducedwattage lamps, (5) PRS Electronic Ballast, HLO (. 95 < BF < 1.1)	4' 10L T5HO	PRS Elec.	10	50	545	15.5
$\begin{aligned} & \text { F412GPRL } \\ & / 3-\mathrm{H} \end{aligned}$	$\begin{aligned} & \text { F54T5/H } \\ & \text { O-RW } \end{aligned}$	Fluorescent, (12) 45.8" T-5 HO reducedwattage lamps, (3) PRS Electronic Ballasts, HLO (. 95 < BF < 1.1)	4' 12-Lamp T5HO	PRS Elec.	12	50	642	15.5
$\begin{aligned} & \text { F412GPRL } \\ & \text { /6-H } \end{aligned}$	$\begin{aligned} & \text { F54T5/H } \\ & \text { O-RW } \end{aligned}$	Fluorescent, (12) 45.8" T-5 HO reducedwattage lamps, (6) PRS Electronic Ballasts, HLO (. 95 < BF < 1.1)	4' 12-Lamp T5HO	PRS Elec.	12	50	654	15.5
$\begin{aligned} & \text { F51GPHL- } \\ & \text { H } \end{aligned}$	$\begin{aligned} & \text { F8OT5/H } \\ & \text { O } \end{aligned}$	Fluorescent (1) 57.6" (1463mm) T-5 HO lamp; (1) Prog.Start or PRS Ballast, HLO (. $95<B F<1.1$)	5' 1-Lamp T5HO	PRS Elec.	1	80	90	15.5
$\begin{aligned} & \text { F52GPHL/ } \\ & \text { 2-H } \end{aligned}$	$\begin{aligned} & \text { F80T5/H } \\ & \text { O } \end{aligned}$	Fluorescent (2) 57.6" (1463mm) T-5 HO lamps; (1) Prog.Start or PRS Ballast, HLO (. $95<\mathrm{BF}<1.1$)	5' 2-Lamp T5HO	PRS Elec.	2	80	180	15.5
T8 Linear Fluorescent Systems								
F1.51LS	F15T8	Fluorescent, (1) 18" T-8 lamp	1.5' 1-Lamp T8	Mag-STD	1	15	19	15.5
F1.52LS	F15T8	Fluorescent, (2) 18" T-8 lamps	1.5' 2-Lamp T8	Mag-STD	2	15	36	15.5

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
F21GLL	F17T8	Fluorescent (1) 24" T-8 lamp, Prog. Start or PRS Ballast, NLO ($0.85<$ BF < 0.95)	2' 1-Lamp T8	PRS Elec.	1	17	18	15.5
F21ILL	F17T8	Fluorescent, (1) 24", T-8 lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)	2' 1-Lamp T8	Electronic	1	17	18	15.5
F21ILL-R	F17T8	Fluorescent, (1) 24 ", T-8 lamp, Instant Start Ballast, RLO (BF< 0.85)	2' 1-Lamp T8 RLO	Electronic	1	17	17	15.5
F21ILL/T2	F17T8	Fluorescent, (1) 24", T-8 lamp, Tandem 2-lamp IS Ballast, NLO (0.85 < BF < 0.95)	2' 1-Lamp T8	Electronic	1	17	17	15.5
$\begin{aligned} & \text { F21ILL/T2 } \\ & -\mathrm{R} \end{aligned}$	F17T8	Fluorescent, (1) 24", T-8 lamp, Tandem 2-lamp IS Ballast, RLO (BF<0.85)	2' 1-Lamp T8 RLO	Electronic	1	17	15	15.5
F21ILL/T3	F17T8	Fluorescent, (1) 24", T-8 lamp, Tandem 3-lamp IS Ballast, NLO (0.85 < BF < 0.95)	2' 1-Lamp T8	Electronic	1	17	16	15.5
$\begin{aligned} & \hline \text { F21ILL/T3 } \\ & -\mathrm{R} \end{aligned}$	F17T8	Fluorescent, (1) 24", T-8 lamp, Tandem 3-lamp IS Ballast, RLO (BF<0.85)	2' 1-Lamp T8 RLO	Electronic	1	17	14	15.5
F21ILL/T4	F17T8	Fluorescent, (1) 24", T-8 lamp, Tandem 4-lamp IS Ballast, NLO (0.85 < BF < 0.95)	2' 1-Lamp T8	Electronic	1	17	15	15.5
$\begin{aligned} & \text { F21ILL/T4 } \\ & -\mathrm{R} \\ & \hline \end{aligned}$	F17T8	Fluorescent, (1) 24", T-8 lamp, Tandem 4-lamp IS Ballast, RLO (BF<0.85)	2' 1-Lamp T8 RLO	Electronic	1	17	13	15.5
F21ILU	F17T8	Fluorescent, (1) 24", T-8 lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)	2' 1-Lamp T8	Electronic	1	17	17	15.5
F21ILU-R	F17T8	Fluorescent, (1) 24 ", T-8 lamp, Instant Start Ballast, RLO (BF< 0.85)	2' 1-Lamp T8 RLO	Electronic	1	17	15	15.5
F21ILU-V	F17T8	Fluorescent, (1) 24", T-8 lamps, Instant Start Ballast, VHLO (BF > 1.1)	$\begin{aligned} & \text { 2' 1-Lamp T8 } \\ & \text { VHLO } \end{aligned}$	Electronic	1	17	22	15.5
F21LL	F17T8	Fluorescent, (1) 24", T-8 lamp, Rapid Start Ballast, NLO (0.85 < BF < 0.95)	2' 1-Lamp T8	Electronic	1	17	16	15.5
F21LL-R	F17T8	Fluorescent, (1) 24 ", T-8 lamp, Rapid Start Ballast, RLO (BF< 0.85)	2' 1-Lamp T8 RLO	Electronic	1	17	15	15.5
F21LL/T2	F17T8	Fluorescent, (1) 24", T-8 lamp, Tandem 2-Lamp RS Ballast, NLO (0.85 < BF < 0.95)	2' 1-Lamp T8	Electronic	1	17	16	15.5
F21LL/T3	F17T8	Fluorescent, (1) 24", T-8 lamp, Tandem 3-Lamp RS Ballast, NLO (0.85 < BF < 0.95)	2' 1-Lamp T8	Electronic	1	17	17	15.5
F21LL/T4	F17T8	Fluorescent, (1) 24", T-8 lamp, Tandem 4-Lamp RS Ballast, NLO (0.85 < BF < 0.95)	2' 1-Lamp T8	Electronic	1	17	17	15.5
F21SL	F17T8	Fluorescent, (1) 24", T-8 lamp, Standard Ballast	2' 1-Lamp T8	Mag-STD	1	17	24	15.5
F22GLL	F17T8	Fluorescent (2) 24" T-8 lamp, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	2' 2-Lamp T8	PRS Elec.	2	17	31	15.5
F22ILL	F17T8	Fluorescent, (2) 24", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	2' 2-Lamp T8	Electronic	2	17	33	15.5
F22ILL-R	F17T8	Fluorescent, (2) 24", T-8 lamps, Instant Start Ballast, RLO (BF<0.85)	2' 2-Lamp T8 RLO	Electronic	2	17	30	15.5
F22ILL/T4	F17T8	Fluorescent, (2) 24 ", T-8 lamps, Tandem 4-lamp IS Ballast, NLO (0.85 < $\mathrm{BF}<0.95$)	2' 2-Lamp T8	Electronic	2	17	30	15.5
$\begin{aligned} & \text { F22ILL/T4 } \\ & -\mathrm{R} \end{aligned}$	F17T8	Fluorescent, (2) 24", T-8 lamps, Tandem 4-lamp IS Ballast, RLO (BF<.85)	2' 2-Lamp T8 RLO	Electronic	2	17	27	15.5
F22ILU	F17T8	Fluorescent, (2) 24", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	2' 2-Lamp T8	Electronic	2	17	30	15.5
F22ILU-R	F17T8	Fluorescent, (2) 24", T-8 lamps, Instant Start Ballast, RLO (BF<0.85)	2' 2-Lamp T8 RLO	Electronic	2	17	27	15.5
F22ILU-V	F17T8	Fluorescent, (2) 24", T-8 lamps, Instant Start Ballast, VHLO (BF > 1.1)	$\begin{aligned} & \text { 2' 2-Lamp T8 } \\ & \text { VHLO } \end{aligned}$	Electronic	2	17	41	15.5
$\begin{aligned} & \text { F22ILU/T4 } \\ & -R \end{aligned}$	F17T8	Fluorescent, (2) 24", T-8 lamps, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)	2' 2-Lamp T8 RLO	Electronic	2	17	26	15.5

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
F22LL	F17T8	Fluorescent, (2) 24", T-8 lamps, Rapid Start Ballast, NLO (0.85 < BF < 0.95)	2' 2-Lamp T8	Electronic	2	17	31	15.5
F22LL-R	F17T8	Fluorescent, (2) 24 ", T-8 lamps, Rapid Start Ballast, RLO (BF< 0.85)	2' 2-Lamp T8 RLO	Electronic	2	17	28	15.5
F22LL/T4	F17T8	Fluorescent, (2) 24", T-8 lamps, Tandem 4-lamp RS Ballast, NLO (0.85 < BF < 0.95)	2' 2-Lamp T8	Electronic	2	17	34	15.5
F23GLL	F17T8	Fluorescent (3) 24" T-8 lamp, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	2' 3-Lamp T8	PRS Elec.	3	17	47	15.5
F23ILL	F17T8	Fluorescent, (3) 24", T-8 lamps, Instant Start Ballast, NLO ($0.85<B F<0.95)$	2' 3-Lamp T8	Electronic	3	17	47	15.5
F23ILL-H	F17T8	Fluorescent, (3) 24 ", T-8 lamps, Instant Start Ballast, HLO ($0.95<B F<1.1$)	2' 3-Lamp T8 HLO	Electronic	3	17	51	15.5
F23ILL-R	F17T8	Fluorescent, (3) 24 ", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)	2' 3-Lamp T8 RLO	Electronic	3	17	41	15.5
F23ILU	F17T8	Fluorescent, (3) $24^{\prime \prime}$, T-8 lamps, Instant Start Ballast, NLO ($0.85<B F<0.95)$	2' 3-Lamp T8	Electronic	3	17	45	15.5
F23ILU-R	F17T8	Fluorescent, (3) 24 ", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)	2' 3-Lamp T8 RLO	Electronic	3	17	40	15.5
F23ILU-V	F17T8	Fluorescent, (3) 24", T-8 lamps, Instant Start Ballast, VHLO (BF > 1.1)	$\begin{aligned} & \text { 2' 3-Lamp T8 } \\ & \text { VHLO } \\ & \hline \end{aligned}$	Electronic	3	17	59	15.5
F23LL	F17T8	Fluorescent, (3) 24", T-8 lamps, Rapid Start Ballast, NLO ($0.85<B F<0.95$)	2' 3-Lamp T8	Electronic	3	17	52	15.5
F23LL-R	F17T8	Fluorescent, (3) $24^{\prime \prime}$, T-8 lamps, Rapid Start Ballast, RLO (BF< 0.85)	2' 3-Lamp T8 RLO	Electronic	3	17	41	15.5
F24GLL	F17T8	Fluorescent (4) 24" T-8 lamp, Prog. Start or PRS Ballast, NLO $(0.85<B F<$ 0.95)	2' 4-Lamp T8	PRS Elec.	4	17	59	15.5
F24ILL	F17T8	Fluorescent, (4) 24", T-8 lamps, Instant Start Ballast, NLO ($0.85<B F<0.95)$	2' 4-Lamp T8	Electronic	4	17	59	15.5
F24ILL-R	F17T8	Fluorescent, (4) 24", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)	2' 4-Lamp T8 RLO	Electronic	4	17	53	15.5
F24ILU	F17T8	Fluorescent, (4) 24", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	2' 4-Lamp T8	Electronic	4	17	57	15.5
F24ILU-R	F17T8	Fluorescent, (4) 24 ", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)	2' 4-Lamp T8 RLO	Electronic	4	17	52	15.5
F24LL	F17T8	Fluorescent, (4) 24", T-8 lamps, Rapid Start Ballast, NLO (0.85 < BF < 0.95)	2' 4-Lamp T8	Electronic	4	17	68	15.5
F24LL-R	F17T8	Fluorescent, (4) 24", T-8 lamps, Rapid Start Ballast, RLO (BF< 0.85)	2' 4-Lamp T8 RLO	Electronic	4	17	57	15.5
F31ILL	F25T8	Fluorescent, (1) 36", T-8 lamp, Instant Start Ballast, NLO ($0.85<B F<0.95$)	3' 1-Lamp T8	Electronic	1	25	26	15.5
F31ILL-H	F25T8	Fluorescent, (1) 36", T-8 lamp, Instant Start Ballast, HLO (0.95 < BF < 1.1)	$\begin{aligned} & \text { 3' 1-Lamp T8 } \\ & \text { HLO } \end{aligned}$	Electronic	1	25	28	15.5
F31ILL-R	F25T8	Fluorescent, (1) 36", T-8 lamp, Instant Start Ballast, RLO (BF< 0.85)	3' 1-Lamp T8 RLO	Electronic	1	25	22	15.5
F311LL/T2	F25T8	Fluorescent, (1) 36", T-8 lamp, Tandem 2-lamp IS Ballast, NLO ($0.85<\mathrm{BF}<$ 0.95)	3' 1-Lamp T8	Electronic	1	25	23	15.5
$\begin{aligned} & \text { F31ILL/T2 } \\ & -H \end{aligned}$	F25T8	Fluorescent, (1) 36", T-8 lamp, Tandem 3-lamp IS Ballast, 1 lead capped, HLO $(0.95<B F<1.1)$	3' 1-Lamp T8	Electronic	1	25	26	15.5
$\begin{aligned} & \text { F31ILL/T2 } \\ & -\mathrm{R} \end{aligned}$	F25T8	Fluorescent, (1) $36^{\prime \prime}$, T-8 lamp, Tandem 2-lamp IS Ballast, RLO (BF<0.85)	3' 1-Lamp T8 RLO	Electronic	1	25	21	15.5
F311LL/T3	F25T8	Fluorescent, (1) 36", T-8 lamp, Tandem 3-lamp IS Ballast, NLO (0.85 < BF < 0.95)	3' 1-Lamp T8	Electronic	1	25	23	15.5
$\begin{aligned} & \text { F31ILL/T3 } \\ & -R \end{aligned}$	F25T8	Fluorescent, (1) 36", T-8 lamp, Tandem 3-lamp IS Ballast, RLO (BF<0.85)	3' 1-Lamp T8 RLO	Electronic	1	25	20	15.5
F31ILL/T4	F25T8	Fluorescent, (1) 36 ", T-8 lamp, Tandem 4-lamp IS Ballast, NLO (0.85 < BF < 0.95)	3' 1-Lamp T8	Electronic	1	25	22	15.5

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
$\begin{aligned} & \text { F31ILL/T4 } \\ & -\mathrm{R} \end{aligned}$	F25T8	Fluorescent, (1) 36", T-8 lamp, Tandem 4-lamp IS Ballast, RLO ($\mathrm{BF}<0.85$)	3' 1-Lamp T8 RLO	Electronic	1	25	20	15.5
F31ILU	F25T8	Fluorescent, (1) 36 ", T-8 lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)	3' 1-Lamp T8	Electronic	1	25	23	15.5
F31ILU-R	F25T8	Fluorescent, (1) 36 ", T-8 lamp, Instant Start Ballast, RLO (BF< 0.85)	3' 1-Lamp T8 RLO	Electronic	1	25	20	15.5
F311LU/T2	F25T8	Fluorescent, (1) 36", T-8 lamp, Tandem 2-lamp IS Ballast, NLO (0.85 < BF < 0.95)	3' 1-Lamp T8	Electronic	1	25	22	15.5
$\begin{aligned} & \text { F31ILU/T2 } \\ & -R \end{aligned}$	F25T8	Fluorescent, (1) 36", T-8 lamp, Tandem 2-lamp IS Ballast, RLO ($\mathrm{BF}<0.85$)	3' 1-Lamp T8 RLO	Electronic	1	25	20	15.5
$\begin{aligned} & \text { F31ILU/T3 } \\ & -R \end{aligned}$	F25T8	Fluorescent, (1) 36", T-8 lamp, Tandem 3-lamp IS Ballast, RLO (BF< 0.85)	3' 1-Lamp T8 RLO	Electronic	1	25	19	15.5
$\begin{aligned} & \text { F31ILU/T4 } \\ & \text {-R } \end{aligned}$	F25T8	Fluorescent, (1) 36", T-8 lamp, Tandem 4-lamp IS Ballast, RLO ($\mathrm{BF}<0.85$)	3' 1-Lamp T8 RLO	Electronic	1	25	19	15.5
F31LL	F25T8	Fluorescent, (1) 36 ", T-8 lamp, Rapid Start Ballast, NLO (0.85 < BF < 0.95)	3' 1-Lamp T8	Electronic	1	25	24	15.5
F31LL-H	F25T8	Fluorescent, (1) $36^{\prime \prime}$, T-8 lamp, Rapid Start Ballast, HLO (0.95 < BF < 1.1)	```3' 1-Lamp T8 HLO```	Electronic	1	25	26	15.5
F31LL-R	F25T8	Fluorescent, (1) 36", T-8 lamp, Rapid Start Ballast, RLO (BF< 0.85)	3' 1-Lamp T8 RLO	Electronic	1	25	23	15.5
F31LL/T2	F25T8	Fluorescent, (1) 36", T-8 lamp, Tandem 2-lamp RS Ballast, NLO (0.85 < BF < 0.95)	3' 1-Lamp T8	Electronic	1	25	23	15.5
F31LL/T3	F25T8	Fluorescent, (1) 36", T-8 lamp, Tandem 3-lamp RS Ballast, NLO (0.85 < BF < 0.95)	3' 1-Lamp T8	Electronic	1	25	24	15.5
F31LL/T4	F25T8	Fluorescent, (1) 36", T-8 lamp, Tandem 4-lamp RS Ballast, NLO (0.85 < BF < 0.95)	3' 1-Lamp T8	Electronic	1	25	22	15.5
F32ILL	F25T8	Fluorescent, (2) 36", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	3' 2-Lamp T8	Electronic	2	25	46	15.5
F32ILL-H	F25T8	Fluorescent, (2) 36", T-8 lamps, Instant Start Ballast, HLO (0.95 < BF < 1.1)	$\begin{aligned} & \text { 3' 2-Lamp T8 } \\ & \text { HLO } \end{aligned}$	Electronic	2	25	52	15.5
F32ILL-R	F25T8	Fluorescent, (2) 36", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)	3' 2-Lamp T8 RLO	Electronic	2	25	42	15.5
$\begin{aligned} & \text { F32ILL/2- } \\ & \text { R } \end{aligned}$	F25T8	Fluorescent, (2) 36 ", T-8 lamps, (2) Instant Start Ballasts, RLO (BF<0.85)	3' 2-Lamp T8 RLO	Electronic	2	25	44	15.5
F321LL/T4	F25T8	Fluorescent, (2) 36 F , T-8 lamps, Tandem 4-lamp IS Ballast, NLO (0.85 < BF < 0.95)	3' 2-Lamp T8	Electronic	2	25	44	15.5
$\begin{aligned} & \text { F32ILL/T4 } \\ & -\mathrm{R} \end{aligned}$	F25T8	Fluorescent, (2) 36", T-8 lamps, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)	3' 2-Lamp T8 RLO	Electronic	2	25	39	15.5
F32ILU	F25T8	Fluorescent, (2) 36", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	3' 2-Lamp T8	Electronic	2	25	44	15.5
F32ILU-R	F25T8	Fluorescent, (2) 36", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)	3' 2-Lamp T8 RLO	Electronic	2	25	39	15.5
$\begin{aligned} & \text { F32ILU/T4 } \\ & -R \end{aligned}$	F25T8	Fluorescent, (2) 36 ", T-8 lamps, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)	3' 2-Lamp T8 RLO	Electronic	2	25	39	15.5
F32LL	F25T8	Fluorescent, (2) 36", T-8 lamps, Rapid Start Ballast, NLO (0.85 < BF < 0.95)	3' 2-Lamp T8	Electronic	2	25	46	15.5
F32LL-H	F25T8	Fluorescent, (2) $36^{\prime \prime}$, T-8 lamps, Rapid Start Ballast, HLO (0.95 < BF < 1.1)	$\begin{aligned} & \text { 3' 2-Lamp T8 } \\ & \text { HLO } \end{aligned}$	Electronic	2	25	50	15.5
F32LL-R	F25T8	Fluorescent, (2) 36", T-8 lamps, Rapid Start Ballast, RLO (BF< 0.85)	3' 2-Lamp T8 RLO	Electronic	2	25	42	15.5
F32LL-V	F25T8	Fluorescent, (2) 36", T-8 lamps, Rapid Start Ballast, VHLO (BF > 1.1)	$\begin{aligned} & \text { 3' 2-Lamp T8 } \\ & \text { VHLO } \end{aligned}$	Electronic	2	25	70	15.5
F32LL/T4	F25T8	Fluorescent, (2) 36", T-8 lamps, Tandem 4-lamp RS Ballast, NLO (0.85 < $\mathrm{BF}<0.95$)	3' 2-Lamp T8	Electronic	2	25	45	15.5
F33ILL	F25T8	Fluorescent, (3) 36", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	3' 3-Lamp T8	Electronic	3	25	68	15.5

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
F33ILL-R	F25T8	Fluorescent, (3) 36", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)	3' 3-Lamp T8 RLO	Electronic	3	25	61	15.5
F33ILU	F25T8	Fluorescent, (3) 36 ", T-8 lamps, Instant Start Ballast, NLO ($0.85<\mathrm{BF}<0.95$)	3' 3-Lamp T8	Electronic	3	25	65	15.5
F33ILU-R	F25T8	Fluorescent, (3) $36^{\prime \prime}$, T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)	3' 3-Lamp T8 RLO	Electronic	3	25	58	15.5
F33LL	F25T8	Fluorescent, (3) $36^{\prime \prime}$, T-8 lamps, Rapid Start Ballast, NLO ($0.85<\mathrm{BF}<0.95$)	3' 3-Lamp T8	Electronic	3	25	72	15.5
F33LL-R	F25T8	Fluorescent, (3) $36^{\prime \prime}$, T-8 lamps, Rapid Start Ballast, RLO (BF<0.85)	3' 3-Lamp T8 RLO	Electronic	3	25	62	15.5
F34ILL	F25T8	Fluorescent, (4) 36", T-8 lamps, Instant Start Ballast, NLO ($0.85<\mathrm{BF}<0.95$)	3' 4-Lamp T8	Electronic	4	25	88	15.5
F34ILL-R	F25T8	Fluorescent, (4) 36", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)	3' 4-Lamp T8 RLO	Electronic	4	25	78	15.5
$\begin{aligned} & \text { F34ILL/2- } \\ & \text { R } \\ & \hline \end{aligned}$	F25T8	Fluorescent, (4) 36", T-8 lamps, (2) Instant Start Ballasts, RLO (BF< 0.85)	3' 4-Lamp T8 RLO	Electronic	4	25	84	15.5
F34ILU	F25T8	Fluorescent, (4) 36", T-8 lamps, Instant Start Ballast, NLO ($0.85<B F<0.95)$	3' 4-Lamp T8	Electronic	4	25	86	15.5
F34ILU-R	F25T8	Fluorescent, (4) 36", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)	3' 4-Lamp T8 RLO	Electronic	4	25	77	15.5
F34LL	F25T8	Fluorescent, (4) 36", T-8 lamps, Rapid Start Ballast, NLO ($0.85<B F<0.95$)	3' 4-Lamp T8	Electronic	4	25	89	15.5
F34LL-R	F25T8	Fluorescent, (4) $36^{\prime \prime}$, T-8 lamps, Rapid Start Ballast, RLO (BF< 0.85)	3' 4-Lamp T8 RLO	Electronic	4	25	84	15.5
F36ILL/2	F25T8	Fluorescent, (6) 36 ", T-8 lamps, (2) Instant Start Ballasts, NLO (0.85 < BF < 0.95)	3' 6-Lamp T8	Electronic	6	25	135	15.5
$\begin{aligned} & \text { F36ILL/2- } \\ & \text { R } \end{aligned}$	F25T8	Fluorescent, (6) 36 ", T-8 lamps, (2) Instant Start Ballasts, RLO (BF< 0.85)	3' 6-Lamp T8 RLO	Electronic	6	25	121	15.5
$\begin{aligned} & \text { F42GRLL- } \\ & \mathrm{V} \end{aligned}$	F28T8	Fluorescent, (2) 48", T-8 lamps, Prog. Start or PRS Ballast, VHLO (BF > 1.1)	4' 2-Lamp T8 28W VLHO	PRS Elec.	2	28	66	15.5
$\begin{aligned} & \text { F43GRLL- } \\ & \mathrm{V} \end{aligned}$	F28T8	Fluorescent, (3) 48", T-8 lamps, Prog. Start or PRS Ballast, VHLO (BF > 1.1)	4' 3-Lamp T8 28W VLHO	PRS Elec.	3	28	92	15.5
F41GLL	F32T8	Fluorescent (1) 48" T-8 lamp, Prog. Start or PRS Ballast, NLO $(0.85<B F<$ 0.95)	4' 1-Lamp T8	PRS Elec.	1	32	30	15.5
F41GLL-R	F32T8	Fluorescent (1) 48" T-8 lamp, Prog. Start or PRS Ballast, RLO (BF< 0.85)	4' 1-Lamp T8 RLO	PRS Elec.	1	32	25	15.5
F41ILL	F32T8	Fluorescent, (1) 48", T-8 lamp, Instant Start Ballast, NLO ($0.85<\mathrm{BF}<0.95$)	4' 1-Lamp T8	Electronic	1	32	31	15.5
F41ILL-H	F32T8	Fluorescent, (1) 48", T-8 lamp, Instant Start Ballast, HLO ($0.95<B F<1.1$)	```4' 1-Lamp T8 HLO```	Electronic	1	32	36	15.5
F41ILL-R	F32T8	Fluorescent, (1) 48", T-8 lamp, Instant Start Ballast, RLO (BF< 0.85)	4' 1-Lamp T8 RLO	Electronic	1	32	27	15.5
F411LL/T2	F32T8	Fluorescent, (1) 48", T-8 lamp, Tandem 2-lamp IS Ballast, NLO (0.85 < BF < 0.95)	4' 1-Lamp T8	Electronic	1	32	29	15.5
$\begin{aligned} & \text { F41ILL/T2 } \\ & \text {-H } \end{aligned}$	F32T8	Fluorescent, (1) 48", T-8 lamp, Tandem 3-lamp IS Ballast, 1 lead capped, HLO ($0.95<B F<1.1$)	4' 1-Lamp T8 HLO	Electronic	1	32	33	15.5
$\begin{aligned} & \text { F41ILL/T2 } \\ & -R \end{aligned}$	F32T8	Fluorescent, (1) 48", T-8 lamp, Tandem 2-lamp IS Ballast, RLO (BF<0.85)	4' 1-Lamp T8 RLO	Electronic	1	32	26	15.5
F41ILL/T3	F32T8	Fluorescent, (1) 48", T-8 lamp, Tandem 3-lamp IS Ballast, NLO (0.85 < BF < 0.95)	4' 1-Lamp T8	Electronic	1	32	28	15.5
$\begin{aligned} & \text { F41ILL/T3 } \\ & \text {-H } \end{aligned}$	F32T8	Fluorescent, (1) 48", T-8 lamp, Tandem 4-lamp IS Ballast, 1 lead capped, HLO $(0.95<\mathrm{BF}<1.1)$	$\begin{aligned} & \text { 4' 1-Lamp T8 } \\ & \text { HLO } \end{aligned}$	Electronic	1	32	31	15.5
$\begin{aligned} & \text { F41ILL/T3 } \\ & -R \end{aligned}$	F32T8	Fluorescent, (1) 48", T-8 lamp, Tandem 3-lamp IS Ballast, RLO (BF< 0.85)	4' 1-Lamp T8 RLO	Electronic	1	32	25	15.5
F41ILL/T4	F32T8	Fluorescent, (1) 48", T-8 lamp, Tandem 4-lamp IS Ballast, NLO (0.85 < BF < 0.95)	4' 1-Lamp T8	Electronic	1	32	28	15.5

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
$\begin{aligned} & \text { F41ILL/T4 } \\ & -\mathrm{R} \end{aligned}$	F32T8	Fluorescent, (1) 48", T-8 lamp, Tandem 4-lamp IS Ballast, RLO (BF < 0.85)	4' 1-Lamp T8 RLO	Electronic	1	32	25	15.5
F41ILU	F32T8	Fluorescent, (1) 48", T-8 lamp, Instant Start Ballast, NLO ($0.85<B F<0.95$)	4' 1-Lamp T8	Electronic	1	32	28	15.5
F41ILU-H	F32T8	Fluorescent, (1) 48", T-8 lamp, Instant Start Ballast, HLO (0.95 < BF < 1.1)	$\begin{aligned} & \text { 4' 1-Lamp T8 } \\ & \text { HLO } \end{aligned}$	Electronic	1	32	35	15.5
F41ILU-R	F32T8	Fluorescent, (1) 48", T-8 lamp, Instant Start Ballast, RLO (BF< 0.85)	4' 1-Lamp T8 RLO	Electronic	1	32	25	15.5
F41ILU/T2	F32T8	Fluorescent, (1) 48", T-8 lamp, Tandem 2-lamp IS Ballast, NLO ($0.85<$ BF < 0.95)	4' 1-Lamp T8	Electronic	1	32	27	15.5
$\begin{aligned} & \text { F41ILU/T2 } \\ & -R \end{aligned}$	F32T8	Fluorescent, (1) 48", T-8 lamp, Tandem 2-lamp IS Ballast, RLO (BF<0.85)	4' 1-Lamp T8 RLO	Electronic	1	32	24	15.5
F41ILU/T3	F32T8	Fluorescent, (1) 48", T-8 lamp, Tandem 3-lamp IS Ballast, NLO (0.85 < BF < 0.95)	4' 1-Lamp T8	Electronic	1	32	27	15.5
$\begin{aligned} & \text { F41ILU/T3 } \\ & -R \end{aligned}$	F32T8	Fluorescent, (1) 48", T-8 lamp, Tandem 3-lamp IS Ballast, RLO (BF<0.85)	4' 1-Lamp T8 RLO	Electronic	1	32	24	15.5
F41ILU/T4	F32T8	Fluorescent, (1) 48", T-8 lamp, Tandem 4-lamp IS Ballast, NLO (0.85 < BF < 0.95)	4' 1-Lamp T8	Electronic	1	32	27	15.5
$\begin{aligned} & \text { F41ILU/T4 } \\ & -R \end{aligned}$	F32T8	Fluorescent, (1) 48", T-8 lamp, Tandem 4-lamp IS Ballast, RLO (BF<0.85)	4' 1-Lamp T8 RLO	Electronic	1	32	24	15.5
F41LE	F32T8	Fluorescent, (1) 48", T-8 lamp	4' 1-Lamp T8	Mag-ES	1	32	35	15.5
F41LL	F32T8	Fluorescent, (1) 48", T-8 lamp, Rapid Start Ballast, NLO (0.85 < BF < 0.95)	4' 1-Lamp T8	Electronic	1	32	32	15.5
F41LL-H	F32T8	Fluorescent, (1) 48", T-8 lamp, Rapid Start Ballast, HLO ($0.95<B F<1.1$)	$\begin{aligned} & \text { 4' 1-Lamp T8 } \\ & \text { HLO } \end{aligned}$	Electronic	1	32	39	15.5
F41LL-R	F32T8	Fluorescent, (1) 48", T-8 lamp, Rapid Start Ballast, RLO (BF< 0.85)	4' 1-Lamp T8 RLO	Electronic	1	32	27	15.5
F41LL/T2	F32T8	Fluorescent, (1) 48", T-8 lamp, Tandem 2-lamp RS Ballast, NLO (0.85 < BF < 0.95)	4' 1-Lamp T8	Electronic	1	32	30	15.5
$\begin{aligned} & \text { F41LL/T2- } \\ & \text { H } \end{aligned}$	F32T8	Fluorescent, (1) 48", T-8 lamp, Tandem 3-lamp RS Ballast, 1 lead capped, HLO $(0.95<B F<1.1)$	4' 1-Lamp T8 HLO	Electronic	1	32	35	15.5
$\begin{aligned} & \text { F41LL/T2- } \\ & \text { R } \end{aligned}$	F32T8	Fluorescent, (1) 48", T-8 lamp, Tandem 2-lamp RS Ballast, RLO ($\mathrm{BF}<0.85$)	4' 1-Lamp T8 RLO	Electronic	1	32	27	15.5
F41LL/T3	F32T8	Fluorescent, (1) 48", T-8 lamp, Tandem 3-lamp RS Ballast, NLO (0.85 < BF < 0.95)	4' 1-Lamp T8	Electronic	1	32	31	15.5
$\begin{aligned} & \text { F41LL/T3- } \\ & \text { H } \end{aligned}$	F32T8	Fluorescent, (1) 48", T-8 lamp, Tandem 4-lamp RS Ballast, 1 lead capped, HLO ($0.95<\mathrm{BF}<1.1$)	4' 1-Lamp T8 HLO	Electronic	1	32	33	15.5
$\begin{aligned} & \text { F41LL/T3- } \\ & \text { R } \end{aligned}$	F32T8	Fluorescent, (1) 48", T-8 lamp, Tandem 3-lamp RS Ballast, RLO ($\mathrm{BF}<0.85$)	4' 1-Lamp T8 RLO	Electronic	1	32	25	15.5
F41LL/T4	F32T8	Fluorescent, (1) 48", T-8 lamp, Tandem 4-lamp RS Ballast, NLO (0.85 < BF < 0.95)	4' 1-Lamp T8	Electronic	1	32	30	15.5
F41LL/T4- R	F32T8	Fluorescent, (1) 48", T-8 lamp, Tandem 4-lamp RS Ballast, RLO ($\mathrm{BF}<0.85$)	4' 1-Lamp T8 RLO	Electronic	1	32	26	15.5
F42GLL	F32T8	Fluorescent (2) 48" T-8 lamps, Prog. Start or PRS Ballast, NLO ($0.85<B F<$ 0.95)	4' 2-Lamp T8	PRS Elec.	2	32	59	15.5
F42GLL-R	F32T8	Fluorescent (2) 48" T-8 lamps, Prog. Start or PRS Ballast, RLO (BF < 0.85)	4' 2-Lamp T8 RLO	PRS Elec.	2	32	47	15.5
F42GLL-V	F32T8	Fluorescent, (2) 48" T-8 lamps, Prog. Start or PRS Ballast, VHLO (BF > 1.1)	$\begin{aligned} & \text { 4' 2-Lamp T8 } \\ & \text { VHLO } \end{aligned}$	PRS Elec.	2	32	74	15.5
F42ILL	F32T8	Fluorescent, (2) 48", T-8 lamps, Instant Start Ballast, NLO ($0.85<B F<0.95$)	4' 2-Lamp T8	Electronic	2	32	58	15.5
F42ILL-H	F32T8	Fluorescent, (2) 48", T-8 lamp, Instant Start Ballast, HLO ($0.95<B F<1.1$)	$\begin{aligned} & \text { 4' 2-Lamp T8 } \\ & \text { HLO } \end{aligned}$	Electronic	2	32	66	15.5
F42ILL-R	F32T8	Fluorescent, (2) 48", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)	4' 2-Lamp T8 RLO	Electronic	2	32	51	15.5

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
F42ILL-V	F32T8	Fluorescent, (2) 48", T-8 lamps, Instant Start Ballast, VHLO (BF > 1.1)	$\begin{aligned} & \text { 4' 2-Lamp T8 } \\ & \text { VHLO } \\ & \hline \end{aligned}$	Electronic	2	32	77	15.5
F42ILL/2	F32T8	Fluorescent, (2) 48", T-8 lamps, (2) 1lamp Instant Start Ballast, NLO (0.85 < BF < 0.95)	4' 2-Lamp T8	Electronic	2	32	62	15.5
$\begin{aligned} & \text { F42ILL/2- } \\ & \text { R } \end{aligned}$	F32T8	Fluorescent, (2) 48" T-8 lamps, (2) 1lamp Instant Start Ballasts, RLO (BF< 0.85)	4' 2-Lamp T8 RLO	Electronic	2	32	54	15.5
F42ILL/T4	F32T8	Fluorescent, (2) 48", T-8 lamps, Tandem 4-lamp IS Ballast, NLO (0.85 < BF < 0.95)	4' 2-Lamp T8	Electronic	2	32	56	15.5
$\begin{aligned} & \text { F42ILL/T4 } \\ & -\mathrm{R} \end{aligned}$	F32T8	Fluorescent, (2) 48", T-8 lamps, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)	4' 2-Lamp T8 RLO	Electronic	2	32	49	15.5
F42ILU	F32T8	Fluorescent, (2) 48", T-8 lamps, Instant Start Ballast, NLO ($0.85<B F<0.95$)	4' 2-Lamp T8	Electronic	2	32	54	15.5
F42ILU-H	F32T8	Fluorescent, (2) 48", T-8 lamp, Instant Start Ballast, HLO (0.95 < BF < 1.1)	$\begin{aligned} & \text { 4' 2-Lamp T8 } \\ & \text { HLO } \end{aligned}$	Electronic	2	32	64	15.5
F42ILU-R	F32T8	Fluorescent, (2) 48", T-8 lamps, Instant Start, RLO (BF < 0.85)	4' 2-Lamp T8 RLO	Electronic	2	32	48	15.5
F42ILU-V	F32T8	Fluorescent, (2) 48", T-8 lamps, Instant Start, VHLO (BF> 1.1)	$\begin{aligned} & \text { 4' 2-Lamp T8 } \\ & \text { VHLO } \end{aligned}$	Electronic	2	32	73	15.5
F42ILU/T4	F32T8	Fluorescent, (2) 48", T-8 lamps, Tandem 4-lamp IS Ballast, NLO (0.85 < BF < 0.95)	4' 2-Lamp T8	Electronic	2	32	54	15.5
$\begin{aligned} & \text { F42ILU/T4 } \\ & -R \end{aligned}$	F32T8	Fluorescent, (2) 48", T-8 lamps, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)	4' 2-Lamp T8 RLO	Electronic	2	32	48	15.5
F42LE	F32T8	Fluorescent, (2) 48", T-8 lamp	4' 2-Lamp T8	Mag-ES	2	32	71	15.5
F42LL	F32T8	Fluorescent, (2) 48", T-8 lamps, Rapid Start Ballast, NLO (0.85 < BF < 0.95)	4' 2-Lamp T8	Electronic	2	32	60	15.5
F42LL-H	F32T8	Fluorescent, (2) 48", T-8 lamp, Rapid Start Ballast, HLO (0.95 < BF < 1.1)	$\begin{aligned} & \text { 4' 2-Lamp T8 } \\ & \text { HLO } \end{aligned}$	Electronic	2	32	70	15.5
F42LL-R	F32T8	Fluorescent, (2) 48", T-8 lamp, Rapid Start Ballast, RLO (BF< 0.85)	4' 2-Lamp T8 RLO	Electronic	2	32	54	15.5
F42LL-V	F32T8	Fluorescent, (2) 48", T-8 lamp, Rapid Start Ballast, VHLO (BF > 1.1)	4' 2-Lamp T8 HLO	Electronic	2	32	85	15.5
F42LL/2	F32T8	Fluorescent, (2) 48", T-8 lamps, (2) 1lamp Rapid Start Ballasts, NLO (0.85 < BF < 0.95)	4' 2-Lamp T8	Electronic	2	32	64	15.5
F42LL/T4	F32T8	Fluorescent, (2) 48", T-8 lamps, Tandem 4-lamp RS Ballast, NLO (0.85 < BF < 0.95)	4' 2-Lamp T8	Electronic	2	32	59	15.5
$\begin{aligned} & \text { F42LL/T4- } \\ & \text { R } \end{aligned}$	F32T8	Fluorescent, (2) 48", T-8 lamp, Tandem 4-lamp RS Ballast, RLO ($\mathrm{BF}<0.85$)	4' 2-Lamp T8 RLO	Electronic	2	32	53	15.5
F43GLL	F32T8	Fluorescent (3) 48" T-8 lamps, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	4' 3-Lamp T8	PRS Elec.	3	32	88	15.5
F43GLL-R	F32T8	Fluorescent (3) 48" T-8 lamps, Prog. Start or PRS Ballast, RLO (BF < 0.85)	4' 3-Lamp T8 RLO	PRS Elec.	3	32	72	15.5
F43GLL-V	F32T8	Fluorescent, (3) 48" T-8 lamps, Prog. Start or PRS Ballast, VHLO (BF > 1.1)	$\begin{aligned} & \text { 4' 3-Lamp T8 } \\ & \text { VHLO } \end{aligned}$	Electronic	3	32	108	15.5
F43ILL	F32T8	Fluorescent, (3) 48" T-8 lamps, Instant Start Ballast, NLO ($0.85<B F<0.95$)	4' 3-Lamp T8	Electronic	3	32	85	15.5
F43ILL-H	F32T8	Fluorescent, (3) 48" T-8 lamps, Instant Start Ballast, HLO ($0.95<B F<1.1$)	$\begin{aligned} & \text { 4' 3-Lamp T8 } \\ & \text { HLO } \\ & \hline \end{aligned}$	Electronic	3	32	93	15.5
F43ILL-R	F32T8	Fluorescent, (3) 48" T-8 lamps, Instant Start Ballast, RLO (BF < 0.85)	4' 3-Lamp T8 RLO	Electronic	3	32	76	15.5
F43ILL-V	F32T8	Fluorescent, (3) 48" T-8 lamps, Instant Start Ballast, VHLO (BF > 1.1)	$\begin{aligned} & \text { 4' 3-Lamp T8 } \\ & \text { VHLO } \end{aligned}$	Electronic	3	32	112	15.5
F43ILL/2	F32T8	Fluorescent, (3) 48" T-8 lamps, (2) Instant Start Ballasts, NLO ($0.85<B F<$ 0.95)	4' 3-Lamp T8	Electronic	3	32	89	15.5

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
$\begin{aligned} & \text { F43ILL/2- } \\ & \text { H } \end{aligned}$	F32T8	Fluorescent (3) 48" T-8 lamps, (1) 2lamp and (1) 3-lamp IS Ballast, 1 lead capped, HLO (0.95 < BF < 1.1)	4' 3-Lamp T8 HLO	Electronic	3	32	102	15.5
$\begin{aligned} & \text { F43ILL/2- } \\ & \text { R } \end{aligned}$	F32T8	Fluorescent, (3) 48" T-8 lamps, (1) 1lamp and (1) 2-lamp IS Ballast, RLO (BF <0.85)	4' 3-Lamp T8 RLO	Electronic	3	32	78	15.5
F43ILU	F32T8	Fluorescent, (3) 48" T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	4' 3-Lamp T8	Electronic	3	32	81	15.5
F43ILU-H	F32T8	Fluorescent, (3) 48", T-8 lamp, Instant Start Ballast, HLO ($0.95<B F<1.1$)	$\begin{aligned} & \text { 4' 3-Lamp T8 } \\ & \text { HLO } \end{aligned}$	Electronic	3	32	92	15.5
F43ILU-R	F32T8	Fluorescent, (3) 48" T-8 lamps, Instant Start Ballast, RLO (BF < 0.85)	4' 3-Lamp T8 RLO	Electronic	3	32	72	15.5
F43ILU-V	F32T8	Fluorescent, (3) 48" T-8 lamps, Instant Start Ballast, VHLO (BF > 1.1)	$\begin{aligned} & \text { 4' 3-Lamp T8 } \\ & \text { VHLO } \end{aligned}$	Electronic	3	32	108	15.5
F43LE	F32T8	Fluorescent, (3) 48", T-8 lamp	4' 3-Lamp T8	Mag-ES	3	32	110	15.5
F43LL	F32T8	Fluorescent, (3) 48", T-8 lamps, Rapid Start Ballast, NLO ($0.85<B F<0.95$)	4' 3-Lamp T8	Electronic	3	32	93	15.5
F43LL-H	F32T8	Fluorescent, (3) 48", T-8 lamp, Rapid Start Ballast, HLO (. 95 < BF < 1.1)	4' 3-Lamp T8 HLO	Electronic	3	32	98	15.5
F43LL-R	F32T8	Fluorescent, (3) 48", T-8 lamp, Rapid Start Ballast, RLO (BF < 0.85)	4' 3-Lamp T8 RLO	Electronic	3	32	76	15.5
F43LL/2	F32T8	Fluorescent, (3) 48", T-8 lamps, (1) 1lamp and (1) 2-lamp RS Ballast, NLO (0.85 < BF < 0.95)	4' 3-Lamp T8	Electronic	3	32	92	15.5
F44GLL	F32T8	Fluorescent (4) 48" T-8 lamps, Prog. Start or PRS Ballast, NLO ($0.85<$ BF < 0.95)	4' 4-Lamp T8	PRS Elec.	4	32	115	15.5
F44GLL-R	F32T8	Fluorescent (4) 48" T-8 lamps, Prog. Start or PRS Ballast, RLO (BF < 0.85)	4' 4-Lamp T8 RLO	PRS Elec.	4	32	92	15.5
F44GLL-V	F32T8	Fluorescent, (4) 48" T-8 lamps, Prog. Start or PRS Ballast, VHLO (BF > 1.1)	4' 4-Lamp T8 VHLO	PRS Elec.	4	32	144	15.5
F44ILL	F32T8	Fluorescent, (4) 48", T-8 lamps, Instant Start Ballast, NLO ($0.85<B F<0.95$)	4' 4-Lamp T8	Electronic	4	32	112	15.5
F44ILL-R	F32T8	Fluorescent, (4) 48", T-8 lamps, Instant Start Ballast, RLO (BF < 0.85)	4' 4-Lamp T8 RLO	Electronic	4	32	98	15.5
F44ILL-V	F32T8	Fluorescent, (4) 48", T-8 lamps, Instant Start Ballast, VHLO (BF > 1.1)	$\begin{aligned} & \text { 4' 4-Lamp T8 } \\ & \text { VHLO } \end{aligned}$	Electronic	4	32	151	15.5
F44ILL/2	F32T8	Fluorescent, (4) 48", T-8 lamps, (2) 2lamp IS Ballasts, NLO (0.85 < BF < 0.95)	4' 4-Lamp T8	Electronic	4	32	116	15.5
$\begin{aligned} & \text { F44ILL/2- } \\ & \text { H } \end{aligned}$	F32T8	Fluorescent, (4) 48", T-8 lamps, (2) 3lamp IS Ballasts, 1 lead capped, HLO (. $95<B F<1.1$)	4' 4-Lamp T8 HLO HLO	Electronic	4	32	132	15.5
$\begin{aligned} & \text { F44ILL/2- } \\ & \text { R } \end{aligned}$	F32T8	Fluorescent, (4) 48", T-8 lamps, (2) 2lamp IS Ballasts, RLO (BF < 0.85)	4' 4-Lamp T8 RLO	Electronic	4	32	102	15.5
$\begin{aligned} & \text { F44ILL/2- } \\ & \mathrm{V} \end{aligned}$	F32T8	Fluorescent, (4) 48", T-8 lamps, (2) 2lamp IS Ballasts, VHLO (BF > 1.1)	$\begin{aligned} & \text { 4' 4-Lamp T8 } \\ & \text { VHLO } \end{aligned}$	Electronic	4	32	154	15.5
F44ILU	F32T8	Fluorescent, (4) 48", T-8 lamps, Instant Start Ballast, NLO ($0.85<B F<0.95$)	4' 4-Lamp T8	Electronic	4	32	107	15.5
F44ILU-H	F32T8	Fluorescent, (4) 48", T-8 lamp, Instant Start Ballast, HLO ($0.95<B F<1.1$)	$\begin{aligned} & \text { 4' 4-Lamp T8 } \\ & \text { HLO } \end{aligned}$	Electronic	4	32	121	15.5
F44ILU-R	F32T8	Fluorescent, (4) 48", T-8 lamps, Instant Start Ballast, RLO (BF < 0.85)	4' 4-Lamp T8 RLO	Electronic	4	32	95	15.5
F44ILU-V	F32T8	Fluorescent, (4) 48", T-8 lamps, Instant Start Ballast, VHLO (BF > 1.1)	$\begin{aligned} & \text { 4' 4-Lamp T8 } \\ & \text { VHLO } \end{aligned}$	Electronic	4	32	146	15.5
F44LE	F32T8	Fluorescent, (4) 48", T-8 lamps	4' 4-Lamp T8	Mag-ES	4	32	142	15.5
F44LL	F32T8	Fluorescent, (4) 48", T-8 lamps, Rapid Start Ballast, NLO ($0.85<B F<0.95$)	4' 4-Lamp T8	Electronic	4	32	118	15.5
F44LL-R	F32T8	Fluorescent, (4) 48", T-8 lamps, Rapid Start Ballast, RLO (BF < 0.85)	4' 4-Lamp T8 RLO	Electronic	4	32	105	15.5
F44LL/2	F32T8	Fluorescent, (4) 48", T-8 lamps, (2) 2lamp Rapid Start Ballast, NLO (0.85 < BF <0.95)	4' 4-Lamp T8	Electronic	4	32	120	15.5

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
F45ILL/2	F32T8	Fluorescent, (5) 48", T-8 lamps, (1) 3lamp and (1) 2-lamp IS ballast, NLO ($0.85<B F<0.95$)	4' 5-Lamp T8	Electronic	5	32	143	15.5
$\begin{aligned} & \text { F45GLL/2- } \\ & \mathrm{V} \end{aligned}$	F32T8	Fluorescent, (5) 48", T-8 lamps, (1) 3lamp and (1) 2-lamp Prog. Start Ballast, VHLO (BF > 1.1)	4' 5-Lamp T8 VHLO	Electronic	5	32	182	15.5
F46GLL/2	F32T8	Fluorescent (6) 48" T-8 lamps, (2) Prog. Start or PRS Ballasts, NLO ($0.85<B F<$ 0.95)	4' 6-Lamp T8	PRS Elec.	6	32	175	15.5
$\begin{aligned} & \text { F46GLL/2- } \\ & \text { R } \end{aligned}$	F32T8	Fluorescent (6) 48" T-8 lamps, (2) Prog. Start or PRS Ballasts, RLO (BF < 0.85)	4' 6-Lamp T8 RLO	PRS Elec.	6	32	142	15.5
$\begin{aligned} & \text { F46GLL/2- } \\ & \mathrm{V} \end{aligned}$	F32T8	Fluorescent (6) 48" T-8 lamps, (2) Prog. Start or PRS Ballasts, VHLO (BF > 1.1)	$\begin{aligned} & \text { 4' 6-Lamp T8 } \\ & \text { VHLO } \end{aligned}$	PRS Elec.	6	32	217	15.5
F46ILL/2	F32T8	Fluorescent, (6) 48", T-8 lamps, (2) IS Ballasts, NLO ($0.85<B F<0.95$)	4' 6-Lamp T8	Electronic	6	32	170	15.5
$\begin{aligned} & \text { F46ILL/2- } \\ & \text { R } \end{aligned}$	F32T8	Fluorescent, (6) 48", T-8 lamps, (2) IS Ballasts, RLO (BF < 0.85)	4' 6-Lamp T8 RLO	Electronic	6	32	151	15.5
$\begin{aligned} & \text { F46ILL/2- } \\ & \text { V } \end{aligned}$	F32T8	Fluorescent (6) 48" T-8 lamps, (2) IS Ballasts, VHLO (BF > 1.1)	$\begin{aligned} & \text { 4' 6-Lamp T8 } \\ & \text { VHLO } \end{aligned}$	Electronic	6	32	226	15.5
F46ILU/2	F32T8	$\begin{aligned} & \text { Fluorescent (6) 48" T-8 lamps, (2) IS } \\ & \text { Ballasts, NLO (} 0.85<B F<0.95 \text {) } \end{aligned}$	4' 6-Lamp T8	Electronic	6	32	162	15.5
$\begin{aligned} & \text { F46ILU/2- } \\ & R \end{aligned}$	F32T8	Fluorescent (6) 48" T-8 lamps, (2) IS Ballasts, RLO (BF < 0.85)	4' 6-Lamp T8 RLO	Electronic	6	32	144	15.5
$\begin{aligned} & \text { F46ILU/2- } \\ & \text { V } \end{aligned}$	F32T8	Fluorescent (6) 48" T-8 lamps, (2) IS Ballasts, VHLO (BF > 1.1)	4' 6-Lamp T8 VHLO	Electronic	6	32	218	15.5
F465LL/2	F32T8	Fluorescent, (6) 48", T-8 lamps, (2) Rapid Start Ballasts, NLO (0.85 < BF < 0.95)	4' 6-Lamp T8	Electronic	6	32	182	15.5
F48GLL/2	F32T8	Fluorescent (8) 48" T-8 lamps, (2) Prog. Start or PRS Ballasts, NLO (0.85 < BF < 0.95)	4' 8-Lamp T8	PRS Elec.	8	32	230	15.5
$\begin{aligned} & \text { F48GLL/2- } \\ & \text { R } \end{aligned}$	F32T8	Fluorescent (8) 48" T-8 lamps, (2) Prog. Start or PRS Ballasts, RLO (BF < 0.85)	4' 8-Lamp T8 RLO	PRS Elec.	8	32	184	15.5
$\begin{aligned} & \text { F48GLL/2- } \\ & \mathrm{V} \end{aligned}$	F32T8	Fluorescent (8) 48" T-8 lamps, (2) Prog. Start or PRS Ballasts, VHLO (BF > 1.1)	$\begin{aligned} & \text { 4' 8-Lamp T8 } \\ & \text { VHLO } \end{aligned}$	PRS Elec.	8	32	288	15.5
F48ILL/2	F32T8	$\begin{aligned} & \text { Fluorescent, (8) 48", T-8 lamps, (2) 4- } \\ & \text { lamp IS Ballasts, NLO (} 0.85<B F<0.95) \end{aligned}$	4' 8-Lamp T8	Electronic	8	32	224	15.5
$\begin{aligned} & \text { F48ILL/2- } \\ & \text { R } \end{aligned}$	F32T8	Fluorescent, (8) 48", T-8 lamps, (2) 4lamp IS Ballasts, RLO (BF < 0.85)	4' 8-Lamp T8 RLO	Electronic	8	32	196	15.5
F48ILU/2	F32T8	Fluorescent, (8) 48", T-8 lamps, (2) 4lamp IS Ballasts, NLO ($0.85<\mathrm{BF}<0.95$)	4' 8-Lamp T8	Electronic	8	32	214	15.5
$\begin{aligned} & \text { F48ILU/2- } \\ & \text { R } \end{aligned}$	F32T8	Fluorescent, (8) 48", T-8 lamps, (2) 4lamp IS Ballasts, RLO (BF < 0.85)	4' 8-Lamp T8 RLO	Electronic	8	32	190	15.5
$\begin{aligned} & \text { F48ILU/2- } \\ & \mathrm{V} \end{aligned}$	F32T8	Fluorescent, (8) 48", T-8 lamps, (2) 4lamp IS Ballasts, VHLO (BF > 1.1)	$\begin{aligned} & \text { 4' 8-Lamp T8 } \\ & \text { VHLO } \end{aligned}$	Electronic	8	32	292	15.5
F41GNLL	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \end{aligned}$	Fluorescent (1) 48" T-8 @ 25W lamp, Prog. Start or PRS Ballast, NLO (0.85 < $\mathrm{BF}<0.95$)	$\begin{aligned} & \text { 4' 1-Lamp T8 } \\ & 25 \mathrm{~W} \end{aligned}$	PRS Elec.	1	25	24	15.5
F41GNLL- R	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \end{aligned}$	Fluorescent (1) 48" T-8 @ 25W lamp, Prog. Start or PRS Ballast, RLO (BF< 0.85)	$\begin{aligned} & \text { 4' 1-Lamp T8 } \\ & \text { 25W RLO } \end{aligned}$	PRS Elec.	1	25	21	15.5
F41INLL	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \end{aligned}$	Fluorescent, (1) 48", T-8 @ 25W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 1-Lamp T8 } \\ & 25 \mathrm{~W} \end{aligned}$	Electronic	1	25	24	15.5
F41INLU	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \end{aligned}$	Fluorescent, (1), T-8 @ 25W lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 1-Lamp T8 } \\ & 25 \mathrm{~W} \end{aligned}$	Electronic	1	25	23	15.5
F41INLU- R	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \end{aligned}$	Fluorescent, (1), T-8 @ 25W lamp, Instant Start Ballast, RLO (BF<0.85)	$\begin{aligned} & \text { 4' 1-Lamp T8 } \\ & \text { 25W RLO } \end{aligned}$	Electronic	1	25	21	15.5
F41INLU- V	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \end{aligned}$	Fluorescent, (1), T-8 @ 25W lamp, Instant Start Ballast, VHLO (BF > 1.1)	4' 1-Lamp T8 25W VHLO	Electronic	1	25	32	15.5
$\begin{aligned} & \text { F41INLU/ } \\ & \text { T3-R } \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \end{aligned}$	Fluorescent, (1) 48", T-8 @ 25W lamp, Tandem 3-lamp IS Ballast, RLO (BF< 0.85)	$\begin{aligned} & \text { 4' 1-Lamp T8 } \\ & \text { 25W RLO } \end{aligned}$	Electronic	1	25	19	15.5

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
$\begin{aligned} & \text { F41INLU/ } \\ & \text { T4-R } \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \end{aligned}$	Fluorescent, (1) 48", T-8 @ 25W lamp, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)	$\begin{aligned} & \text { 4' 1-Lamp T8 } \\ & \text { 25W RLO } \end{aligned}$	Electronic	1	25	19	15.5
F42GNLL	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \end{aligned}$	Fluorescent (2) 48" T-8 @ 25W lamps, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 2-Lamp T8 } \\ & \text { 25W } \end{aligned}$	PRS Elec.	2	25	44	15.5
F42GNLL- R	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \end{aligned}$	Fluorescent (2) 48" T-8 @ 25W lamps, Prog. Start or PRS Ballast, RLO (BF< 0.85)	4' 2-Lamp T8 25W RLO	PRS Elec.	2	25	38	15.5
F42INLL	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \end{aligned}$	Fluorescent, (2) 48", T-8 @ 25W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 2-Lamp T8 } \\ & 25 \mathrm{~W} \end{aligned}$	Electronic	2	25	46	15.5
F42INLL-V	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \end{aligned}$	Fluorescent, (2) 48" T-8 @ 25W lamps, Instant Start Ballast, VHLO (BF > 1.1)	4' 2-Lamp T8 25W VHLO	Electronic	2	25	65	15.5
F42INLU	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \end{aligned}$	Fluorescent, (2), T-8 @ 25W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 2-Lamp T8 } \\ & 25 \mathrm{~W} \end{aligned}$	Electronic	2	25	43	15.5
$\begin{aligned} & \text { F42INLU- } \\ & \text { R } \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \\ & \hline \end{aligned}$	Fluorescent (2) 48" T8 @ 25W lamps, Instant Start Ballast, RLO (BF<0.85)	$\begin{aligned} & \text { 4' 2-Lamp T8 } \\ & \text { 25W RLO } \end{aligned}$	Electronic	2	25	38	15.5
$\begin{aligned} & \text { F42INLU- } \\ & \mathrm{V} \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \end{aligned}$	Fluorescent, (2) 48", T-8 @ 25W lamps, Instant Start Ballast, VHLO (BF > 1.1)	4' 2-Lamp T8 25W VHLO	Electronic	2	25	60	15.5
$\begin{aligned} & \text { F42INLU/ } \\ & \text { T4-R } \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \end{aligned}$	Fluorescent, (2) 48", T-8 @ 25W lamps, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)	4' 2-Lamp T8 25W RLO	Electronic	2	25	38	15.5
F43GNLL	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \end{aligned}$	Fluorescent (3) 48" T-8 @ 25W lamps, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 3-Lamp T8 } \\ & 25 \mathrm{~W} \end{aligned}$	PRS Elec.	3	25	66	15.5
F43GNLL- R	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \end{aligned}$	Fluorescent, (3) 48" T-8 @ 25W lamps, Prog. Start or PRS Ballast, RLO (BF < 0.85)	4' 3-Lamp T8 25W RLO	PRS Elec.	3	25	56	15.5
F43INLL	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \end{aligned}$	Fluorescent, (3) 48" T-8 @ 25W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 3-Lamp T8 } \\ & 25 \mathrm{~W} \end{aligned}$	Electronic	3	25	66	15.5
F43INLL-V	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \\ & \hline \end{aligned}$	Fluorescent, (3) 48" T-8 @ 25W lamps, Instant Start Ballast, VHLO (BF > 1.1)	4' 3-Lamp T8 25W VHLO	Electronic	3	25	95	15.5
F43INLU	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \end{aligned}$	Fluorescent, (3) 48" T-8 lamps @ 25W, Instant Start Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 3-Lamp T8 } \\ & 25 \mathrm{~W} \end{aligned}$	Electronic	3	25	64	15.5
$\begin{aligned} & \text { F43INLU- } \\ & \text { R } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \end{aligned}$	Fluorescent, (3) 48" T-8 @ 25W lamps, Instant Start Ballast, RLO (BF < 0.85)	$\begin{aligned} & \text { 4' 3-Lamp T8 } \\ & \text { 25W RLO } \end{aligned}$	Electronic	3	25	57	15.5
$\begin{aligned} & \text { F43INLU- } \\ & \mathrm{V} \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \end{aligned}$	Fluorescent, (3) 48" T-8 @ 25W lamps, Instant Start Ballast, VHLO (BF > 1.1)	4' 3-Lamp T8 25W VHLO	Electronic	3	25	93	15.5
F44GNLL	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \end{aligned}$	Fluorescent (4) 48" T-8 @ 25W lamps, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 4-Lamp T8 } \\ & 25 \mathrm{~W} \end{aligned}$	PRS Elec.	4	25	85	15.5
F44GNLL- R	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \end{aligned}$	Fluorescent (4) 48" T-8 @ 25W lamps, Prog. Start or PRS Ballast, RLO (BF < 0.85)	4' 4-Lamp T8 25W RLO	PRS Elec.	4	25	73	15.5
F44INLL	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \end{aligned}$	Fluorescent, (4) 48", T-8 @ 25W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 4-Lamp T8 } \\ & 25 \mathrm{~W} \end{aligned}$	Electronic	4	25	86	15.5
F44INLU	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \end{aligned}$	Fluorescent, (4) 48", T-8 @ 25W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 4-Lamp T8 } \\ & 25 \mathrm{~W} \end{aligned}$	Electronic	4	25	85	15.5
F44INLU- R	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \end{aligned}$	Fluorescent, (4) 48" T-8 @ 25W lamps, Instant Start Ballast, RLO (BF < 0.85)	$\begin{aligned} & \text { 4' 4-Lamp T8 } \\ & \text { 25W RLO } \end{aligned}$	Electronic	4	25	75	15.5
$\begin{aligned} & \text { F44INLU- } \\ & \text { V } \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \end{aligned}$	Fluorescent, (4) 48" T-8 @ 25W lamps, Instant Start Ballast, VHLO (BF > 1.1)	4' 4-Lamp T8 25W VHLO	Electronic	4	25	122	15.5
$\begin{aligned} & \text { F46INLU/ } \\ & 2-R \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \\ & \hline \end{aligned}$	Fluorescent (6) 48" T-8 @ 25W lamps, (2) IS Ballasts, RLO (BF < 0.85)	$\begin{aligned} & \text { 4' 6-Lamp T8 } \\ & \text { 25W RLO } \\ & \hline \end{aligned}$	Electronic	6	25	114	15.5
$\begin{aligned} & \text { F46INLU/ } \\ & 2-\mathrm{V} \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 25 \mathrm{~W} \end{aligned}$	Fluorescent (6) 48" T-8 @ 25W lamps, (2) IS Ballasts, VHLO (BF > 1.1)	4' 6-Lamp T8 25W VHLO	Electronic	6	25	184	15.5
F41GRLL	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \end{aligned}$	Fluorescent (1) 48" T-8 @ 28W lamp, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 1-Lamp T8 } \\ & \text { 28W } \end{aligned}$	PRS Elec.	1	28	26	15.5

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
F41GRLL- R	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \end{aligned}$	Fluorescent (1) 48" T-8 @ 28W lamp, Prog. Start or PRS Ballast, RLO (BF< 0.85)	4' 1-Lamp T8 28W RLO	PRS Elec.	1	28	22	15.5
F41IRLL	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \end{aligned}$	Fluorescent, (1) 48" T-8 @ 28W lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 1-Lamp T8 } \\ & 28 \mathrm{~W} \end{aligned}$	Electronic	1	28	27	15.5
F41IRLL-V	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \end{aligned}$	Fluorescent, (1) 48" T-8 @ 28W lamp, Instant Start Ballast, VHLO (BF > 1.1)	4' 1-Lamp T8 28W VHLO	Electronic	1	28	35	15.5
F41IRLU	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \end{aligned}$	Fluorescent, (1), T-8 @ 28W lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)	```4' 1-Lamp T8 28W```	Electronic	1	28	25	15.5
F41IRLU-R	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \end{aligned}$	Fluorescent, (1), T-8 @ 28W lamp, Instant Start Ballast, RLO (BF<0.85)	4' 1-Lamp T8 28W RLO	Electronic	1	28	22	15.5
F41IRLU- V	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \\ & \hline \end{aligned}$	Fluorescent, (1), T-8 @ 28W lamp, Instant Start Ballast, VHLO (BF > 1.1)	4' 1-Lamp T8 28W VHLO	Electronic	1	28	33	15.5
$\begin{aligned} & \text { F41IRLU/ } \\ & \text { T3-R } \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \end{aligned}$	Fluorescent, (1) 48", T-8 @ 28W lamp, Tandem 3-lamp IS Ballast, RLO (BF< 0.85)	4' 1-Lamp T8 28W RLO	Electronic	1	28	21	15.5
$\begin{aligned} & \text { F41IRLU/ } \\ & \text { T4-R } \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \end{aligned}$	Fluorescent, (1) 48", T-8 @ 28W lamp, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)	4' 1-Lamp T8 28W RLO	Electronic	1	28	21	15.5
F42GRLL	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \end{aligned}$	Fluorescent (2) 48" T-8 @ 28W lamps, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 2-Lamp T8 } \\ & 28 \mathrm{~W} \end{aligned}$	PRS Elec.	2	28	49	15.5
F42GRLL- R	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \end{aligned}$	Fluorescent (2) 48" T-8 @ 28W lamps, Prog. Start or PRS Ballast, RLO (BF< 0.85)	4' 2-Lamp T8 28W RLO	PRS Elec.	2	28	40	15.5
F42IRLL	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \end{aligned}$	Fluorescent, (2) 48", T-8 @ 28W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	4' 2-Lamp T8 28W NLO	Electronic	2	28	52	15.5
F42IRLL-V	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \\ & \hline \end{aligned}$	Fluorescent, (2) 48" T-8 @ 28W lamps, Instant Start Ballast, VHLO (BF > 1.1)	4' 2-Lamp T8 28W VHLO	Electronic	2	28	68	15.5
F42IRLU	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \end{aligned}$	Fluorescent, (2), T-8 @ 28W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 2-Lamp T8 } \\ & 28 \mathrm{~W} \end{aligned}$	Electronic	2	28	48	15.5
F42IRLU-R	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \\ & \hline \end{aligned}$	Fluorescent, (2) 48", T-8 @ 28W lamps, Instant Start Ballast, RLO (BF<0.85)	$\begin{aligned} & \text { 4' 2-Lamp T8 } \\ & \text { 28W RLO } \end{aligned}$	Electronic	2	28	43	15.5
$\begin{aligned} & \text { F42IRLU- } \\ & \text { V } \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \end{aligned}$	Fluorescent, (2) 48", T-8 @ 28W lamps, Instant Start Ballast, VHLO (BF > 1.1)	4' 2-Lamp T8 28W VHLO	Electronic	2	28	65	15.5
$\begin{aligned} & \text { F42IRLU/ } \\ & \text { T4-R } \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \end{aligned}$	Fluorescent, (2) 48", T-8 @ 28W lamps, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)	4' 2-Lamp T8 28W RLO	Electronic	2	28	42	15.5
F43GRLL	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \end{aligned}$	Fluorescent (3) 48" T-8 @ 28W lamps, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 3-Lamp T8 } \\ & 28 \mathrm{~W} \end{aligned}$	PRS Elec.	3	28	75	15.5
F43GRLL- R	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \end{aligned}$	Fluorescent, (3) 48" T-8 @ 28W lamps, Prog. Start or PRS Ballast, RLO (BF < 0.85)	4' 3-Lamp T8 28W RLO	PRS Elec.	3	28	62	15.5
F43IRLL	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \end{aligned}$	Fluorescent, (3) 48" T-8 @ 28W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	4' 3-Lamp T8 28 W	Electronic	3	28	76	15.5
F43IRLL-H	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \end{aligned}$	Fluorescent, (3) 48" T-8 @ 28W lamps, Instant Start Ballast, HLO (. 95 <BF < 1.1)	4' 3-Lamp T8 28W HLO	Electronic	3	28	82	15.5
F43IRLL-V	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \end{aligned}$	Fluorescent, (3) 48" T-8 @ 28W lamps, Instant Start Ballast, VHLO (BF > 1.1)	4' 3-Lamp T8 28W VHLO	Electronic	3	28	97	15.5
F43IRLU	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \end{aligned}$	Fluorescent, (3) 48" T-8 lamps @ 28W, Instant Start Ballast, NLO (0.85 < BF < 0.95)	4' 3-Lamp T8 28W	Electronic	3	28	72	15.5
F43IRLU-R	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \end{aligned}$	Fluorescent, (3) 48" T-8 @ 28W lamps, Instant Start Ballast, RLO (BF < 0.85)	4' 3-Lamp T8 28W RLO	Electronic	3	28	63	15.5
$\begin{aligned} & \text { F43IRLU- } \\ & \mathrm{V} \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \end{aligned}$	Fluorescent, (3) 48" T-8 @ 28W lamps, Instant Start Ballast, VHLO (BF > 1.1)	4' 3-Lamp T8 28W VHLO	Electronic	3	28	96	15.5

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
F44GRLL	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \end{aligned}$	Fluorescent (4) 48" T-8 @ 28W lamps, Prog. Start or PRS Ballast, NLO (0.85 < $\mathrm{BF}<0.95$)	$\begin{aligned} & \text { 4' 4-Lamp T8 } \\ & 28 \mathrm{~W} \end{aligned}$	PRS Elec.	4	28	99	15.5
$\begin{aligned} & \text { F44GRLL- } \\ & \text { R } \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \end{aligned}$	Fluorescent (4) 48" T-8 @ 28W lamps, Prog. Start or PRS Ballast, RLO (BF < 0.85)	$\begin{aligned} & \text { 4' 4-Lamp T8 } \\ & \text { 28W RLO } \end{aligned}$	PRS Elec.	4	28	80	15.5
F44IRLL	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \end{aligned}$	Fluorescent, (4) 48", T-8 @ 28W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 4-Lamp T8 } \\ & 28 \mathrm{~W} \end{aligned}$	Electronic	4	28	99	15.5
F44IRLL-R	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \\ & \hline \end{aligned}$	Fluorescent, (4) 48", T-8 @ 28W lamps, Instant Start Ballast, RLO (BF < 0.85)	4' 4-Lamp T8 28W RLO	Electronic	4	28	85	15.5
F44IRLU	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \end{aligned}$	Fluorescent, (4) 48", T-8 @ 28W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 4-Lamp T8 } \\ & 28 \mathrm{~W} \end{aligned}$	Electronic	4	28	94	15.5
F44IRLU-R	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \\ & \hline \end{aligned}$	Fluorescent, (4) 48" T-8 @ 28W lamps, Instant Start Ballast, RLO (BF < 0.85)	$\begin{aligned} & \text { 4' 4-Lamp T8 } \\ & \text { 28W RLO } \end{aligned}$	Electronic	4	28	83	15.5
F44IRLU- V	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \\ & \hline \end{aligned}$	Fluorescent, (4) 48" T-8 @ 28W lamps, Instant Start Ballast, VHLO (BF > 1.1)	4' 4-Lamp T8 28W VHLO	Electronic	4	28	131	15.5
$\begin{aligned} & \text { F46IRLU/ } \\ & \text { 2-R } \end{aligned}$	$\begin{aligned} & \hline \text { F32T8- } \\ & 28 \mathrm{~W} \end{aligned}$	Fluorescent (6) 48" T-8 @ 28W lamps, (2) IS Ballasts, RLO ($B F<0.85$)	$\begin{aligned} & \text { 4' 6-Lamp T8 } \\ & \text { 28W } \\ & \hline \end{aligned}$	Electronic	6	28	126	15.5
$\begin{aligned} & \text { F46IRLU/ } \\ & \text { 2-V } \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \end{aligned}$	Fluorescent (6) 48" T-8 @ 28W lamps, (2) IS Ballasts, VHLO (BF > 1.1)	4' 6-Lamp T8 28W VHLO	Electronic	6	28	194	15.5
$\begin{aligned} & \text { F48IRLU/ } \\ & 2-\mathrm{V} \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 28 \mathrm{~W} \\ & \hline \end{aligned}$	Fluorescent (8) 48" T-8 @ 28W lamps, (2) IS Ballasts, VHLO (BF > 1.1)	4' 6-Lamp T8 28W VHLO	Electronic	8	28	250	15.5
F41GELL	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (1) 48" T-8 @ 30W lamp, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 1-Lamp T8 } \\ & \text { 30W } \end{aligned}$	PRS Elec.	1	30	28	15.5
$\begin{aligned} & \text { F41GELL- } \\ & R \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (1) 48" T-8 @ 30W lamp, Prog. Start or PRS Ballast, RLO (BF < 0.85)	4' 1-Lamp T8 30W RLO	PRS Elec.	1	30	24	15.5
F41IELL	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (1) 48" T-8 @ 30W lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 1-Lamp T8 } \\ & \text { 30W } \end{aligned}$	Electronic	1	30	29	15.5
F41IELL-H	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (1) 48" T-8 @ 30W lamp, Instant Start Ballast, HLO (0.95 < BF < 1.1)	4' 1-Lamp T8 30W HLO	Electronic	1	30	34	15.5
F41IELL-R	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \\ & \hline \end{aligned}$	Fluorescent (1) 48" T-8 @ 30W lamp, Instant Start Ballast, RLO (BF < 0.85)	$\begin{aligned} & \text { 4' 1-Lamp T8 } \\ & \text { 30W RLO } \end{aligned}$	Electronic	1	30	26	15.5
$\begin{aligned} & \text { F41IELL/T } \\ & 2 \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (1) 48" T-8 @ 30W lamp, Tandem 2-lamp IS Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 1-Lamp T8 } \\ & \text { 30W } \end{aligned}$	Electronic	1	30	28	15.5
$\begin{aligned} & \text { F41IELL/T } \\ & 3 \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (1) 48" T-8 @ 30W lamp, Tandem 3-lamp IS Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 1-Lamp T8 } \\ & \text { 30W } \end{aligned}$	Electronic	1	30	27	15.5
$\begin{aligned} & \text { F41IELL/T } \\ & 4 \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (1) 48" T-8 @ 30W lamp, Tandem 4-lamp IS Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 1-Lamp T8 } \\ & \text { 30W } \end{aligned}$	Electronic	1	30	27	15.5
F41IELU	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent, (1) 48", T-8 @ 30W lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 1-Lamp T8 } \\ & \text { 30W } \end{aligned}$	Electronic	1	30	27	15.5
F41IELU- H	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (1) 48" T-8 @ 30W lamp, Instant Start Ballast, HLO (0.95 < BF < 1.1)	4' 1-Lamp T8 30W HLO	Electronic	1	30	32	15.5
F41IELU-R	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \\ & \hline \end{aligned}$	Fluorescent (1) 48" T-8 @ 30W lamp, Instant Start Ballast, RLO (BF<0.85)	$\begin{aligned} & \text { 4' 1-Lamp T8 } \\ & \text { 30W RLO } \end{aligned}$	Electronic	1	30	24	15.5
F41IELU/T 2	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (1) 48" T-8 @ 30W lamp, Tandem 2-lamp IS Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 1-Lamp T8 } \\ & \text { 30W } \end{aligned}$	Electronic	1	30	26	15.5
$\begin{aligned} & \text { F41IELU/T } \\ & 2-R \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (1) 48" T-8 @ 30W lamp, Tandem 2-lamp IS Ballast, RLO (BF< 0.85)	4' 1-Lamp T8 30W RLO	Electronic	1	30	23	15.5
F41IELU/T	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (1) 48" T-8 @ 30W lamp, Tandem 3-lamp IS Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 1-Lamp T8 } \\ & \text { 30W } \end{aligned}$	Electronic	1	30	26	15.5

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
$\begin{aligned} & \text { F41IELU/T } \\ & 3-R \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (1) 48" T-8 @ 30W lamp, Tandem 3-lamp IS Ballast, RLO (BF< 0.85)	4' 1-Lamp T8 30W RLO	Electronic	1	30	23	15.5
$\begin{aligned} & \text { F41IELU/T } \\ & 4 \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (1) 48" T-8 @ 30W lamp, Tandem 4-lamp IS Ballast, NLO (0.85 < BF < 0.95)	4' 1-Lamp T8 30W	Electronic	1	30	25	15.5
$\begin{aligned} & \text { F41IELU/T } \\ & 4-R \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (1) 48" T-8 @ 30W lamp, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)	4' 1-Lamp T8 30W RLO	Electronic	1	30	22	15.5
F42GELL	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (2) 48" T-8 @ 30W lamps, Prog. Start or PRS Ballast, NLO (0.85 < $\mathrm{BF}<0.95$)	$\begin{aligned} & \text { 4' 2-Lamp T8 } \\ & \text { 30W } \end{aligned}$	PRS Elec.	2	30	56	15.5
F42GELL- R	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (2) 48" T-8 @ 30W lamps, Prog. Start or PRS Ballast, RLO (BF < 0.85)	4' 2-Lamp T8 30W RLO	PRS Elec.	2	30	43	15.5
F42IELL	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (2) 48" T-8 @ 30W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 2-Lamp T8 } \\ & \text { 30W } \end{aligned}$	Electronic	2	30	55	15.5
F42IELL-H	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (2) 48" T-8 @ 30W lamps, Instant Start Ballast, HLO $(0.95<B F<$ 1.1)	4' 2-Lamp T8 30W HLO	Electronic	2	30	62	15.5
F42IELL-R	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (2) 48" T-8 @ 30W lamps, Instant Start Ballast, RLO (BF< 0.85)	4' 2-Lamp T8 30W RLO	Electronic	2	30	49	15.5
$\begin{aligned} & \text { F42IELL/T } \\ & 4 \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (4) 48" T-8 @ 30W lamps, Tandem 4-lamp IS Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 2-Lamp T8 } \\ & \text { 30W } \end{aligned}$	Electronic	2	30	53	15.5
$\begin{aligned} & \text { F42IELL/T } \\ & 4-R \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (4) 48" T-8 @ 30W lamps, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)	4' 2-Lamp T8 30W RLO	Electronic	2	30	46	15.5
F42IELU	F32T830W	Fluorescent (2) 48" T-8 @ 30W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 2-Lamp T8 } \\ & \text { 30W } \end{aligned}$	Electronic	2	30	52	15.5
F42IELU-R	$\begin{aligned} & \text { F32T8- } \\ & \text { 30W } \end{aligned}$	Fluorescent (2) 48" T-8 @ 30W lamps, Instant Start, RLO (BF< 0.85)	4' 2-Lamp T8 30W RLO	Electronic	2	30	45	15.5
F42IELU-V	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (2) 48" T-8 @ 30W lamps, Instant Start, VHLO (BF > 1.1)	$\begin{aligned} & \text { 4' 2-Lamp T8 } \\ & \text { 30W HLO } \end{aligned}$	Electronic	2	30	70	15.5
$\begin{aligned} & \text { F42IELU/T } \\ & 4 \end{aligned}$	F32T830W	Fluorescent (2) 48" T-8 @ 30W lamps, Tandem 4-lamp IS Ballast, NLO (0.85 < $\mathrm{BF}<0.95$)	4' 2-Lamp T8 30W 30W	Electronic	2	30	51	15.5
$\begin{aligned} & \text { F42IELU/T } \\ & 4-R \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (2) 48" T-8 @ 30W lamps, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)	4' 2-Lamp T8 30W RLO	Electronic	2	30	45	15.5
F43GELL	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (3) 48" T-8 @ 30W lamps, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	4' 3-Lamp T8 30W	PRS Elec.	3	30	83	15.5
F43GELL- R	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (3) 48" T-8 @ 30W lamps, Prog. Start or PRS Ballast, RLO (BF < 0.85)	4' 3-Lamp T8 30W RLO	PRS Elec.	3	30	67	15.5
F43IELL	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (3) 48" T-8 @ 30 W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 3-Lamp T8 } \\ & \text { 30W } \end{aligned}$	Electronic	3	30	81	15.5
F43IELL-H	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (3) 48" T-8 @ 30 W lamps, Instant Start Ballast, HLO (0.95 < BF < 1.1)	4' 3-Lamp T8 30W HLO	Electronic	3	30	86	15.5
F43IELL-R	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \\ & \hline \end{aligned}$	Fluorescent (3) 48" T-8 @ 30 W lamps, Instant Start Ballast, RLO (BF < 0.85)	4' 3-Lamp T8 30W RLO	Electronic	3	30	71	15.5
F43IELL/2	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (3) 48" T-8 @ 30 W lamps, (1) 1-lamp and (1) 2-lamp IS Ballast, NLO (0.85 < BF < 0.95)	4' 3-Lamp T8 30W	Electronic	3	30	84	15.5
$\begin{aligned} & \text { F43IELL/2 } \\ & -H \end{aligned}$	F32T830W	Fluorescent (3) 48" T-8 @ 30 W lamps, (1) 2-lamp, (1) 3-lamp IS Ballast, 1 lead capped, HLO (0.95 < BF < 1.1)	4' 3-Lamp T8 30W HLO	Electronic	3	30	96	15.5
$\begin{aligned} & \text { F43IELL/2 } \\ & -R \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & \text { 30W } \end{aligned}$	Fluorescent (3) 48" T-8 @ 30 W lamps, (1) 1-lamp and (1) 2-lamp IS Ballast, RLO (BF < 0.85)	4' 3-Lamp T8 30W RLO	Electronic	3	30	75	15.5

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
F43IELU	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (3) 48" T-8 @ 30W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 3-Lamp T8 } \\ & \text { 30W } \end{aligned}$	Electronic	3	30	77	15.5
F43IELU-R	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (3) 48" T-8 @ 30W lamps, Instant Start Ballast, RLO (BF < 0.85)	4' 3-Lamp T8 30W RLO	Electronic	3	30	68	15.5
F43IELU-V	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (3) 48" T-8 @ 30W lamps, Instant Start Ballast, VHLO (BF > 1.1)	4' 3-Lamp T8 30W VHLO	Electronic	3	30	104	15.5
F44GELL	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (4) 48" T-8 @ 30W lamps, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 4-Lamp T8 } \\ & \text { 30W } \end{aligned}$	PRS Elec.	4	30	109	15.5
$\begin{aligned} & \text { F44GELL- } \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (4) 48" T-8 @ 30W lamps, Prog. Start or PRS Ballast, RLO (BF < 0.85)	4' 4-Lamp T8 30W RLO	PRS Elec.	4	30	86	15.5
F44IELL	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (4) 48" T-8 @ 30W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	4' 4-Lamp T8 30W	Electronic	4	30	106	15.5
F44IELL-R	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (4) 48" T-8 @ 30W lamps, Instant Start Ballast, RLO (BF < 0.85)	$\begin{aligned} & \text { 4' 4-Lamp T8 } \\ & \text { 30W RLO } \end{aligned}$	Electronic	4	30	92	15.5
F44IELL/2	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (4) 48" T-8 @ 30W lamps, (2) 2-lamp IS Ballasts, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 4-Lamp T8 } \\ & \text { 30W } \end{aligned}$	Electronic	4	30	110	15.5
$\begin{aligned} & \text { F44IELL/2 } \\ & -H \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (4) 48" T-8 @ 30W lamps, (2) 3-lamp IS Ballasts, 1 lead capped, HLO (. 95 < BF < 1.1)	$\begin{aligned} & \text { 4' 4-Lamp T8 } \\ & \text { 30W HLO } \end{aligned}$	Electronic	4	30	124	15.5
$\begin{aligned} & \text { F44IELL/2 } \\ & -R \end{aligned}$	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (4) 48" T-8 @ 30W lamps, (2) 2-lamp IS Ballasts, RLO (BF< 0.85)	$\begin{aligned} & \text { 4' 4-Lamp T8 } \\ & \text { 30W RLO } \end{aligned}$	Electronic	4	30	98	15.5
F44IELU	$\begin{aligned} & \text { F32T8- } \\ & \text { 30W } \end{aligned}$	Fluorescent (4) 48" T-8 @ 30W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 4' 4-Lamp T8 } \\ & \text { 30W } \end{aligned}$	Electronic	4	30	101	15.5
F44IELU-R	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (4) 48" T-8 @ 30W lamps, Instant Start Ballast, RLO (BF < 0.85)	$\begin{aligned} & \text { 4' 4-Lamp T8 } \\ & \text { 30W RLO } \end{aligned}$	Electronic	4	30	89	15.5
F46IELU/2	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (6) 48" T-8 @ 30W lamps, (2) IS Ballasts, NLO ($0.85<$ BF < 0.95)	$\begin{aligned} & \text { 4' 6-Lamp T8 } \\ & \text { 30W } \end{aligned}$	Electronic	6	30	154	15.5
F46IELU/2	$\begin{aligned} & \text { F32T8- } \\ & 30 \mathrm{~W} \end{aligned}$	Fluorescent (6) 48" T-8 @ 30W lamps, (2) IS Ballasts, RLO (BF < 0.85)	$\begin{aligned} & \text { 4' 6-Lamp T8 } \\ & \text { 30W RLO } \end{aligned}$	Electronic	6	30	135	15.5
F51ILL	F40T8	Fluorescent, (1) 60", T-8 lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)	5' 1-Lamp T8	Electronic	1	40	36	15.5
F51ILL-R	F40T8	Fluorescent, (1) 60", T-8 lamp, Instant Start Ballast, RLO (BF < 0.85)	5' 1-Lamp T8 RLO	Electronic	1	40	43	15.5
F51ILL/T2	F40T8	Fluorescent, (1) 60", T-8 lamp, Tandem 2-lamp IS Ballast, NLO (0.85 < BF < 0.95)	5' 1-Lamp T8	Electronic	1	40	36	15.5
F51ILL/T3	F40T8	Fluorescent, (1) 60", T-8 lamp, Tandem 3-lamp IS Ballast, NLO (0.85 < BF < 0.95)	5' 1-Lamp T8	Electronic	1	40	35	15.5
F51ILL/T4	F40T8	Fluorescent, (1) 60", T-8 lamp, Tandem 4-lamp IS Ballast, NLO ($0.85<\mathrm{BF}<$ 0.95)	5' 1-Lamp T8	Electronic	1	40	34	15.5
F52ILL	F40T8	Fluorescent, (2) 60", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	5' 2-Lamp T8	Electronic	2	40	72	15.5
F52ILL-H	F40T8	Fluorescent, (2) 60", T-8 lamps, Instant Start Ballast, HILO (. $95<$ BF < 1.1)	$\begin{aligned} & \text { 5' 2-Lamp T8 } \\ & \text { HLO } \end{aligned}$	Electronic	2	40	80	15.5
F52ILL-R	F40T8	Fluorescent, (2) 60", T-8 lamps, Instant Start Ballast, RLO (BF < 0.85)	5' 2-Lamp T8 RLO	Electronic	2	40	73	15.5
F52ILL/T4	F40T8	Fluorescent, (2) 60 ", T-8 lamps, Tandem 4-lamp IS Ballast, NLO (0.85 < $\mathrm{BF}<0.95$)	5' 2-Lamp T8	Electronic	2	40	67	15.5
F53ILL	F40T8	Fluorescent, (3) 60", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	5' 3-Lamp T8	Electronic	3	40	106	15.5
F53ILL-H	F40T8	Fluorescent, (3) 60", T-8 lamps, Instant Start Ballast, HILO (. $95<$ BF < 1.1)	$\begin{aligned} & \text { 5' 3-Lamp T8 } \\ & \text { HLO } \end{aligned}$	Electronic	3	40	108	15.5
F54ILL	F40T8	Fluorescent, (4) 60", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	5' 4-Lamp T8	Electronic	4	40	134	15.5
F54ILL-H	F40T8	Fluorescent, (4) 60", T-8 lamps, Instant Start Ballast, HLO (. 95 < BF < 1.1)	$\begin{aligned} & \text { 5' 4-Lamp T8 } \\ & \text { HLO } \end{aligned}$	Electronic	4	40	126	15.5

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
F41LHL	$\begin{aligned} & \text { F48T8/H } \\ & 0 \end{aligned}$	Fluorescent, (1) 48", T-8 HO lamps, (1) Instant Start Ballast, NLO (0.85 < BF < 0.95)	4' 1-Lamp T8 44W HO	Electronic	1	44	59	15.5
F42LHL	$\begin{aligned} & \text { F48T8/H } \\ & 0 \end{aligned}$	Fluorescent, (2) 48", T-8 HO lamps, (1) Instant Start Ballast, NLO (0.85 < BF < 0.95)	4' 2-Lamp T8 44 W HO	Electronic	2	44	98	15.5
F43LHL	$\begin{aligned} & \text { F48T8/H } \\ & \mathrm{O} \end{aligned}$	Fluorescent, (3) 48", T-8 HO lamps, (2) Instant Start Ballasts, NLO ($0.85<B F<$ 0.95)	4' 3-Lamp T8 44 W HO	Electronic	3	44	141	15.5
F44LHL	$\begin{aligned} & \text { F48T8/H } \\ & \text { O } \end{aligned}$	Fluorescent, (4) 48", T-8 HO lamps, (2) Instant Start Ballasts, NLO (0.85 < BF < 0.95)	4' 4-Lamp T8 44W HO	Electronic	4	44	168	15.5
F81ILL	F96T8	Fluorescent, (1) 96", T-8 lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)	8' 1-Lamp T8	Electronic	1	59	69	15.5
F81ILL-H	F96T8	Fluorescent, (1) 96", T-8 lamp, Instant Start Ballast, HILO (. 95 < BF < 1.1)	$\begin{aligned} & \text { 8' 1-Lamp T8 } \\ & \text { HLO } \end{aligned}$	Electronic	1	59	70	15.5
F81ILL-R	F96T8	Fluorescent, (1) 96", T-8 lamp, Instant Start Ballast, RLO (BF < 0.85)	8' 1-Lamp T8 RLO	Electronic	1	59	67	15.5
F81ILL-V	F96T8	Fluorescent, (1) 96", T-8 lamp, Instant Start Ballast, VHLO (BF > 1.1)	$\begin{aligned} & \text { 8' 1-Lamp T8 } \\ & \text { VHLO } \end{aligned}$	Electronic	1	59	72	15.5
F811LL/T2	F96T8	Fluorescent, (1) 96", T-8 lamp, Tandem 2-lamp IS Ballast, NLO (0.85 < BF < 0.95)	8' 1-Lamp T8	Electronic	1	59	55	15.5
$\begin{aligned} & \text { F81ILL/T2 } \\ & -\mathrm{R} \end{aligned}$	F96T8	Fluorescent, (1) 96", T-8 lamp, Tandem 2-lamp IS Ballast, RLO (BF < 0.85)	8' 1-Lamp T8 RLO	Electronic	1	59	50	15.5
F81ILU	F96T8	Fluorescent, (1) 96" T-8 lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)	8' 1-Lamp T8	Electronic	1	59	67	15.5
F82ILL	F96T8	Fluorescent, (2) 96", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	8' 2-Lamp T8	Electronic	2	59	110	15.5
F82ILL-R	F96T8	Fluorescent, (2) 96", T-8 lamps, Instant Start Ballast, RLO (BF < 0.85)	8' 2-Lamp T8 RLO	Electronic	2	59	100	15.5
F82ILL-V	F96T8	Fluorescent, (2) 96", T-8 lamps, Instant Start Ballast, VHLO (BF > 1.1)	$\begin{aligned} & \text { 8' 2-Lamp T8 } \\ & \text { VHLO } \end{aligned}$	Electronic	2	59	149	15.5
F82ILU	F96T8	Fluorescent, (2) 96" T-8 ES lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	8' 2-Lamp T8	Electronic	2	59	107	15.5
F83ILL	F96T8	Fluorescent, (3) 96", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	8' 3-Lamp T8	Electronic	3	59	179	15.5
F84ILL	F96T8	Fluorescent, (4) 96", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	8' 4-Lamp T8	Electronic	4	59	219	15.5
$\begin{aligned} & \text { F84ILL/2- } \\ & \text { V } \end{aligned}$	F96T8	Fluorescent, (4) 96", T-8 lamps, (2) Instant Start Ballasts, VHLO (BF > 1.1)	8' 4-Lamp T8 VHLO	Electronic	4	59	298	15.5
F86ILL	F96T8	Fluorescent, (6) 96", T-8 lamps, (2) 3lamp IS Ballasts, NLO (0.85 < BF < 0.95)	8' 6-Lamp T8	Electronic	6	59	330	15.5
$\begin{aligned} & \text { F81LHL/T } \\ & 2 \end{aligned}$	$\begin{aligned} & \text { F96T8/H } \\ & 0 \end{aligned}$	Fluorescent, (1) 96", T-8 HO lamp, Tandem 2-lamp Ballast	8' 1-Lamp T8 86W HO	Electronic	1	86	80	15.5
F82LHL	$\begin{aligned} & \text { F96T8/H } \\ & \mathrm{O} \end{aligned}$	Fluorescent, (2) 96", T-8 HO lamps	$\begin{aligned} & \text { 8' 2-Lamp T8 } \\ & \text { 86W HO } \end{aligned}$	Electronic	2	86	160	15.5
F84LHL	$\begin{aligned} & \text { F96T8/H } \\ & \mathrm{O} \end{aligned}$	Fluorescent, (4) 96", T-8 HO lamps	$\begin{aligned} & \text { 8' 4-Lamp T8 } \\ & \text { 86W HO } \end{aligned}$	Electronic	4	86	320	15.5
F81IERU	F96T8- RW	Fluorescent, (1) 96" T-8 reducedwattage lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)	8' 1-Lamp T8 54W	Electronic	1	54	61	15.5
F82IERU	F96T8- RW	Fluorescent, (2) 96" T-8 @ reducedwattage lamps, Instant Start Ballast, NLO ($0.85<B F<0.95$)	8' 2-Lamp T8 54W	Electronic	2	54	93	15.5
T12 and Other Linear Fluorescent Systems								
F1.51SS	F15T12	Fluorescent, (1) 18" T12 lamp	$\begin{aligned} & \text { 1.5' 1-Lamp T12 } \\ & \text { 15W } \end{aligned}$	Mag-STD	1	15	19	8.5
F1.52SS	F15T12	Fluorescent, (2) 18", T12 lamps	$\begin{aligned} & \text { 1.5' 2-Lamp T12 } \\ & \text { 15W } \end{aligned}$	Mag-STD	2	15	36	8.5
F21SS	F20T12	Fluorescent, (1) 24", STD lamp	$\begin{aligned} & \text { 2' 1-Lamp T12 } \\ & \text { 20W } \end{aligned}$	Mag-STD	1	20	25	8.5

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
F22SS	F20T12	Fluorescent, (2) 24", STD lamps	$\begin{aligned} & \text { 2' 2-Lamp T12 } \\ & \text { 20W } \end{aligned}$	Mag-STD	2	20	50	8.5
F23SS	F20T12	Fluorescent, (3) 24 ", STD lamps	$\begin{aligned} & \text { 2' 3-Lamp T12 } \\ & \text { 20W } \end{aligned}$	Mag-STD	3	20	71	8.5
F24SS	F20T12	Fluorescent, (4) 24", STD lamps	$\begin{aligned} & \text { 2' 4-Lamp T12 } \\ & \text { 20W } \end{aligned}$	Mag-STD	4	20	100	8.5
F26SS/2	F20T12	Fluorescent, (6) 24", STD lamps, (2) ballasts	$\begin{aligned} & \text { 2' 6-Lamp T12 } \\ & \text { 20W } \end{aligned}$	Mag-STD	6	20	146	8.5
F21HS	$\begin{aligned} & \text { F24T12/ } \\ & \text { HO } \end{aligned}$	Fluorescent, (1) 24", HO lamp	2' 1-Lamp T12HO	Mag-STD	1	35	62	8.5
F22HS	$\begin{aligned} & \text { F24T12/ } \\ & \text { HO } \end{aligned}$	Fluorescent, (2) 24", HO lamps	2' 2-Lamp T12HO	Mag-STD	2	35	90	8.5
F32EL/T4	F25T12	Fluorescent, (2) 36" ES lamps, Tandem 4-lamp ballast, NLO (0.85 < BF < 0.95)	3' 2-Lamp T12ES	Electronic	2	25	50	15.5
F41IAL	F25T12	Fluorescent, (1) 48", F25T12 lamp, Instant Start Ballast	$\begin{aligned} & \text { 4' 1-Lamp T12 } \\ & \text { 25W } \\ & \hline \end{aligned}$	Electronic	1	25	25	15.5
$\begin{aligned} & \text { F41IAL/T2 } \\ & -R \end{aligned}$	F25T12	Fluorescent, (1) 48", F25T12 lamp, Tandem 2-Lamp IS ballast, RLO (BF < 0.85)	$\begin{aligned} & \text { 4' 1-Lamp T12 } \\ & \text { 25W RLO } \end{aligned}$	Electronic	1	25	19	15.5
$\begin{aligned} & \text { F41IAL/T3 } \\ & -R \end{aligned}$	F25T12	Fluorescent, (1) 48", F25T12 lamp, Tandem 3-Lamp IS ballast, RLO (BF < 0.85)	$\begin{aligned} & \text { 4' 1-Lamp T12 } \\ & \text { 25W RLO } \end{aligned}$	Electronic	1	25	20	15.5
$\begin{aligned} & \text { F41IAL/T4 } \\ & -R \end{aligned}$	F25T12	Fluorescent, (1) 48", F25T12 lamp, Tandem 4-Lamp IS ballast, RLO (BF < 0.85)	$\begin{aligned} & \text { 4' 1-Lamp T12 } \\ & \text { 25W RLO } \end{aligned}$	Electronic	1	25	20	15.5
F42IAL-R	F25T12	Fluorescent, (2) 48", F25T12 lamps, Instant Start Ballast, RLO (BF < 0.85)	$\begin{aligned} & \text { 4' 2-Lamp T12 } \\ & \text { 25W RLO } \end{aligned}$	Electronic	2	25	39	15.5
$\begin{aligned} & \text { F42IAL/T4 } \\ & -R \end{aligned}$	F25T12	Fluorescent, (2) 48", F25T12 lamps, Tandem 4-lamp IS Ballast, RLO (BF < 0.85)	$\begin{aligned} & \text { 4' 2-Lamp T12 } \\ & \text { 25W RLO } \end{aligned}$	Electronic	2	25	40	15.5
F43IAL-R	F25T12	Fluorescent, (3) 48", F25T12 lamps, Instant Start Ballast, RLO (BF < 0.85)	$\begin{aligned} & \text { 4' 3-Lamp T12 } \\ & \text { 25W RLO } \end{aligned}$	Electronic	3	25	60	15.5
F44IAL-R	F25T12	Fluorescent, (4) 48", F25T12 lamps, Instant Start Ballast, RLO (BF < 0.85)	$\begin{aligned} & \text { 4' 4-Lamp T12 } \\ & \text { 25W RLO } \end{aligned}$	Electronic	4	25	80	15.5
F31SE/T2	F30T12	Fluorescent, (1) 36", STD lamp, Tandem 2-lamp ballast	3' 1-Lamp T12	Mag-ES	1	30	37	8.5
F31SL	F30T12	Fluorescent, (1) 36", STD lamp	3' 1-Lamp T12	Electronic	1	30	31	15.5
F31SS	F30T12	Fluorescent, (1) $36{ }^{\prime \prime}$, STD lamp	3' 1-Lamp T12	Mag-STD	1	30	46	8.5
F31SS/T2	F30T12	Fluorescent, (1) 36 ", STD lamp, Tandem 2-lamp ballast	3' 1-Lamp T12	Mag-STD	1	30	41	8.5
F32SE	F30T12	Fluorescent, (2) $36{ }^{\prime \prime}$, STD lamps	3' 2-Lamp T12	Mag-ES	2	30	74	8.5
F32SL	F30T12	Fluorescent, (2) 36 ", STD lamps	3' 2-Lamp T12	Electronic	2	30	58	15.5
F32SS	F30T12	Fluorescent, (2) $36^{\prime \prime}$, STD lamps	3' 2-Lamp T12	Mag-STD	2	30	75	8.5
F33SE	F30T12	Fluorescent, (3) 36", STD lamps, (1) STD ballast and (1) ES ballast	3' 3-Lamp T12	Mag-ES	3	30	120	8.5
F33SS	F30T12	Fluorescent, (3) 36 ", STD lamps	3' 3-Lamp T12	Mag-STD	3	30	127	8.5
F34SE	F30T12	Fluorescent, (4) 36 ", STD lamps	3' 4-Lamp T12	Mag-ES	4	30	148	8.5
F34SL	F30T12	Fluorescent, (4) $36{ }^{\prime \prime}$, STD lamps	3' 4-Lamp T12	Electronic	4	30	116	15.5
F34SS	F30T12	Fluorescent, (4) 36 ", STD lamps	3' 4-Lamp T12	Mag-STD	4	30	150	8.5
F36SE	F30T12	Fluorescent, (6) 36 ", STD lamps	3' 6-Lamp T12ES	Mag-ES	6	30	213	8.5
F36SS	F30T12	Fluorescent, (6) 36 ", STD lamps	3' 6-Lamp T12	Mag-STD	6	30	225	8.5
F31EE/T2	$\begin{aligned} & \text { F30T12/ } \\ & \text { ES } \end{aligned}$	Fluorescent, (1) 36", ES lamp, Tandem 2-lamp ballast	3' 1-Lamp T12ES	Mag-ES	1	25	33	8.5
F31EL	$\begin{aligned} & \text { F30T12/ } \\ & \text { ES } \end{aligned}$	Fluorescent, (1) 36", ES lamp	3' 1-Lamp T12ES	Electronic	1	25	26	15.5

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
F31ES	$\begin{aligned} & \text { F30T12/ } \\ & \text { ES } \\ & \hline \end{aligned}$	Fluorescent, (1) 36 ", ES lamp	3' 1-Lamp T12ES	Mag-STD	1	25	42	8.5
F31ES/T2	$\begin{aligned} & \text { F30T12/ } \\ & \text { ES } \\ & \hline \end{aligned}$	Fluorescent, (1) 36 ", ES lamp, Tandem 2-lamp ballast	3' 1-Lamp T12ES	Mag-STD	1	25	33	8.5
F32EE	$\begin{aligned} & \text { F30T12/ } \\ & \text { ES } \\ & \hline \end{aligned}$	Fluorescent, (2) 36", ES lamps	3' 1-Lamp T12ES	Mag-ES	2	25	66	8.5
F32EL	$\begin{aligned} & \text { F30T12/ } \\ & \text { ES } \\ & \hline \end{aligned}$	Fluorescent, (2) 36", ES lamps	3' 1-Lamp T12ES	Electronic	2	25	50	15.5
F32ES	$\begin{aligned} & \text { F30T12/ } \\ & \text { ES } \\ & \hline \end{aligned}$	Fluorescent, (2) 36", ES lamps	3' 1-Lamp T12ES	Mag-STD	2	25	73	8.5
F33ES	$\begin{aligned} & \text { F30T12/ } \\ & \text { ES } \\ & \hline \end{aligned}$	Fluorescent, (3) 36 ", ES lamps	3' 2-Lamp T12ES	Mag-STD	3	25	115	8.5
F34EE	$\begin{aligned} & \text { F30T12/ } \\ & \text { ES } \end{aligned}$	Fluorescent, (4) 36", ES lamps	3' 4-Lamp T12ES	Mag-ES	4	25	132	8.5
F36EE	$\begin{aligned} & \text { F30T12/ } \\ & \text { ES } \end{aligned}$	Fluorescent, (6) 36", ES lamps	3' 6-Lamp T12ES	Mag-ES	6	30	198	8.5
F36ES	$\begin{aligned} & \text { F30T12/ } \\ & \text { ES } \end{aligned}$	Fluorescent, (6) 36", ES lamps	3' 6-Lamp T12ES	Mag-STD	6	30	219	8.5
F31SHS	$\begin{aligned} & \text { F36T12/ } \\ & \text { HO } \end{aligned}$	Fluorescent, (1) 36", HO lamp	3' 1-Lamp T5HO	Mag-STD	1	50	70	8.5
F32SHS	$\begin{aligned} & \text { F36T12/ } \\ & \text { HO } \end{aligned}$	Fluorescent, (2) $36{ }^{\prime \prime}$, HO, lamps	3' 2-Lamp T12HO	Mag-STD	2	50	114	8.5
F41SIL	F40T12	Fluorescent, (1) 48", STD IS lamp, Electronic ballast	4' 1-Lamp T12	Electronic	1	39	46	15.5
F41SIL/T2	F40T12	Fluorescent, (1) 48", STD IS lamp, Tandem 2-lamp IS ballast	4' 1-Lamp T12	Electronic	1	39	37	15.5
F42SIL	F40T12	Fluorescent, (2) 48", STD IS lamps, Electronic ballast	4' 2-Lamp T12IS	Electronic	2	39	74	15.5
F43SIL	F40T12	Fluorescent, (3) 48", STD IS lamps, Electronic ballast	4' 3-Lamp T12IS	Electronic	3	39	120	15.5
F44SIL	F40T12	Fluorescent, (4) 48", STD IS lamps, Electronic ballast	4' 4-Lamp T12IS	Electronic	4	39	148	15.5
F46SL	F40T12	Fluorescent, (6) 48", STD lamps	4' 4-Lamp T12	Electronic	6	40	186	15.5
F41TS	F40T10	Fluorescent, (1) 48", T-10 lamp	4' 1-Lamp T10	Mag-STD	1	40	51	8.5
F41EE	$\begin{aligned} & \text { F40T12/ } \\ & \text { ES } \\ & \hline \end{aligned}$	Fluorescent, (1) 48", ES lamp	4' 1-Lamp T12ES	Mag-ES	1	34	43	8.5
F41EE/2	$\begin{aligned} & \text { F40T12/ } \\ & \text { ES } \\ & \hline \end{aligned}$	Fluorescent, (1) 48", ES lamp, 2 ballast	4' 1-Lamp T12ES	Mag-ES	1	34	43	8.5
F41EE/T2	$\begin{aligned} & \text { F40T12/ } \\ & \text { ES } \\ & \hline \end{aligned}$	Fluorescent, (1) 48", ES lamp, Tandem 2-lamp ballast	4' 1-Lamp T12ES	Mag-ES	1	34	36	8.5
F41EL	$\begin{aligned} & \text { F40T12/ } \\ & \text { ES } \end{aligned}$	Fluorescent, (1) 48", T12 ES lamp, Electronic Ballast	4' 1-Lamp T12ES	Electronic	1	34	32	15.5
F42EE	$\begin{aligned} & \text { F40T12/ } \\ & \text { ES } \\ & \hline \end{aligned}$	Fluorescent, (2) 48", ES lamp	4' 2-Lamp T12ES	Mag-ES	2	34	72	8.5
F42EE/2	$\begin{aligned} & \text { F40T12/ } \\ & \text { ES } \\ & \hline \end{aligned}$	Fluorescent, (2) 48", ES lamps, (2) 1lamp ballasts	4' 2-Lamp T12ES	Mag-ES	2	34	86	8.5
F42EE/D2	$\begin{aligned} & \text { F40T12/ } \\ & \text { ES } \\ & \hline \end{aligned}$	Fluorescent, (2) 48", ES lamps, 2 Ballasts (delamped)	4' 2-Lamp T12ES	Mag-ES	2	34	76	8.5
F42EL	$\begin{aligned} & \text { F40T12/ } \\ & \text { ES } \end{aligned}$	Fluorescent, (2) 48", T12 ES lamps, Electronic Ballast	4' 2-Lamp T12ES	Electronic	2	34	60	15.5
F43EE	$\begin{aligned} & \hline \text { F40T12/ } \\ & \text { ES } \\ & \hline \end{aligned}$	Fluorescent, (3) 48", ES lamps	4' 3-Lamp T12ES	Mag-ES	3	34	115	8.5
F43EE/T2	$\begin{aligned} & \text { F40T12/ } \\ & \text { ES } \end{aligned}$	Fluorescent, (3) 48", ES lamps, Tandem 2-lamp ballasts	4' 3-Lamp T12ES	Mag-ES	3	34	108	8.5
F43EL	$\begin{aligned} & \text { F40T12/ } \\ & \text { ES } \end{aligned}$	Fluorescent, (3) 48", T12 ES lamps, Electronic Ballast	4' 3-Lamp T12ES	Electronic	3	34	92	15.5
F44EE	$\begin{aligned} & \text { F40T12/ } \\ & \text { ES } \end{aligned}$	Fluorescent, (4) 48", ES lamps	4' 3-Lamp T12ES	Mag-ES	4	34	144	8.5
F44EE/D3	$\begin{aligned} & \text { F40T12/ } \\ & \text { ES } \end{aligned}$	Fluorescent, (4) 48", ES lamps, 3 Ballasts (delamped)	4' 4-Lamp T12ES	Mag-ES	4	34	148	8.5
F44EE/D4	$\begin{aligned} & \text { F40T12/ } \\ & \text { ES } \end{aligned}$	Fluorescent, (4) 48", ES lamps, 4 Ballasts (delamped)	4' 3-Lamp T12ES	Mag-ES	4	34	152	8.5

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
F44EL	$\begin{aligned} & \text { F40T12/ } \\ & \text { ES } \end{aligned}$	Fluorescent, (4) 48", T12 ES lamps, Electronic Ballast	4' 4-Lamp T12ES	Electronic	4	34	120	15.5
F46EE	$\begin{aligned} & \text { F40T12/ } \\ & \text { ES } \\ & \hline \end{aligned}$	Fluorescent, (6) 48", ES lamps	4' 6-Lamp T12ES	Mag-ES	6	34	216	8.5
F46EL	$\begin{aligned} & \text { F40T12/ } \\ & \text { ES } \\ & \hline \end{aligned}$	Fluorescent, (6) 48", ES lamps	4' 6-Lamp T12ES	Electronic	6	34	180	15.5
F48EE	$\begin{aligned} & \text { F40T12/ } \\ & \text { ES } \\ & \hline \end{aligned}$	Fluorescent, (8) 48", ES lamps	4' 8-Lamp T12ES	Mag-ES	8	34	288	8.5
F42EHS	$\begin{aligned} & \text { F42T12/ } \\ & \mathrm{HO} / \mathrm{ES} \\ & \hline \end{aligned}$	```Fluorescent, (2) 42", HO lamps (3.5' lamp)```	4' 2-Lamp T12HO	Mag-STD	2	55	135	8.5
F43EHS	$\begin{aligned} & \text { F42T12/ } \\ & \text { HO/ES } \end{aligned}$	```Fluorescent, (3) 42", HO lamps (3.5' lamp)```	$\begin{aligned} & \text { 4' 3-Lamp T12ES } \\ & \text { HO } \end{aligned}$	Mag-STD	3	55	215	8.5
F41EIS	$\begin{aligned} & \text { F48T12/ } \\ & \text { ES } \end{aligned}$	Fluorescent, (1) 48" ES Instant Start lamp. Magnetic ballast	4' 1-Lamp T12ES	Mag-STD	1	40	51	8.5
F42EIS	$\begin{aligned} & \text { F48T12/ } \\ & \text { ES } \end{aligned}$	Fluorescent, (2) 48" ES Instant Start lamps. Magnetic ballast	4' 2-Lamp T12ES	Mag-STD	2	40	82	8.5
F43EIS	$\begin{aligned} & \text { F48T12/ } \\ & \text { ES } \end{aligned}$	Fluorescent, (3) 48" ES Instant Start lamps. Magnetic ballast	4' 3-Lamp T12ES	Mag-STD	3	40	133	8.5
F44EIS	$\begin{aligned} & \text { F48T12/ } \\ & \text { ES } \end{aligned}$	Fluorescent, (4) 48" ES Instant Start lamps. Magnetic ballast	4' 4-Lamp T12IS	Mag-STD	4	40	164	8.5
F41SHS	$\begin{aligned} & \text { F48T12/ } \\ & \text { HO } \end{aligned}$	Fluorescent, (1) 48", STD HO lamp	4' 1-Lamp T12HO	Mag-STD	1	60	85	8.5
F42SHS	$\begin{aligned} & \text { F48T12/ } \\ & \text { HO } \end{aligned}$	Fluorescent, (2) 48", STD HO lamps	4' 2-Lamp T12HO	Mag-STD	2	60	145	8.5
F43SHS	$\begin{aligned} & \text { F48T12/ } \\ & \text { HO } \end{aligned}$	Fluorescent, (3) 48", STD HO lamps	4' 3-Lamp T12HO	Mag-STD	3	60	230	8.5
F44SHS	$\begin{aligned} & \text { F48T12/ } \\ & \text { HO } \\ & \hline \end{aligned}$	Fluorescent, (4) 48", STD HO lamps	4' 4-Lamp T12HO	Mag-STD	4	60	290	8.5
F41EHS	$\begin{aligned} & \text { F48T12/ } \\ & \text { HO/ES } \end{aligned}$	Fluorescent, (1) 48", ES HO lamp	4' 1-Lamp T12HO	Mag-STD	1	55	80	8.5
F44EHS	$\begin{aligned} & \text { F48T12/ } \\ & \text { HO/ES } \end{aligned}$	Fluorescent, (4) 48", ES HO lamps	$\begin{aligned} & \text { 4' 3-Lamp T12ES } \\ & \text { HO } \end{aligned}$	Mag-STD	4	55	270	8.5
F41SVS	$\begin{aligned} & \text { F48T12/ } \\ & \text { VHO } \end{aligned}$	Fluorescent, (1) 48", STD VHO lamp	$\begin{aligned} & \text { 4' 1-Lamp } \\ & \text { T12VHO } \end{aligned}$	Mag-STD	1	110	140	8.5
F42SVS	$\begin{aligned} & \text { F48T12/ } \\ & \text { VHO } \end{aligned}$	Fluorescent, (2) 48", STD VHO lamps	$\begin{aligned} & \text { 4' 2-Lamp } \\ & \text { T12VHO } \end{aligned}$	Mag-STD	2	110	252	8.5
F43SVS	$\begin{aligned} & \text { F48T12/ } \\ & \text { VHO } \end{aligned}$	Fluorescent, (3) 48", STD VHO lamps	$\begin{aligned} & \text { 4' 3-Lamp } \\ & \text { T12VHO } \end{aligned}$	Mag-STD	3	110	377	8.5
F44SVS	$\begin{aligned} & \text { F48T12/ } \\ & \text { VHO } \end{aligned}$	Fluorescent, (4) 48", STD VHO lamps	$\begin{aligned} & \text { 4' 4-Lamp } \\ & \text { T12VHO } \end{aligned}$	Mag-STD	4	110	484	8.5
F44EVS	$\begin{aligned} & \text { F48T12/ } \\ & \text { VHO/ES } \end{aligned}$	Fluorescent, (4) 48", VHO ES lamps	$\begin{aligned} & \text { 4' 4-Lamp } \\ & \text { T12VHO } \end{aligned}$	Mag-STD	4	100	420	8.5
F51SL	F60T12	Fluorescent, (1) 60", STD lamp	5' 1-Lamp T12	Electronic	1	50	44	15.5
F51SS	F60T12	Fluorescent, (1) 60", STD lamp	5' 1-Lamp T12	Mag-STD	1	50	63	8.5
F52SL	F60T12	Fluorescent, (2) 60", STD lamps	5' 2-Lamp T12	Electronic	2	50	88	15.5
F52SS	F60T12	Fluorescent, (2) 60", STD lamps	5' 2-Lamp T12	Mag-STD	2	50	128	8.5
F51SHE	$\begin{aligned} & \text { F60T12/ } \\ & \text { HO } \end{aligned}$	Fluorescent, (1) 60", STD HO lamp	5' 1-Lamp T12HO	Mag-ES	1	75	88	8.5
F51SHL	$\begin{aligned} & \text { F60T12/ } \\ & \text { HO } \end{aligned}$	Fluorescent, (1) 60", STD HO lamp	5' 1-Lamp T12HO	Electronic	1	75	69	15.5
F51SHS	$\begin{aligned} & \text { F60T12/ } \\ & \text { HO } \end{aligned}$	Fluorescent, (1) 60", STD HO lamp	5' 1-Lamp T12HO	Mag-STD	1	75	92	8.5
F52SHE	$\begin{aligned} & \text { F60T12/ } \\ & \text { HO } \end{aligned}$	Fluorescent, (2) 60", STD HO lamps	5' 2-Lamp T12HO	Mag-ES	2	75	176	8.5
F52SHL	$\begin{aligned} & \text { F60T12/ } \\ & \text { HO } \end{aligned}$	Fluorescent, (2) 60", STD HO lamps	5' 2-Lamp T12HO	Electronic	2	75	138	15.5
F52SHS	$\begin{aligned} & \text { F60T12/ } \\ & \text { HO } \end{aligned}$	Fluorescent, (2) 60", STD HO lamps	5' 2-Lamp T12HO	Mag-STD	2	75	168	8.5
F51SVS	$\begin{aligned} & \text { F60T12/ } \\ & \text { VHO } \end{aligned}$	Fluorescent, (1) 60", VHO ES lamp	$\begin{aligned} & \text { 5' 1-Lamp } \\ & \text { T12VHO } \end{aligned}$	Mag-STD	1	135	165	8.5

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
F52SVS	$\begin{aligned} & \text { F60T12/ } \\ & \text { VHO } \end{aligned}$	Fluorescent, (2) 60", VHO ES lamps	$\begin{aligned} & \text { 5' 2-Lamp } \\ & \text { T12VHO } \end{aligned}$	Mag-STD	2	135	310	8.5
F61ISL	F72T12	Fluorescent, (1) 72", STD lamp, IS electronic ballast	6' 1-Lamp T12	Electronic	1	55	68	15.5
F61SS	F72T12	Fluorescent, (1) 72", STD lamp	6' 1-Lamp T12	Mag-STD	1	55	76	8.5
F62ISL	F72T12	Fluorescent, (2) 72", STD lamps, IS electronic ballast	6' 2-Lamp T12IS	Electronic	2	55	108	15.5
F62SE	F72T12	Fluorescent, (2) 72", STD lamps	6' 2-Lamp T12	Mag-ES	2	55	122	8.5
F62SL	F72T12	Fluorescent, (2) 72", STD lamps	6' 2-Lamp T12	Electronic	2	55	108	15.5
F62SS	F72T12	Fluorescent, (2) 72", STD lamps	6' 2-Lamp T12	Mag-STD	2	55	142	8.5
F63ISL	F72T12	Fluorescent, (3) 72", STD lamps, IS electronic ballast	6' 3-Lamp T12IS	Electronic	3	55	176	15.5
F63SS	F72T12	Fluorescent, (3) 72", STD lamps	6' 3-Lamp T12	Mag-STD	3	55	202	8.5
F64ISL	F72T12	Fluorescent, (4) 72", STD lamps, IS electronic ballast	6' 4-Lamp T12IS	Electronic	4	55	216	15.5
F64SE	F72T12	Fluorescent, (4) 72", STD lamps	6' 4-Lamp T12	Mag-ES	4	55	244	8.5
F64SS	F72T12	Fluorescent, (4) 72", STD lamps	6' 4-Lamp T12	Mag-STD	4	56	244	8.5
F61SHS	$\begin{aligned} & \text { F72T12/ } \\ & \text { HO } \end{aligned}$	Fluorescent, (1) 72", STD HO lamp	6' 1-Lamp T12HO	Mag-STD	1	85	106	8.5
F62SHE	$\begin{aligned} & \text { F72T12/ } \\ & \text { HO } \end{aligned}$	Fluorescent, (2) 72", STD HO lamps	6' 2-Lamp T12HO	Mag-ES	2	85	194	8.5
F62SHL	$\begin{aligned} & \text { F72T12/ } \\ & \text { HO } \end{aligned}$	Fluorescent, (2) 72", STD HO lamps	6' 2-Lamp T12HO	Electronic	2	85	167	15.5
F62SHS	$\begin{aligned} & \text { F72T12/ } \\ & \text { HO } \end{aligned}$	Fluorescent, (2) 72", STD HO lamps	6' 2-Lamp T12HO	Mag-STD	2	85	200	8.5
F64SHE	$\begin{aligned} & \text { F72T12/ } \\ & \text { HO } \end{aligned}$	Fluorescent, (4) 72", HO lamps	6' 4-Lamp T12HO	Mag-ES	4	85	388	8.5
F61SVS	$\begin{aligned} & \text { F72T12/ } \\ & \text { VHO } \\ & \hline \end{aligned}$	Fluorescent, (1) 72", VHO lamp	$\begin{aligned} & \text { 6' 1-Lamp } \\ & \text { T12VHO } \end{aligned}$	Mag-STD	1	160	180	8.5
F62SVS	$\begin{aligned} & \text { F72T12/ } \\ & \text { VHO } \\ & \hline \end{aligned}$	Fluorescent, (2) 72", VHO lamps	$\begin{aligned} & \text { 6' 2-Lamp } \\ & \text { T12VHO } \end{aligned}$	Mag-STD	2	160	330	8.5
F71HS	$\begin{aligned} & \text { F84T12/ } \\ & \text { HO } \end{aligned}$	Fluorescent, (1) 84", HO lamp	7' 1-Lamp T12HO	Mag-ES	1	100	104	8.5
F72HS	$\begin{aligned} & \text { F84T12/ } \\ & \text { HO } \end{aligned}$	Fluorescent, (2) 84", HO lamp	7' 2-Lamp T12HO	Mag-ES	2	100	198	8.5
F81SL	F96T12	Fluorescent, (1) 96", STD lamp	8' 1-Lamp T12	Electronic	1	75	69	15.5
F81SL/T2	F96T12	Fluorescent, (1) 96", STD lamp, Tandem 2-lamp ballast	8' 1-Lamp T12	Electronic	1	75	55	15.5
F82SL	F96T12	Fluorescent, (2) 96", STD lamps	8' 2-Lamp T12	Electronic	2	75	110	15.5
F83SL	F96T12	Fluorescent, (3) 96", STD lamps	8' 3-Lamp T12	Electronic	3	75	179	15.5
F84SL	F96T12	Fluorescent, (4) 96", STD lamps	8' 4-Lamp T12	Electronic	4	75	220	15.5
F81EE	$\begin{aligned} & \text { F96T12/ } \\ & \text { ES } \\ & \hline \end{aligned}$	Fluorescent, (1) 96" ES lamp	8' 4-Lamp T12ES	Mag-ES	1	60	75	8.5
F81EE/T2	$\begin{aligned} & \hline \text { F96T12/ } \\ & \text { ES } \\ & \hline \end{aligned}$	Fluorescent, (1) 96", ES lamp, Tandem 2-lamp ballast	8' 1-Lamp T12ES	Mag-ES	1	60	62	8.5
F81EL	$\begin{aligned} & \text { F96T12/ } \\ & \text { ES } \\ & \hline \end{aligned}$	Fluorescent, (1) 96", ES lamp	8' 1-Lamp T12ES	Electronic	1	60	69	15.5
F81EL/T2	$\begin{aligned} & \text { F96T12/ } \\ & \text { ES } \\ & \hline \end{aligned}$	Fluorescent, (1) 96", ES lamp, Tandem 2-lamp ballast	8' 1-Lamp T12ES	Electronic	1	60	55	15.5
F82EE	$\begin{aligned} & \text { F96T12/ } \\ & \text { ES } \\ & \hline \end{aligned}$	Fluorescent, (2) 96", ES lamps	8' 2-Lamp T12ES	Mag-ES	2	60	123	8.5
F82EL	$\begin{aligned} & \text { F96T12/ } \\ & \text { ES } \end{aligned}$	Fluorescent, (2) 96", ES lamps	8' 2-Lamp T12ES	Electronic	2	60	110	15.5
F83EE	$\begin{aligned} & \text { F96T12/ } \\ & \text { ES } \end{aligned}$	Fluorescent, (3) 96", ES lamps	8' 3-Lamp T12ES	Mag-ES	3	60	198	8.5

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
F83EL	$\begin{aligned} & \text { F96T12/ } \\ & \text { ES } \\ & \hline \end{aligned}$	Fluorescent, (3) 96", ES lamps	8' 3-Lamp T12ES	Electronic	3	60	179	15.5
F84EE	$\begin{aligned} & \text { F96T12/ } \\ & \text { ES } \\ & \hline \end{aligned}$	Fluorescent, (4) 96", ES lamps	8' 4-Lamp T12ES	Mag-ES	4	60	246	8.5
F84EL	$\begin{aligned} & \text { F96T12/ } \\ & \text { ES } \\ & \hline \end{aligned}$	Fluorescent, (4) 96", ES lamps	8' 4-Lamp T12ES	Electronic	4	60	220	15.5
F86EE	$\begin{aligned} & \text { F96T12/ } \\ & \text { ES } \\ & \hline \end{aligned}$	Fluorescent, (6) 96", ES lamps	8' 6-Lamp T12ES	Mag-ES	6	60	369	8.5
F81SHS	$\begin{aligned} & \text { F96T12/ } \\ & \text { HO } \\ & \hline \end{aligned}$	Fluorescent, (1) 96", STD HO lamp	8' 1-Lamp T12HO	Mag-STD	1	110	121	8.5
F82SHE	$\begin{aligned} & \text { F96T12/ } \\ & \text { HO } \end{aligned}$	Fluorescent, (2) 96", STD HO lamps	8' 2-Lamp T12HO	Mag-ES	2	110	207	8.5
F82SHL	$\begin{aligned} & \text { F96T12/ } \\ & \text { HO } \end{aligned}$	Fluorescent, (2) 96", STD HO lamps	8' 2-Lamp T12HO	Electronic	2	110	173	15.5
F82SHS	$\begin{aligned} & \text { F96T12/ } \\ & \text { HO } \end{aligned}$	Fluorescent, (2) 96", STD HO lamps	8' 2-Lamp T12HO	Mag-STD	2	110	207	8.5
F83SHE	$\begin{aligned} & \text { F96T12/ } \\ & \text { HO } \end{aligned}$	Fluorescent, (3) 96", STD HO lamps	8' 3-Lamp T12HO	Mag-ES	3	110	319	8.5
F83SHS	$\begin{aligned} & \text { F96T12/ } \\ & \text { HO } \end{aligned}$	Fluorescent, (3) 96", STD HO lamps	8' 3-Lamp T12HO	Mag-STD	3	110	319	8.5
F84SHE	$\begin{aligned} & \text { F96T12/ } \\ & \text { HO } \end{aligned}$	Fluorescent, (4) 96", STD HO lamps	8' 4-Lamp T12HO	Mag-ES	4	110	414	8.5
F84SHL	$\begin{aligned} & \text { F96T12/ } \\ & \text { HO } \end{aligned}$	Fluorescent, (4) 96", STD HO lamps	8' 4-Lamp T12HO	Electronic	4	110	346	15.5
F84SHS	$\begin{aligned} & \text { F96T12/ } \\ & \text { HO } \end{aligned}$	Fluorescent, (4) 96", STD HO lamps	8' 4-Lamp T12HO	Mag-STD	4	110	414	8.5
F88SHS	$\begin{aligned} & \text { F96T12/ } \\ & \text { HO } \\ & \hline \end{aligned}$	Fluorescent, (8) 96", STD HO lamps	8' 8-Lamp T12HO	Mag-STD	8	110	828	8.5
F81EHL	$\begin{aligned} & \text { F96T12/ } \\ & \text { HO/ES } \end{aligned}$	Fluorescent, (1) 96", ES HO lamp	$\begin{aligned} & \text { 8' 1-Lamp T12ES } \\ & \text { HO } \end{aligned}$	Electronic	1	95	80	15.5
F81EHS	$\begin{aligned} & \text { F96T12/ } \\ & \text { HO/ES } \end{aligned}$	Fluorescent, (1) 96", ES HO lamp	$\begin{aligned} & \text { 8' 1-Lamp T12ES } \\ & \text { HO } \end{aligned}$	Mag-STD	1	95	113	8.5
F82EHE	$\begin{aligned} & \text { F96T12/ } \\ & \text { HO/ES } \end{aligned}$	Fluorescent, (2) 96", ES HO lamps	$\begin{aligned} & \text { 8' 2-Lamp T12ES } \\ & \text { HO } \end{aligned}$	Mag-ES	2	95	207	8.5
F82EHL	$\begin{aligned} & \text { F96T12/ } \\ & \text { HO/ES } \\ & \hline \end{aligned}$	Fluorescent, (2) 96", ES HO lamps	$\begin{aligned} & \text { 8' 2-Lamp T12ES } \\ & \text { HO } \\ & \hline \end{aligned}$	Electronic	2	95	173	15.5
F82EHS	$\begin{aligned} & \text { F96T12/ } \\ & \text { HO/ES } \end{aligned}$	Fluorescent, (2) 96", ES HO lamps	8' 2-Lamp T12ES HO	Mag-STD	2	95	207	8.5
F83EHE	$\begin{aligned} & \text { F96T12/ } \\ & \text { HO/ES } \end{aligned}$	Fluorescent, (3) 96", ES HO lamps, (1) 2-lamp ES Ballast and (1) 1-lamp STD Ballast	8' 3-Lamp T12ES HO	Mag-ES/STD	3	95	319	8.5
F83EHS	$\begin{aligned} & \text { F96T12/ } \\ & \text { HO/ES } \\ & \hline \end{aligned}$	Fluorescent, (3) 96", ES HO lamps	$\begin{aligned} & \text { 8' 3-Lamp T12ES } \\ & \text { HO } \end{aligned}$	Mag-STD	3	95	319	8.5
F84EHE	$\begin{aligned} & \text { F96T12/ } \\ & \text { HO/ES } \end{aligned}$	Fluorescent, (4) 96", ES HO lamps	$\begin{aligned} & \text { 8' 4-Lamp T12ES } \\ & \text { HO } \end{aligned}$	Mag-ES	4	95	414	8.5
F84EHL	$\begin{aligned} & \text { F96T12/ } \\ & \text { HO/ES } \end{aligned}$	Fluorescent, (4) 96", ES HO lamps	$\begin{aligned} & \text { 8' 4-Lamp T12ES } \\ & \text { HO } \end{aligned}$	Electronic	4	95	346	15.5
F84EHS	$\begin{aligned} & \text { F96T12/ } \\ & \text { HO/ES } \\ & \hline \end{aligned}$	Fluorescent, (4) 96", ES HO lamps	$\begin{aligned} & \text { 8' 4-Lamp T12ES } \\ & \text { HO } \end{aligned}$	Mag-STD	4	95	414	8.5
F86EHS	$\begin{aligned} & \text { F96T12/ } \\ & \text { HO/ES } \\ & \hline \end{aligned}$	Fluorescent, (6) 96", ES HO lamps	$\begin{aligned} & \text { 8' 6-Lamp T12ES } \\ & \text { HO } \end{aligned}$	Mag-STD	6	95	519	8.5
F88EHE	$\begin{aligned} & \text { F96T12/ } \\ & \text { HO/ES } \end{aligned}$	Fluorescent, (8) 96", ES HO lamps	$\begin{aligned} & \text { 8' 8-Lamp T12ES } \\ & \text { HO } \end{aligned}$	Mag-ES	8	95	828	8.5
F81SVS	$\begin{aligned} & \text { F96T12/ } \\ & \text { VHO } \end{aligned}$	Fluorescent, (1) 96", STD VHO lamp	$\begin{aligned} & \text { 8' 1-Lamp } \\ & \text { T12VHO } \end{aligned}$	Mag-STD	1	215	205	8.5
F82SVS	$\begin{aligned} & \text { F96T12/ } \\ & \text { VHO } \end{aligned}$	Fluorescent, (2) 96", STD VHO lamps	$\begin{aligned} & \text { 8' 2-Lamp } \\ & \text { T12VHO } \end{aligned}$	Mag-STD	2	215	380	8.5
F83SVS	$\begin{aligned} & \text { F96T12/ } \\ & \text { VHO } \end{aligned}$	Fluorescent, (3) 96", STD VHO lamps	$\begin{aligned} & \text { 8' 3-Lamp } \\ & \text { T12VHO } \end{aligned}$	Mag-STD	3	215	585	8.5
F84SVS	$\begin{aligned} & \text { F96T12/ } \\ & \text { VHO } \end{aligned}$	Fluorescent, (4) 96", STD VHO lamps	$\begin{aligned} & \text { 8' 4-Lamp } \\ & \text { T12VHO } \end{aligned}$	Mag-STD	4	215	760	8.5
F81EVS	$\begin{aligned} & \text { F96T12/ } \\ & \text { VHO/ES } \end{aligned}$	Fluorescent, (1) 96", ES VHO lamp	8' 1-Lamp T12ES VHO	Mag-STD	1	185	205	8.5

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
F82EVS	$\begin{aligned} & \text { F96T12/ } \\ & \text { VHO/ES } \end{aligned}$	Fluorescent, (2) 96", ES VHO lamps	$\begin{aligned} & \text { 8' 2-Lamp T12ES } \\ & \text { VHO } \end{aligned}$	Mag-STD	2	195	380	8.5
F83EVS	$\begin{aligned} & \hline \text { F96T12/ } \\ & \text { VHO/ES } \end{aligned}$	Fluorescent, (3) 96", ES VHO lamps	$\begin{aligned} & \text { 8' 3-Lamp T12ES } \\ & \text { VHO } \end{aligned}$	Mag-STD	3	185	585	8.5
F84EVS	$\begin{aligned} & \text { F96T12/ } \\ & \text { VHO/ES } \end{aligned}$	Fluorescent, (4) 96", ES VHO lamps	$\begin{aligned} & \text { 8' 4-Lamp T12ES } \\ & \text { VHO } \\ & \hline \end{aligned}$	Mag-STD	4	185	760	8.5
F81SGS	F96T17	Fluorescent, (1) 96", T17 Grooved lamp	8' 1-Lamp T12	Mag-STD	1	215	235	8.5
F40SE/D1	None	Fluorescent, (0) 48" lamps, Completely delamped fixture with (1) hot ballast		Mag-ES	1	0	4	8.5
F40SE/D2	None	Fluorescent, (0) 48" lamps, Completely delamped fixture with (2) hot ballast		Mag-ES	1	0	8	8.5
Circline Fluorescent Fixtures								
FC6/1	FC6T9	Fluorescent, (1) 6" circular lamp, RS ballast	6" 1-Lamp T9 Cir	Mag-STD	1	20	25	15.5
FC8/1	FC8T9	Fluorescent, (1) 8" circular lamp, RS ballast	8" 1-Lamp T9 Cir	Mag-STD	1	22	26	15.5
FC8/2	FC8T9	Fluorescent, (2) 8" circular lamps, RS ballast	8" 2-Lamp T9 Cir	Mag-STD	2	22	52	15.5
FC20	FC6T9	Fluorescent, Circline, (1) 20W lamp, preheat ballast	20W 1-Lamp T9 Cir	Mag-STD	1	20	20	15.5
FC22	FC8T9	Fluorescent, Circline, (1) 22W lamp, preheat ballast	$\begin{aligned} & \text { 22W 1-Lamp T9 } \\ & \text { Cir } \end{aligned}$	Mag-STD	1	22	20	15.5
FC12/1	FC12T9	Fluorescent, (1) 12" circular lamp, RS ballast	$\begin{aligned} & \text { 12" 1-Lamp T9 } \\ & \text { Cir } \\ & \hline \end{aligned}$	Mag-STD	1	32	31	15.5
FC12/2	FC12T9	Fluorescent, (2) 12" circular lamps, RS ballast	$\begin{aligned} & \text { 12" 2-Lamp T9 } \\ & \text { Cir } \end{aligned}$	Mag-STD	2	32	62	15.5
FC32	FC12T9	Fluorescent, Circline, (1) 32W lamp, preheat ballast	32W 1-Lamp T9 Cir	Mag-STD	1	32	40	15.5
FC16/1	FC16T9	Fluorescent, (1) 16" circular lamp	$\begin{aligned} & \text { 16" 1-Lamp T9 } \\ & \text { Cir } \end{aligned}$	Mag-STD	1	40	35	15.5
FC40	FC16T9	Fluorescent, Circline, (1) 32W lamp, preheat ballast	40W 1-Lamp T9 Cir	Mag-STD	1	32	42	15.5
Fluorescent Electrodeless Induction Fixtures								
FEI40/1	CFT40W	Electrodeless Fluorescent System, (1) 40W lamp	1-Lamp 40W Induction	Electronic	1	40	44	15.5
FEI55/1	CFT55W	Electrodeless Fluorescent System, (1) 55W lamp	1-Lamp 55W Induction	Electronic	1	55	59	15.5
FEI60/1	CFT60W	Electrodeless Fluorescent System, (1) 60W lamp	1-Lamp 60W Induction	Electronic	1	60	64	15.5
FEI70/1	CFT70W	Electrodeless Fluorescent System, (1) 70W lamp	$\begin{aligned} & \text { 1-Lamp 70W } \\ & \text { Induction } \end{aligned}$	Electronic	1	70	74	15.5
FEI80/1	CFT80W	Electrodeless Fluorescent System, (1) 80W lamp	1-Lamp 80W Induction	Electronic	1	80	84	15.5
FEI85/1	CFT85W	Electrodeless Fluorescent System, (1) 85W lamp	1-Lamp 85W Induction	Electronic	1	85	89	15.5
FEI100/1	$\begin{aligned} & \text { CFT100 } \\ & \text { W } \end{aligned}$	Electrodeless Fluorescent System, (1) 100W lamp	$\begin{aligned} & \text { 1-Lamp 100W } \\ & \text { Induction } \end{aligned}$	Electronic	1	100	105	15.5
FEl125/1	$\begin{aligned} & \text { CFT125 } \\ & \text { W } \\ & \hline \end{aligned}$	Electrodeless Fluorescent System, (1) 125W lamp	$\begin{aligned} & \text { 1-Lamp 125W } \\ & \text { Induction } \end{aligned}$	Electronic	1	125	131	15.5
FEI150/1	$\begin{aligned} & \text { CFT150 } \\ & \text { W } \end{aligned}$	Electrodeless Fluorescent System, (1) 150W lamp	$\begin{aligned} & \text { 1-Lamp 150W } \\ & \text { Induction } \end{aligned}$	Electronic	1	150	157	15.5
FEl165/1	$\begin{aligned} & \text { CFT165 } \\ & \text { W } \\ & \hline \end{aligned}$	Electrodeless Fluorescent System, (1) 165W lamp	1-Lamp 165W Induction	Electronic	1	165	173	15.5
FEI200/1	$\begin{aligned} & \text { CFT200 } \\ & \text { W } \end{aligned}$	Electrodeless Fluorescent System, (1) 200W lamp	$\begin{aligned} & \text { 1-Lamp 200W } \\ & \text { Induction } \end{aligned}$	Electronic	1	200	210	15.5
FEI250/1	$\begin{aligned} & \text { CFT250 } \\ & \text { W } \end{aligned}$	Electrodeless Fluorescent System, (1) 250W lamp	$\begin{aligned} & \text { 1-Lamp 250W } \\ & \text { Induction } \end{aligned}$	Electronic	1	250	263	15.5
FEI300/1	$\begin{aligned} & \text { CFT300 } \\ & \text { W } \end{aligned}$	Electrodeless Fluorescent System, (1) 300W lamp	1-Lamp 300W Induction	Electronic	1	300	315	15.5
FEI400/1	$\begin{aligned} & \text { CFT400 } \\ & \text { W } \end{aligned}$	Electrodeless Fluorescent System, (1) 400W lamp	1-Lamp 400W Induction	Electronic	1	400	420	15.5

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
U-Tube Fluorescent Fixtures								
FU1ILL	$\begin{aligned} & \text { FU31T8/ } \\ & 6 \end{aligned}$	Fluorescent, (1) U-Tube, T-8 lamp, Instant Start ballast	$\begin{aligned} & \text { 1-Lamp T8 U- } \\ & \text { Tube } \end{aligned}$	Electronic	1	32	31	15.5
FU1LL	$\begin{aligned} & \text { FU31T8/ } \\ & 6 \\ & \hline \end{aligned}$	Fluorescent, (1) U-Tube, T-8 lamp	$\begin{aligned} & \text { 1-Lamp T8 U- } \\ & \text { Tube } \end{aligned}$	Electronic	1	32	32	15.5
FU1LL-R	$\begin{aligned} & \text { FU31T8/ } \\ & 6 \\ & \hline \end{aligned}$	Fluorescent, (1) U-Tube, T-8 lamp, RLO ($\mathrm{BF}<0.85$)	$\begin{aligned} & \text { 1-Lamp T8 U- } \\ & \text { Tube } \end{aligned}$	Electronic	1	31	27	15.5
FU2ILL	$\begin{aligned} & \text { FU31T8/ } \\ & 6 \end{aligned}$	Fluorescent, (2) U-Tube, T-8 lamps, Instant Start Ballast	$\begin{aligned} & \text { 1-Lamp T8 U- } \\ & \text { Tube } \end{aligned}$	Electronic	2	32	59	15.5
FU2ILL-H	$\begin{aligned} & \text { FU31T8/ } \\ & 6 \\ & \hline \end{aligned}$	Fluorescent, (2) U-Tube, T-8 lamps, Instant Start HLO Ballast	$\begin{aligned} & \text { 2-Lamp T8 HLO } \\ & \text { U-Tube } \end{aligned}$	Electronic	2	32	65	15.5
FU2ILL-R	$\begin{aligned} & \text { FU31T8/ } \\ & 6 \\ & \hline \end{aligned}$	Fluorescent, (2) U-Tube, T-8 lamps, Instant Start RLO Ballast	$\begin{aligned} & \text { 2-Lamp T8 RLO } \\ & \text { U-Tube } \end{aligned}$	Electronic	2	32	52	15.5
FU2ILL/T4	$\begin{aligned} & \text { FU31T8/ } \\ & 6 \end{aligned}$	Fluorescent, (2) U-Tube, T-8 lamps, Instant Start Ballast, Tandem 4-lamp ballast	2-Lamp T8 UTube	Electronic	2	32	56	15.5
$\begin{aligned} & \text { FU2ILL/T4 } \\ & -R \end{aligned}$	$\begin{aligned} & \text { FU31T8/ } \\ & 6 \end{aligned}$	Fluorescent, (2) U-Tube, T-8 lamps, Instant Start Ballast, RLO, Tandem 4lamp ballast	2-Lamp T8 RLO U-Tube	Electronic	2	32	49	15.5
FU2LL	$\begin{aligned} & \text { FU31T8/ } \\ & 6 \end{aligned}$	Fluorescent, (2) U-Tube, T-8 lamps	$\begin{aligned} & \text { 2-Lamp T8 U- } \\ & \text { Tube } \end{aligned}$	Electronic	2	32	60	15.5
FU2LL-R	$\begin{aligned} & \text { FU31T8/ } \\ & 6 \end{aligned}$	Fluorescent, (2) U-Tube, T-8 lamps, RLO ($\mathrm{BF}<0.85$)	$\begin{aligned} & \text { 2-Lamp T8 RLO } \\ & \text { U-Tube } \end{aligned}$	Electronic	2	31	54	15.5
FU2LL/T2	$\begin{aligned} & \text { FU31T8/ } \\ & 6 \\ & \hline \end{aligned}$	Fluorescent, (2) U-Tube, T-8 lamps, Tandem 4-lamp ballast	$\begin{aligned} & \text { 2-Lamp T8 U- } \\ & \text { Tube } \end{aligned}$	Electronic	2	32	59	15.5
FU3ILL	$\begin{aligned} & \text { FU31T8/ } \\ & 6 \\ & \hline \end{aligned}$	Fluorescent, (3) U-Tube, T-8 lamps, Instant Start Ballast	3-Lamp T8 UTube	Electronic	3	32	89	15.5
FU3ILL-R	$\begin{aligned} & \text { FU31T8/ } \\ & 6 \\ & \hline \end{aligned}$	Fluorescent, (3) U-Tube, T-8 lamps, Instant Start RLO Ballast	3-Lamp T8ES UTube	Electronic	3	32	78	15.5
FU1ILU	$\begin{aligned} & \text { FU32T8/ } \\ & 6 \\ & \hline \end{aligned}$	Fluorescent, (1) 6 " spacing U-Tube, T-8 lamp, IS Ballast, NLO ($0.85<B F<0.95)$	$\begin{aligned} & \hline \text { 1-Lamp T8 6" } \\ & \text { Spacing U-Tube } \end{aligned}$	Electronic	1	32	29	15.5
FU1ILU-H	$\begin{aligned} & \text { FU32T8/ } \\ & 6 \end{aligned}$	Fluorescent, (1) 6" spacing U-Tube, T-8 lamp, IS Ballast, HLO (. $95<\mathrm{BF}<1.1$)	$\begin{aligned} & \text { 1-Lamp T8 6" } \\ & \text { Spacing U-Tube } \\ & \text { HLO } \end{aligned}$	Electronic	1	32	34	15.5
FU2ILU	$\begin{aligned} & \text { FU32T8/ } \\ & 6 \\ & \hline \end{aligned}$	Fluorescent, (2) 6" spacing U-Tube, T-8 lamps, IS Ballast, NLO ($0.85<B F<0.95$)	2-Lamp T8 6" Spacing U-Tube	Electronic	2	32	55	15.5
FU2ILU-R	$\begin{aligned} & \text { FU32T8/ } \\ & 6 \end{aligned}$	Fluorescent, (2) 6 " spacing U-Tube, T-8 lamps, IS Ballast, RLO (BF < 0.85)	2-Lamp T8 6" Spacing U-Tube RLO	Electronic	2	32	48	15.5
FU2ILU-V	$\begin{aligned} & \text { FU32T8/ } \\ & 6 \end{aligned}$	Fluorescent, (2) 6" spacing U-Tube, T-8 lamps, IS Ballast, VHLO (BF > 1.1)	2-Lamp T8 6" Spacing U-Tube VHLO	Electronic	2	32	73	15.5
FU3ILU	$\begin{aligned} & \text { FU32T8/ } \\ & 6 \\ & \hline \end{aligned}$	Fluorescent, (3) 6" spacing U-Tube, T-8 lamps, IS Ballast, NLO ($0.85<B F<0.95$)	$\begin{aligned} & \text { 3-Lamp T8 6" } \\ & \text { Spacing U-Tube } \end{aligned}$	Electronic	3	32	81	15.5
FU3ILU-R	$\begin{aligned} & \text { FU32T8/ } \\ & 6 \end{aligned}$	Fluorescent, (3) 6" spacing U-Tube, T-8 lamps, IS Ballast, RLO (BF < 0.85)	$\begin{aligned} & \text { 3-Lamp T8 6" } \\ & \text { Spacing U-Tube } \\ & \text { RLO } \\ & \hline \end{aligned}$	Electronic	3	32	73	15.5
FU1SE	FU40T12	Fluorescent, (1) U-Tube, STD lamp	$\begin{aligned} & \text { 1-Lamp T12 U- } \\ & \text { Tube } \end{aligned}$	Mag-ES	1	40	43	15.5
FU1SS	FU40T12	Fluorescent, (1) U-Tube, ES Lamp	$\begin{aligned} & \text { 1-Lamp T12 U- } \\ & \text { Tube ES } \end{aligned}$	Mag-STD	1	40	43	8.5
FU2SE	FU40T12	Fluorescent, (2) U-Tube, STD lamps	$\begin{aligned} & \text { 2-Lamp T12 U- } \\ & \text { Tube } \end{aligned}$	Mag-ES	2	40	72	15.5
FU2SL	FU40T12	Fluorescent (2) 48" U-bent Standard lamps, Electronic ballast, NLO (0.85 < BF < 0.95)	$\begin{aligned} & \text { 2-Lamp T12 U- } \\ & \text { Tube } \end{aligned}$	Electronic	2	40	63	15.5
FU2SS	FU40T12	Fluorescent, (1) U-Tube, STD lamp, STD Mag Ballast	$\begin{aligned} & \text { 2-Lamp T12 U- } \\ & \text { Tube } \end{aligned}$	Mag-STD	2	40	72	8.5
FU3SE	FU40T12	Fluorescent, (3) U-Tube, STD lamps	$\begin{aligned} & \text { 3-Lamp T12 U- } \\ & \text { Tube } \end{aligned}$	Mag-ES	3	40	115	15.5
FU1EE	$\begin{aligned} & \text { FU40T12 } \\ & \text { /ES } \end{aligned}$	Fluorescent, (1) U-Tube, ES lamp	$\begin{aligned} & \text { 1-Lamp T12ES U- } \\ & \text { Tube } \end{aligned}$	Mag-ES	1	35	43	15.5
FU1ES	$\begin{aligned} & \text { FU40T12 } \\ & \text { /ES } \end{aligned}$	Fluorescent, (1) U-Tube, ES Lamp	1-Lamp T12ES UTube	Mag-STD	1	34	43	8.5

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
FU2EE	$\begin{aligned} & \text { FU4OT12 } \\ & \text { /ES } \\ & \hline \end{aligned}$	Fluorescent, (2) U-Tube, ES lamps	$\begin{aligned} & \text { 1-Lamp T12ES U- } \\ & \text { Tube } \end{aligned}$	Mag-ES	2	35	72	15.5
FU2EL	FU40T12 /ES	Fluorescent (2) 48" U-bent ES lamps, Electronic ballast, NLO $(0.85<B F<$ 0.95)	1-Lamp T12ES UTube	Electronic	2	34	63	15.5
FU2ES	$\begin{aligned} & \text { FU4OT12 } \\ & \text { /ES } \end{aligned}$	Fluorescent, (2) U-Tube, ES lamps	1-Lamp T12ES UTube	Mag-STD	1	35	72	8.5
FU3EE	$\begin{aligned} & \text { FU40T12 } \\ & \text { /ES } \end{aligned}$	Fluorescent, (3) U-Tube, ES lamps	$\begin{aligned} & \text { 3-Lamp T12ES U- } \\ & \text { Tube } \end{aligned}$	Mag-ES	3	35	115	15.5
High Pressure Sodium Fixtures								
HPS35/1	HPS35	High Pressure Sodium, (1) 35W lamp	35W HPS		1	35	46	15.5
HPS50/1	HPS50	High Pressure Sodium, (1) 50W lamp	50W HPS		1	50	66	15.5
HPS70/1	HPS70	High Pressure Sodium, (1) 70W lamp	70W HPS		1	70	95	15.5
HPS100/1	HPS100	High Pressure Sodium, (1) 100W lamp	100W HPS		1	100	138	15.5
HPS150/1	HPS150	High Pressure Sodium, (1) 150W lamp	150W HPS		1	150	188	15.5
HPS200/1	HPS200	High Pressure Sodium, (1) 200W lamp	200W HPS		1	200	250	15.5
HPS250/1	HPS250	High Pressure Sodium, (1) 250W lamp	250W HPS		1	250	295	15.5
HPS310/1	HPS310	High Pressure Sodium, (1) 310W lamp	310W HPS		1	310	365	15.5
HPS360/1	HPS360	High Pressure Sodium, (1) 360W lamp	360W HPS		1	360	414	15.5
HPS400/1	HPS400	High Pressure Sodium, (1) 400W lamp	400W HPS		1	400	465	15.5
$\begin{aligned} & \text { HPS1000/ } \\ & 1 \end{aligned}$	HPS1000	High Pressure Sodium, (1) 1000W lamp	1000W HPS		1	1000	1100	15.5
Metal Halide Fixtures - Standard, Pulse Start, or Ceramic								
MH20/1-L	MH2O	Metal Halide, (1) 20W lamp	20W Metal Halide	Electronic	1	20	23	15.5
MH22/1-L	MH22	Metal Halide, (1) 22W lamp	22W Metal Halide	Electronic	1	22	26	15.5
MH32/1	MH32	Metal Halide, (1) 32W lamp, Magnetic ballast	32W Metal Halide	Magnetic	1	32	42	15.5
MH39/1	MH39	Metal Halide, (1) 39W lamp, Magnetic ballast	39W Metal Halide	Magnetic	1	39	51	15.5
MH39/1-L	MH39	Metal Halide, (1) 39W lamp	39W Metal Halide	Electronic	1	39	44	15.5
MH50/1	MH50	Metal Halide, (1) 50W lamp, Magnetic ballast	50W Metal Halide	Magnetic	1	50	64	15.5
MH50/1-L	MH50	Metal Halide, (1) 50W lamp	50W Metal Halide	Electronic	1	50	56	15.5
MH70/1	MH70	Metal Halide, (1) 70W lamp, Magnetic ballast	70W Metal Halide	Magnetic	1	70	91	15.5
MH70/1-L	MH70	Metal Halide, (1) 70W lamp	70W Metal Halide	Electronic	1	70	78	15.5
MH100/1	MH100	Metal Halide, (1) 100W lamp, Magnetic ballast	100W Metal Halide	Magnetic	1	100	124	15.5
$\begin{aligned} & \text { MH100/1 } \\ & -\mathrm{L} \end{aligned}$	MH100	Metal Halide, (1) 100W lamp	100W Metal Halide	Electronic	1	100	108	15.5
MH125/1	MH125	Metal Halide, (1) 125W lamp, Magnetic ballast	125W Metal Halide	Magnetic	1	125	148	15.5
MH150/1	MH150	Metal Halide, (1) 150W lamp, Magnetic ballast	$\begin{aligned} & \text { 150W Metal } \\ & \text { Halide } \end{aligned}$	Magnetic	1	150	183	15.5
$\begin{aligned} & \text { MH150/1 } \\ & -L \end{aligned}$	MH150	Metal Halide, (1) 150W lamp	150W Metal Halide	Electronic	1	150	163	15.5
MH175/1	MH175	Metal Halide, (1) 175W lamp, Magnetic ballast	175W Metal Halide	Magnetic	1	175	208	15.5
$\begin{aligned} & \text { MH175/1 } \\ & \text {-L } \end{aligned}$	MH175	Metal Halide, (1) 175W lamp	175W Metal Halide	Electronic	1	175	196	15.5

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
MH200/1	MH200	Metal Halide, (1) 200W lamp, Magnetic ballast	200W Metal Halide	Magnetic	1	200	228	15.5
$\begin{aligned} & \text { MH200/1 } \\ & \text {-L } \\ & \hline \end{aligned}$	MH200	Metal Halide, (1) 200W lamp	200W Metal Halide	Electronic	1	200	219	15.5
MH250/1	MH250	Metal Halide, (1) 250W lamp, Magnetic ballast	250W Metal Halide	Magnetic	1	250	288	15.5
$\begin{aligned} & \text { MH250/1 } \\ & -\mathrm{L} \end{aligned}$	MH250	Metal Halide, (1) 250W lamp	250W Metal Halide	Electronic	1	250	275	15.5
MH320/1	MH320	Metal Halide, (1) 320W lamp, Magnetic ballast	320W Metal Halide	Magnetic	1	320	362	15.5
MH320/1	MH320	Metal Halide, (1) 320W lamp	320W Metal Halide	Electronic	1	320	343	15.5
MH350/1	MH350	Metal Halide, (1) 350W lamp, Magnetic ballast	350W Metal Halide	Magnetic	1	350	391	15.5
$\begin{aligned} & \text { MH350/1 } \\ & -L \end{aligned}$	MH350	Metal Halide, (1) 350W lamp	350W Metal Halide	Electronic	1	350	375	15.5
MH360/1	MH360	Metal Halide, (1) 360W lamp, Magnetic ballast	360W Metal Halide	Magnetic	1	360	418	15.5
MH400/1	MH400	Metal Halide, (1) 400W lamp, Magnetic ballast	400W Metal Halide	Magnetic	1	400	453	15.5
$\begin{aligned} & \text { MH400/1 } \\ & - \text { L } \end{aligned}$	MH400	Metal Halide, (1) 400W lamp	400W Metal Halide	Electronic	1	400	429	15.5
MH450/1	MH450	Metal Halide, (1) 450W lamp, Magnetic ballast	450W Metal Halide	Magnetic	1	450	499	15.5
$\begin{aligned} & \text { MH450/1 } \\ & - \text { L } \end{aligned}$	MH450	Metal Halide, (1) 450W lamp	450W Metal Halide	Electronic	1	450	486	15.5
MH575/1	MH575	Metal Halide, (1) 575W lamp, Magnetic ballast	575W Metal Halide	Magnetic	1	575	630	15.5
MH750/1	MH750	Metal Halide, (1) 750W lamp, Magnetic ballast	750W Metal Halide	Magnetic	1	750	812	15.5
MH775/1	MH775	Metal Halide, (1) 775W lamp, Magnetic ballast	775W Metal Halide	Magnetic	1	775	843	15.5
MH875/1	MH875	Metal Halide, (1) 875W lamp	875W Metal Halide	Magnetic	1	875	939	15.5
$\begin{aligned} & \text { MH1000/ } \\ & 1 \\ & \hline \end{aligned}$	MH1000	Metal Halide, (1) 1000W lamp, Magnetic ballast	1000W Metal Halide	Magnetic	1	1000	1078	15.5
$\begin{aligned} & \text { MH1000/ } \\ & \text { 1-L } \end{aligned}$	MH1000	Metal Halide, (1) 1000W lamp	1000W Metal Halide	Electronic	1	1000	1067	15.5
$\begin{aligned} & \text { MH1500/ } \\ & 1 \end{aligned}$	MH1500	Metal Halide, (1) 1500W lamp, Magnetic ballast	1500W Metal Halide	Magnetic	1	1500	1605	15.5
$\begin{aligned} & \text { MH1650/ } \\ & 1 \end{aligned}$	MH1650	Metal Halide, (1) 1650W lamp	1650W Metal Halide	Magnetic	1	1650	1765	15.5
$\begin{aligned} & \text { MH2OOO/ } \\ & 1 \end{aligned}$	MH2000	Metal Halide, (1) 2000W lamp	2000W Metal Halide	Magnetic	1	2000	2140	15.5
Mercury Vapor Fixtures								
MV40/1	MV40	Mercury Vapor, (1) 40W lamp	40W Mercury Vapor		1	40	50	15.5
MV50/1	MV50	Mercury Vapor, (1) 50W lamp	50W Mercury Vapor		1	50	74	15.5
MV75/1	MV75	Mercury Vapor, (1) 75W lamp	75W Mercury Vapor		1	75	93	15.5
MV100/1	MV100	Mercury Vapor, (1) 100W lamp	100W Mercury Vapor		1	100	125	15.5
MV160/1	$\begin{aligned} & \text { MV160- } \\ & \text { SB } \end{aligned}$	Mercury Vapor, Self-Ballasted, (1) 160W self-ballasted lamp	160W Mercury Vapor		1	160	160	15.5
MV175/1	MV175	Mercury Vapor, (1) 175W lamp	175W Mercury Vapor		1	175	205	15.5
MV250/1	MV250	Mercury Vapor, (1) 250W lamp	250W Mercury Vapor		1	250	290	15.5
MV400/1	MV400	Mercury Vapor, (1) 400W lamp	400W Mercury Vapor		1	400	455	15.5
MV700/1	MV700	Mercury Vapor, (1) 700W lamp	700W Mercury Vapor		1	700	780	15.5

Fixture code	Lamp code	Description	Layman term	Ballast	Lamp	With Lamp	With Fixture	EUL
MV1000/ 1	MV1000	Mercury Vapor, (1) 1000W lamp	1000W Mercury Vapor		1	1000	1075	15.5

1.2 Appendix B Examples for Existing Baseline Methods for Settlement \& Examples of Adjustments

1.2.1 EXAMPLES FOR EXISTING BASELINE METHODS FOR SETTLEMENT

Baselines facilitate the measurement of load reduction that occurs during a DR event. They represent an estimate of the load that would have existed in the absence of the program. In a settlement context, this measurement is required for programs that provide incentives based on measured load reductions. Not all DR programs require a baseline for settlement. Some programs depend on measure load as the basis for settlement (e.g., firm service level).

Baselines are also required for the ex post impact evaluation of a DR program. These baselines can be quite different from baselines for settlement. With the advantage of full season data and fewer limitations on computational complexity, impact evaluation baselines have traditionally taken advantage of day matching techniques across the whole season and regression approaches.

This section provides examples of baseline methods used for M\&V for settlement in various wholesale markets. Most [or all] of the baseline examples below were tested in a PJM study comparing the accuracy of alternative baseline methods. ${ }^{13}$ The methods tested were selected to provide a range of approaches for study. Findings from the PJM analysis and other baseline assessments are summarized in 1.3 Appendix C Prior work in DR M\&V Methods. The section also addresses baselines for ex post impact evaluations as well.

The methods as described may vary from current methods in use. In a few cases, some simplification of the full method used in the market was made to facilitate the analysis. Also, markets refine their baseline methods over time as new issues arise with program operations. Nonetheless these provide a good illustration of approaches in use. In particular, the baseline methods selected for inclusion in the PJM report were selected to cover a range of:

- Estimation methods (averaging, matching, regression)
- Data timeframes (From same /Previous day to previous year)
- Data selection rules (e.g., proximity to event, similarity of load, similarity of weather, a subset of recent eligible days-highest x of y)
- Weather-sensitive and non-weather-sensitive loads
- Other complexities

Table 1-26 lists examples of customer baseline methodologies. Additional details on these methods are provided in the report on the PJM study.

[^7]Table 1-26 Examples of Customer Baseline Methodologies

\#	CBL Protocol	Data Selection			Calculation Type
		Baseline Window	Exclusion Rules--Final Selection of Days and Hours	Exclusion Rules- -Excluded Days (Besides prev. event days)	
1	PJM Economic CBL	45 most recent calendar days preceding event, extended up to 15 additional to replace excluded days	Weekday Events: High 4 of 5 most recent qualifying days.	Weekday Events: weekends, holidays, low-usage days.	Average
			Weekend/holiday Events: High 2 of 3 most recent qualifying like days.	Weekend/holiday Events: weekdays, low-usage days	
2	CAISO Standard CBL	Recent 10	10		Average
3	ERCOT middle 8 of 103	Recent 10	8	Highest, lowest kWh consumption days	Average
4	Middle 4 of 6^{4}	Recent 6	4	Highest, lowest kWh consumption days	Average
5	NYISO Standard CBL Standard CBL5	Weekdays: 10 recent weekdays starting 2 days before event day.	Weekdays: High 5 of 10	Low -usage days	Average
		Weekends: 3 recent like (Saturday or Sunday) weekend days. No exclusions for holidays or event days	Weekends: High 2 of 3		
6	ISONE Standard CBL6	Prior day baseline and current day meter data	0.9*baseline + 0.1*meter		Average
7	PJM emergency GLD comparable day (non- weather sensitive)7	Closest weekday (before or after event), excluding event days and holidays.	1 day	Weekends/ holidays	Matching
8	PJM emergency GLD comparable day (weather sensitive)8	Season	1 day -- SSE of THI	Weekends/ holidays	Matching
9	ERCOT matching day pair9	Previous Year	10 similar matching day pairs -- SSE of previous 24 hours' load	Day-pairs that include an event	Matching -- Average over 10 similar daypairs

10	PJM emergency GLD same day10	Day of event	Hours pre- and postevent	Average
11	PJM emergency energy settlement11	Hour before		Flat
12	ERCOT regression CBL12	Previous year	365+	Regression
13	Alternative regression CBL13	Previous 20 like days	20	Regression

Notes associated with the table above are listed below.
1 PJM, "Amended and Restated Operating Agreement of PJM Interconnection, L.L.C.
(http://pjm.com/~/media/documents/agreements/oa.ashx, retrieved 1/31/2011), section 3.3A.2, "Customer Baseline Load" (pp. 360-368).

2 Jenny Pedersen, California ISO, "Proxy Demand Resources Full Market Module," (http://www.caiso.com/275d/275d778249a30.pdf, retrieved 1/31/2011), pp. 67-78.

3 ERCOT, "Emergency Interruptible Load Service Default Baseline Methodologies," (no date), (http://www.ercot.com/content/services/programs/load/eils/keydocs/Default_Baseline_Methodologi es_REVISED-FINAL.doc), retrieved 2/5/2011, p. 26. ERCOT applies a ratio adjustment when using this baseline; MMU, the party proposing inclusion of this CBL, requested it be evaluated with and without the Symmetric Additive Adjustment.

4 Personal communication, Pete Langbein (email 1/14/2011). The comments regarding adjustments in footnote 3 also apply here.

5 NYISO, "Manual 7:Emergency Demand Response Program Manual," December 2010
(http://www.nyiso.com/public/webdocs/documents/manuals/operations/edrp_mnl.pdf, retrieved 11/26/2012), pp. 29-35. Page 35 also includes an example of a baseline method for Metering Generator Output.

6 Market Rule 1, Section III. 8 http://www.iso-ne.com/regulatory/tariff/sect_3/mr1_sec_1-12.pdf.
7 PJM, "Manual 19: Load Forecasting and Analysis," Attachment A: Load Drop Estimate Guidelines (redline edited version), p. 24.

8 lbid., pp. 24-25.
9 ERCOT, op. cit., p. 27.
10 PJM, op. cit., p. 25. 11 PJM, "RFP for PJM Empirical Analysis of Demand Response Baseline Methods," October 29, 2010, p. 5.

11 ERCOT, op.cit., pp. 2-23. ". The ERCOT regression model consists of a daily energy equation and 24 hourly energy fraction equations. For detailed description, see ERCOT, "Emergency Interruptible Load Service Default Baseline Methodologies,"
(http://www.ercot.com/content/services/programs/load/eils/keydocs/Default_Baseline_Methodologi es_REVISED-FINAL.doc), retrieved 2/5/2011, pp. 2-23. KEMA estimated the parameters of this model using one full year of hourly load and weather data for the year October 1, 2008 through September 30, 2009, then applied them to hourly data for October 1, 2009 through September 30, 2010 to produce the baseline forecasts. The forecasted baseline for a particular hour of any given date consists of the product of the predicted daily energy value for that date and the predicted hourly fraction for the relevant hour of the day.

12 KEMA, memorandum to Pete Langbein, Jim McAnany, Don Kujawski dated January 20, 2011, "Proposed additional regression CBL

1.2.1.1 Baseline Adjustments

The methods summarized in the table above are "provisional baseline" (PBL) methods; the result of this method may be adjusted to conditions of the current day. Example adjustment methods in use are indicated in Table 1-27. Most [or all] of these adjustment methods were tested in the PJM baseline study, in combination with the preliminary methods of the previous table.

The table provides a simplified description of the adjustment methods. Despite numerous details that distinguish particular adjustments in use from each other, they fall into longstanding categories of baseline adjustments. Because there are endless variations of adjustments, only adjustments that represented common adjustment approaches (e.g., adjusting the baseline line to the usage in a period before the event) were considered in the PJM analysis. The adjustments listed below span a range of possible adjustment algorithms.

Table 1-27 Examples of Baseline Adjustments ${ }^{14}$

\#	Type	Basis	Name	Adjustment Rules	Adjustment Window and Other Notes
1	Additive	Load	Symmetric Additive ${ }^{1}$	PBL + [load(preevent hours) -PBL(pre-event hours)]	First 3 of previous 4 hours
II			ISO-NE Asymmetric Additive (no longer in use) ${ }^{2}$	PBL + [load(preevent hours) -PBL(pre-event hours)]	See description in document at footnote 2
III		Regression	PJM OA Alternative Weather Sensitive Adjustment (WSA)3	```PBL + [reg(event period temp) - reg(PBL period temp)]```	Piece-wise linear regression on temperature -- day types and hour load where load reductions are expected

[^8]| IV | Ratio | Load | PJM OA Simple
 Adjustment4 | PBL * [load(preevent hours) / PBL(pre-event hours)] | First 2 of previous 3 hours --Only on days above 85
 degrees, difference greater than 5\% |
| :---: | :---: | :---: | :---: | :---: | :---: |
| V | | | NYISO Weather Sensitive Ajdustment5 | PBL * [load(preevent hours) / PBL(pre-event hours)] | First 2 of previous 4 hours
 -- limited between 80 and 120% |
| VI | | | CAISO6 | PBL * [load(preevent hours) / PBL(pre-event hours)] | First 3 of previous 4 hours
 -- limited between 80 and 120% |
| VII | | | ERCOT7 | PBL * [load(preevent hours) / reg(pre-event hours)] | First 2 of previous 3 hours |
| VIII | | Regression | PJM OA
 Regression WSA8 | $\begin{gathered} \text { PBL * }[\text { reg(event) } \\ \text { / reg(PBL)] } \end{gathered}$ | Linear regression on THI, (8 AM to 8 PM), non- holiday, weekday hourly loads for season |

* In this table, PBL stands for provisional baseline.

Notes associated with the table above are listed below.
1 PJM, "Amended and Restated Operating Agreement of PJM Interconnection, L.L.C.
(http://pjm.com/~/media/documents/ agreements/oa.ashx, retrieved 1/31/2011), section 3.3A.3, p. 368.
2 Included for variety, but no longer current method. ISO New England Inc., Docket No. ER11-4336-000, Order No. 745 Compliance Filing (Part 1 of 2) (August 19, 2011), Exhibit C to Attachment 5 "Analysis and Assessment of Baseline Accuracy: Final Report," KEMA

3 PJM, "RFP for PJM Empirical Analysis of Demand Response Baseline Methods," October 29, 2010, Appendix A, Standard economic CBL with alternative weather sensitivity adjustment.

4 PJM Operating Agreement, op. cit., pp. 366-367.
5 NYISO, "Manual 7: Emergency Demand Response Program Manual," December 2010
(http://www.nyiso.com/public/webdocs/documents/manuals/operations/edrp_mnl.pdf, retrieved 11/26/2012), pp. 29-35.

6 Jenny Pedersen, California ISO, "Proxy Demand Resources Full Market Module,"
(http://www.caiso.com/275d/275d778249 a30.pdf, retrieved 1/31/2011), pp. 79-88.
7 ERCOT, "Emergency Interruptible Load Service Default Baseline Methodologies," (no date), (http://www.ercot.com/content/ services/programs/load/eils/keydocs/Default_Baseline_Methodologies_REVISED-FINAL.doc), retrieved 2/5/2011, p. 28.

8 PJM Operating Agreement,pp.365-366.

The two basic kinds of pre-event period adjustments are difference (additive) and ratio (multiplicative) adjustments. Traditionally, these approaches compare observed load and baseline load for some preevent period. An adjustment that makes the pre-event period baseline load equal to the pre-event period observed load is applied to the baseline throughout the event period. The additive approach measures the magnitude of the pre- event period load difference (positive or negative), and adds that to the baseline throughout the event period. The ratio approach applies the ratio that makes the preevent period baseline load equal to the pre-event period observed load to the baseline throughout the event period.

The list of adjustments presented in the table above includes basic versions of the additive and multiplicative adjustments: Symmetric and Asymmetric Additive (I, II) and simple ratio adjustments (PJM OA Simple/NYISO Weather Sensitive/CAISO/ ERCOT - IV, V, VI and VII). There are differences among adjustment methods with respect to the hours used to produce these adjustments.

There is the symmetric/asymmetric distinction among the additive adjustments. (The asymmetric additive adjustment is no longer used by the ISO-NE because of it produced a biased estimate of load reduction.) There are also some other restrictions - most prominently, NYISO's and CAISO's limitation bracketing the adjustment between 80 and 120 percent. Other than these relatively minor differences, the underlying adjustments are basic additive and ratio adjustments. Even the ERCOT adjustment, though applied to a baseline created using a regression approach, is a simple ratio adjustment based on the first 2 of the 3 previous hours.

The table also includes adjustments that use regression results to adjust a standard " x of y " type baseline (III and VIII). Both adjustments use regressions to establish a relationship between load and weather (either temperature or THI). They then compare estimated load as a function of temperature or THI during the baseline days and during the event period. The difference between those two estimates is used to adjust the baseline hour by hour.

1.2.2 BASELINE ADJUSTMENT EXAMPLES

The following section provides examples of calculated baselines without adjustment, with symmetrical multiplicative adjustment and a weather adjustment.

1.2.2.1 Calculated Baseline (without adjustment)

Example: Weekday Type: average for each hour from most recent 10 qualifying days.
The example (below) shows the demands for 24 days (the Event Day and the 23 most recent days) for a particular Hour. The Event occurred on a Monday, so the "weekday" type calculation is appropriate, requiring the 10 most recent qualifying days. The Wednesday twelve days prior ($\mathrm{E}-12$) is excluded from this calculation, as it was also an Event Day. Days selected for the calculation are shown in blue highlight.

For the particular Hour shown in the example, the average of the 10 qualifying days is 102 MW , which becomes the Calculated Baseline for this Hour. Comparing this value to the metered load during this same Hour of the Event results in the load reduction: $102-88=14 \mathrm{MW}$.

A similar procedure would be followed for each Hour of the Event when MISO expects the load reduction to occur. The Event begins at the time when the Scheduling Instruction needs to be issued to fulfill the requisite load reduction; Calculated Baselines begin in hours after the Event has begun plus allowance for the specified notification time. For example, if the notification requirements were 2 hours and MISO required load reduction at 1400 hours, the Event begins at 1200 hours when the Scheduling Instruction needs to be issued to drop load by 1400 hours. . Calculated Baselines are calculated starting at 1400 hours.

BASELINE EXAMPLES:		CALCULATED BASELINE, NO ADJUSTMENT		
	DAY	LOAD ${ }^{(1)}$	Load Reduction	
Saturday	E-23	50		Demand reduction is equal to the difference
Sunday	E-22	45		between the Event Day and the Baseline.
Monday	E-21	103		(Ignores other Event Days within history.)
Tuesday	E-20	104		
Wednesday	E-19	101		
Thursday	E-18	102		
Friday	E-17	103		100 MWCNA
Saturday	E-16	55		$80+\square$
Sunday	E-15	50		
Monday	E-14	101		
Tuesday	E-13	100		$40 \times$
Wednesday	E-12	85		
Thursday	E-11	108		0
Friday	E 10	98		
Saturday	E-9	48		
Sunday	E-8	42		
Monday	E-7	100		
Tuesday	E-6	102		
Wednesday	E-5	99		
Thursday	E-4	105		
Friday	E-3	104		
Saturday	E-2	50		
Sunday	E-1	52		Baseline
Monday	E	88	14	Average: 102
(1) Load = Load during same hour from these days; one particular hour shown here. E = Event Day Note: Wednesday (E-12) also an Event day.				

Figure 1-1 Calculated Baseline, No Adjustment ${ }^{15}$

[^9]
1.2.2.2 Calculated Baseline (with symmetrical multiplicative adjustment)

For the Symmetrical Multiplicative Adjustment, each Calculated Baseline hour during the Event, as determined using the "without adjustment" procedure described above, will be adjusted by a ratio. That ratio is determined by comparing a particular three-hour, load-weighted average value of the load on the Event Day with those same three hours from the Calculated Baseline (without adjustment). This ratio is limited to plus or minus 20% (i.e., the value of the ratio is limited to between 0.8 and 1.2). The "particular" three-hour period for which the ratio is calculated is the three-hour period beginning four hours prior to the Event, that is to say, the calculation skips the hour immediately prior to the start of the Event. The Event begins at the time when the Scheduling Instruction needs to be issued to fulfill the requisite load reduction, as described in the previous example. Once the ratio is determined, all the unadjusted Calculated Baseline hourly values during the Event are multiplied by the ratio. Then, these adjusted values are compared to the metered hourly values during the Event to determine the demand reduction.

In the example shown, values highlighted in blue are the three hours totaled to form the numerator of the ratio; values highlighted in green are the three hours totaled to form the denominator of the ratio. In this example, the assumption is the notification period required by the Market Participant is 30 minutes or less. As shown, this ratio is 1.186 , which lies between 0.8 and 1.2 and so may be used to adjust each of the Calculated Baseline hourly values during the Event. If this ratio had been outside the 0.8 to 1.2 range, the nearest range limit (0.8 or 1.2) would be used to make the adjustments.

Each of the (unadjusted) Calculated Baseline hourly values is multiplied by the ratio to determine the adjusted Calculated Baseline values. These values are then compared to the actual hourly demands during the Event, the difference being the demand reduction.

Figure 1-2 Symmetric Multiplicative Adjustment ${ }^{16}$

[^10]
1.2.2.3 Calculated Baseline (with weather adjustment)

For the Weather Adjustment to the Calculated Baseline, each Calculated Baseline hour during the Event, as determined using the "without adjustment" procedure described previously, will be adjusted by an amount that reflects the impact of the difference between the temperatures during the Event and the average temperatures during the period used to calculate the baseline values. The weather adjustment consists of (1) determining the difference between the temperature during each Event Hour and the average for that same Hour during the period used to determine the unadjusted Calculated Baseline values, and (2) determining the impact on the Calculated Baseline of that temperature difference. Calculated Baselines begin in hours after the Event has begun plus allowance for the specified notification time.

The Market Participant will have previously submitted the results of regression analysis describing the relationship between temperature and load. These results are expressed as kW per degree and represent the number of kW increased (or decreased) for each 1° increase (or decrease) in temperature. The Market Participant may submit up to five (5) unique temperature set points in integer Fahrenheit degree format; for each set point, the Market Participant should provide a "factor": the kW-per-degree impact of temperature variations up to this temperature. Therefore, temperatures below the first set point (lowest temperature) will be adjusted using the first "factor"; temperatures above the last set point (highest temperature) will not be adjusted. Please see the example provided (below) for a three-interval illustration.

For each Hour during the Event, the following procedures apply:

- Determine the unadjusted Calculated Baseline (kW),
" Determine the average temperature for that same hour from each day used in thecalculation of the unadjusted baseline,
" Compare the temperature for each Hour during the Event with the averagetemperature determined in Step 2,
" Determine from the regression results the change in the unadjusted CalculatedBaseline (kW) related to the temperature differential,
- Add this result (positive or negative) to the unadjusted Calculated Baseline todetermine the weather adjusted Calculated Baseline value (kW).

The difference between the weather adjusted Calculated Baseline and the load during that same Event Hour is the demand reduction.

Figure 1-3 Weather-Sensitive Adjustment ${ }^{17}$
" Step1: Calculate Baseline temperatures and loads each hour using "without adjustment" method.

- Step2: Use INPUTS provided through DR Tool (See Table inset) to adjust Baseline:
- Read Set Points as "up to" temperature shown.
- Increase (Decrease) Baseline load by "Factor" until Event Temp.reached.
- Step3: Determine Load Reduction from Adjusted Baseline and Load.
- Example: Shown above, the temperature in Hour E+1 exceeds the Baseline temperature for that hour. Thus, the Baseline load needs to be adjusted to reflect this higher temperature.
- As the temperature increases from 81 to 88 , the load increases as shown in the box above. E.g., for any temperature "up to" 85 , load changes by 21 kW per degree.

[^11]For the entire increase from $81 \rightarrow 88$, LOAD increases by $21+21+21+21+24+24+24=156 \mathrm{~kW}$ Therefore, the customer Baseline LOAD is increased from its Unadj. value of 950 by 156 to 1106.

1.2.2.4 Firm Service Level Baseline

For the Firm Service Level selection, performance assessment is based on whether the asset moved down to its Firm Service Level. Any potential credits and charges, however, are calculated based on a comparison to a Consumption Baseline.

1.2.3 NAESB PERFORMANCE EVALUATION METHODOLOGIES OF WHOLESALE DEMAND RESPONSE PROGRAMS

The North American Wholesale Electricity Demand Response Comparison, produced by the ISO-RTO Council, is an Excel workbook that aligns wholesale demand response programs and corresponding performance evaluation methodologies with the NAESB M\&V Business Practice Standards for Wholesale Demand Response. The workbook content is protected, however the filters at the top of each column on the Products and Service Definitions tab and the Performance Evaluation Methods tab may be used to limit the display to specific Products and Services that meet the selected criteria within a column.

The workbook contains five tabs:

- Product and Service Definitions - descriptions that correspond to NAESB's Business Practice Standards for Measurement \& Verification (M\&V) of Wholesale Electricity Demand Response, with active links to supporting materials for each demand response Product or Service.
- Performance Evaluation Methods - descriptions about the performance evaluation methods associated with the Products and Services.
- Acronyms - a detailed list of acronyms used in the workbook and the ISO/RTO that uses the acronym.
- Definitions - a brief list of definitions.
- Timing Examples - scenarios that help describe the application of the Demand Response Event Timing diagram from the NAESB Business Practice Standards for Measurement and Verification (M\&V) of Wholesale Electricity Demand Response.

The North American Wholesale Electricity Demand Response Comparison is available on the ISO-RTO Council website at: http://www.isorto.org/atf/cf/\{5B4E85C6-7EAC-40A0-
8DC3003829518EBD\%7D/IRC\%20DR\%20M\&V\%20Standards\%20Implementation\%20Comparison\%20(2012-01-20).xIs

1.3 Appendix C Prior work in DR M\&V Methods

In this appendix, we review prior work relevant to $M \& V$ for $D R$, in 2 key areas:

- Method assessment studies for baselines used for settlement, and
- DR Evaluation protocols.

The DR evaluation protocols are described at a high level only. We also note efforts related to the IPMVP. The emphasis of this section is on baseline methods for market settlement, as this has been a key concern for market operations.

1.3.1 BASELINE METHODS ASSESSMENT STUDIES

1.3.1.1 California Energy Commission

The California Energy Commission (CEC) produced the report "Protocol Development for Demand Response Calculation - Findings and Recommendations" in February 2003. ${ }^{18}$ The report was an early attempt to systematically explore the components of a baseline and compare baseline accuracy across the full range of possible baselines using actual data.

1.3.1.1.1 Test data

Interval load data were provided from several parts of the U.S., for both curtailed and uncurtailed accounts. A total of 646 accounts were used in the analysis. For some accounts, multiple years of data were used. The accounts used in the study were distributed across all regions of the country, the years 1998 through 2001, and curtailment/non-curtailment categories. All the regions had accounts with summer curtailment data. Only the Midwest, Northwest, and Southeast had non-summer curtailment data. Despite the fact that the report was produced for the CEC, only 4 of the 646 accounts were from California. Investigation of differences by region indicated that most differences across data sets provided appeared to be related to the types of accounts included rather than to regional variations. For this reason, results were provided separately by weathersensitivity and degree of load variability in an account, as well as by season.

1.3.1.1.2 Methods tested

Methods tested were organized based on the three key characteristics of any baseline methodology:

- Data selection criteria-Short, rolling windows (5 to 10 prior eligible business days) to full prior seasons of data. The rolling windows can include further restrictions based on average load (e.g., five days with the highest average load out of most recent ten);
- Estimation methods -Simple averages to regression approaches using either hourly or daily temperature, degree days or temperature-humidity index (THI); and
- Adjustments - Additive and multiplicative approaches based on various pre-event hours as well as a THIbased adjustment not dependent on event day load.

The analysis tested 146 combinations of data selection criteria, estimation methods and adjustments, comparing median and 95th percentiles of relative error and Theils U statistic. Results were provided for all combinations of

[^12]the following characteristics: Summer/non-summer, curtailed/non-curtailed, weather sensitive/ non-weather sensitive, and high variability/non-high variability.

1.3.1.1.3 Key findings

The CEC report spelled out specific findings for each the three characteristics of a baseline methodology. The overarching conclusion was that no single approach offered a comprehensive solution across all kinds of account load characteristics and conditions.

The report states that "baseline calculation protocols should provide for alternatives based on customer load characteristics and operating practices." While it was recommended that customers have input into the baseline methodology based on their unique load characteristics, the program operator should have ultimate authority for the final decision.

More specific recommendations include:

- A rolling ten day window with an additive adjustment based on the two hours prior to event start provides the best, most practical default baseline.
- For weather-sensitive loads, limiting the rolling window to the five highest average load days is not as effective using a baseline adjustment. THI-based adjustment is the only adjustment that avoids the distortions of pre-cooling or gaming.
- Weather regression can be effective, but the increased data requirements, processing complexity and potential for changes at the site make these options less practical. Furthermore, simple averages with adjustments are nearly as good as weather regressions
- Highly variable loads are a challenge regardless of the baseline methodology employed.

1.3.1.2 ISO-NE

In 2010 and early 2011, ISO-NE evaluated the effect of continuous price responsive events on the accuracy of baselines. A separate analysis later in 2011 examined baseline inaccuracies in recent historical ISO-NE baselines to understand the role of load variability in the ongoing inaccuracies after the adoption of a symmetric baseline adjustment. Both analyses were performed on ISO-NE DR program populations.

1.3.1.2.1 Key findings, Frozen Baseline Analysis

The 2010/2011 analyses looked at bidding patterns in the Day Ahead Load Response Program and the effect on baseline accuracy. ${ }^{19}$ Participants could offer load reduction at a low enough price that their bid would clear every day. Because cleared days are removed from subsequent baseline calculations, this bidding strategy resulted in the baseline remaining frozen at the same level as the first cleared day of the series. Natural, seasonal drift made the frozen baseline increasingly inaccurate as the number of cleared days increased.

Conclusions from the early 2011 report included:

- Asymmetric adjustments cause biased estimates of load reduction.

[^13]- Baseline accuracy and bias are directly impacted by the frequency with which demand resources clear in the energy market. Even with a symmetric adjustment, a long-term frozen baseline leads to baseline inaccuracies.
- It is possible to develop policies that improve baseline accuracy by limiting the number of days a customer can clear during a particular timeframe or requiring contemporary meter data be used in the baseline computation even if the resource clears.

1.3.1.2.2 Key findings Load Variability Analysis

The late 2011 variable load analysis explored a different question than the baseline comparison analyses. This analysis looked at the existing ISO-NE baseline and sought to categorize the sources of baseline inaccuracies across the program population.

Conclusions included:

- In absolute terms, most inaccuracy of baselines comes from a small fraction of highly variable resources.
- Systematic variation by day of week as well as across hours within a single day of the week (scheduling) accounts for much of the discrepancy for the population of highly variable resources.
- Additional research should include the testing of alternative baseline procedures on high variability load assets to determine if there are more accurate methods of evaluating these types of loads.
- If accurate alternative baseline methods that address the potential gaming issue cannot be created, then market rules constraining the participation of highly variable loads in demand response programs will have to be developed.

1.3.1.3 California Public Utilities Commission

The California Public Utilities Commission sponsored an analysis of the accuracy of baseline estimates for the California Investor Owned Utility (IOU) Aggregator DR programs. 31^{20} These programs include the statewide Capacity Bidding Program (CBP), which is operated by all three of the state's IOUs, PG\&E's Aggregator Managed Portfolio (AMP) and Southern California Edison's Demand Response Resource Contracts (DRRC). The analysis tested a number of variations on the standard baseline used for the aggregator programs - a 10 of 10 day average with same day adjustment based on the first three hours of the previous four hours and capped at 20 percent. The analysis tested:

- Individual vs aggregate application of adjustments;
- Level of adjustment cap; and
- Aggregator choice of adjustment vs universal adjustment.

The different baseline variations were compared to ex post impact evaluation results based on regression methods and also tested on participant data using a simulated load reduction.

Findings included:

- Universal application of same-day adjustments almost always increases accuracy compared to aggregator choice.

[^14]- Calculating adjustments at the settlement portfolio level has a limited effect on bias but reduces the magnitude of same-day adjustments.
- The effect of increasing the adjustment cap varies by program and option. When it does change results, accuracy generally improves but only slightly.

1.3.1.4 PJM

In 2011, PJM sponsored an analysis of baseline options for PJM DR programs. ${ }^{21}$ This analysis ranked baseline performance based on relative error and variability as well as expected administrative costs. Where baselines delivered similar levels of accuracy, preference was given to baselines with a lower expected cost to administer.

1.3.1.4.1 Test data

Data were provided by Electric Distribution Companies (EDC) within PJM. Almost all EDCs contributed hourly data. The available sample of DR customers represented 39 percent of the total number of DR customers across PJM territory and 54 percent of Peak Load Contribution (PLC), load of the customers at the time of PJM's system peak. Data were requested from 2008 through 2010.

1.3.1.4.2 Methods Tested

The evaluation tested a range of baselines designed to represent the range of baselines used by ISOs today. Those baselines included baselines:

- Used by PJM.
- Used by other ISOs and RTOs.
- Suggested by the Market Monitor.
- Suggested by evaluator.

The baselines represented a range of data selection criteria and estimation methods. Four of the baselines were based on the average load of a subset of a rolling window (eg. high 5 of 10). The similar rolling ISO-NE baseline was also included. In addition, there were two kinds of match-day baselines, two flat baselines and two regression-based baselines.

Four different adjustment types were applied to all of the baselines (where feasible and reasonable) including additive, ratio (multiplicative) and an additive, regression-based PJM weather sensitive (WS) adjustment. The additive and ratio adjustments were the same day load-based adjustments common across the industry. The PJM WS adjustment approach provides an adjustment based on event day weather rather than event day load. This approach avoids concerns related to same day load-based adjustments (eg., early shutdown, pre-cooling) but uses a regression-based characterization of weather sensitivity that requires additional data and computational complexity while only explicitly addressing weather as a source of variability.

1.3.1.4.3 Key Findings

- Baselines methods that use an average load over a subset of a rolling time period (10 of 10, high 5 of 10, high 4 of 5 , middle 4 of 6 , and ISO-NE) with a same day additive or multiplicative adjustment performed better than any unadjusted baselines or those adjusted with the PJM WS adjustment.

[^15]- These baselines all have similar results and performed well across all segments, time periods and weather conditions except in the case of variable load customers. Variable load customers should be segmented for purposes of applying a different performance evaluation methodology and/or market rule.
- The PJM weather sensitive adjustment applied to the PJM economic program high 4 of 5 baseline provided the best non- load-adjusted results. This approach has the additional cost and complexity of the regression based adjustment approach.
- PJM's existing high 4 of 5 baseline with additive adjustment was consistently among the most accurate baselines and required no additional administrative cost to implement. While other baseline methods demonstrated slightly better accuracy (e.g., 10 of 10, ISO-NE), PJM found that the incremental benefits could not justify the incremental costs, and no changes were made to the baseline method. Under a different scenario with a different existing baseline method and a different range of cost considerations, it is possible a different conclusion would be met.

1.3.1.5 ERCOT Demand Side Working Group

ERCOT sponsored an analysis of the settlement alternatives for baselines for weather sensitive loads with short curtailments. ${ }^{22}$ The analysis compared 11 baseline calculation methods across four different levels of data aggregation. The baseline methods included:

- Adjusted Day-matching approaches with and without adjustment caps (10 of 10 and 3 of 10)
- Adjusted Weather-matched baseline without adjustment cap
- Regression-based baselines - four different specification types
- Randomly assigned comparison group (means and difference in difference)
- Pre-calculated load reduction estimate tables

Baselines were tested on Individual AC, Aggregate AC, Household-level and Feeder data. Findings include:

- Methods with randomly assigned control groups and large sample sizes perform the best.
- Day matching approaches were the least effective approach for weather sensitive loads.
- Pre-calculated load reduction tables can produce results that on average are correct if based on sound estimates based on estimates created using randomly assigned control groups and large sample sizes. May err for individual days, especially if they are cooler.
- Complex methods provide limited improvement.
- Finer interval data do not necessarily improve the accuracy of demand reduction measurement.

1.3.1.5.1 Peak Time Rebate

Peak Time Rebates (PTR) is an incentive-based peak pricing program design that is a relative newcomer to today's Demand Response product space. PTR rewards load response relative to a household-specific baseline but does not penalize non-response. PTR can be implemented as either an opt-in or default basis. Some believe that PTR as a default rate has the potential generate significant load response.

Recent empirical evidence provides mixed evidence regarding the potential of PTR programs and the best implementation approach. A presentation at the 2012 National Town Meeting on Demand Response by

[^16]Freeman, Sullivan and Co. considered data from six opt-in pilot studies. ${ }^{23}$ A presentation at the Peak Load Management Alliance by Baltimore Gas and Electric and Brattle reported on the evaluation of their Smart Energy Pricing Pilot which included both PTR and CPP elements. ${ }^{24}$

1.3.1.5.2 Key Findings

- Load reduction percentages vary widely. FSC reports opt-in savings percentages of up to 17 percent but a single example of default savings in the single digits. BG\&E, with an analysis design reflecting a default PTR rate, generated savings of between 17 and 20 percent over the ten hottest days of the summer.
Supporting technologies increased the percentage savings.
- FSC focused on the inaccuracy of baseline and the potential implications for cost effectiveness.
- The "no-risk" nature of PTR means that households showing show load reduction due to measurement error are compensated. In one simulation study, 60% of PTR program participants received payments resulting from measurement error in the baseline calculation, while delivering no demand reduction at all.
- Measurement error will also lead to the non-payment of households that provided demand reductions, potentially leading to unhappy customers.
- BGE generated substantial savings under a default experiment and demonstrated near unanimous customer satisfaction.
- A default PTR rate may magnify the measurement problem
- Compared to an opt-in rate, a smaller percentage of households on the default actively reduce load.
- If load reduction is small, over-compensation is not balanced by under- compensation. This can reduce the cost-effectiveness.
- Baseline choice makes a difference. FSC found the 3 of 5 baseline was not effective for estimating load levels. The BG\&E 3 of 14 baseline including Saturdays (for additional hot weather) was more effective.

1.3.1.6 Ontario Power Authority

In 2010 and 2011, the Ontario Power Authority (OPA) undertook an evaluation of the accuracy of current and alternative baselines used for the settlement of its large commercial and industrial Demand Response 3 (DR-3) Program. ${ }^{25}$

The evaluation focused on identifying a baseline methodology that:

- Is accurate for both small and large customers;
- Is fair across settlement accounts and customers;
- Avoids extreme errors that could negatively affect individual settlement payments; and
- Is accurate not only for the most common event window but across all event windows.

[^17]In addition, the analysis tested the accuracy of current and alternative baseline options for both individual customers vs. aggregation of settlement accounts and the application of in-day adjustments.

1.3.1.6.1 Methods Tested.

In total, 48 baseline methods were tested using data from 95 existing customers which included the following:

- Top 3, 7 and 9 out of the last 10 non-event days;
- Bottom 3 and 7 out of the last 10 non-event days;
- All 10 of the last 10 non-event days; and
- Top and Bottom 15 out of the last 20 non-event days.

Each baseline was also calculated using two types of same-day adjustment. These same- day (or in-day) adjustments were applied to the baseline day-selection methods. Both four- and six-hour adjustments were tested. All adjustments included a two-hour buffer between the event period and the period used to calculate the adjustment. To calculate these adjustments, the event-period baseline is multiplied by the ratio of the averages of actual and baseline loads during the four or six hours preceding a two-hour buffer immediately prior to the event window.

In addition, errors were calculated for a typical event window of 3 P.M. to 7 P.M., and were also averaged separately for customers above one MW of contracted load reduction and below one MW of contracted load reduction.

1.3.1.6.2 Key Findings

- Of 48 baselines initially analyzed, 6 produced average load impact errors within $+/-2 \%$. These 6 baselines included the Top 7, 9 and 10 of 10 Hourly baselines each with a 4-hour and 6-hour same-day adjustment. All were compared to the current method of Top 15 of 20 Hourly (with and without same-day adjustments) to highlight the improvements that can be realized with these alternate baseline methods.
- Baselines 10 of 10 and Top 9 of 10 Hourly each with a 6-hour adjustment exhibited the narrowest normalized error distributions and relatively few extreme values across settlement accounts. Both also perform well across different event window periods, though the 10 of 10 is the most robust over time
- The 10 of 10 baseline with a 6-hour adjustment was recommended due to the following reasons:
- This method averages a very low overall load-impact error (-0.5%) during the most common event period;
- Is accurate for customers both above and below one MW of contracted load reduction;
- Produces the narrowest distribution of errors and generates few extreme error values whether error distributions are calculated at the customer level or at the settlement account level; and
- Remains on average the most accurate baseline across all event windows starting as early as 12 P.M. and as late as 5 P.M.

The study also recommended that if a same-day adjustment is adopted, that the method be reassessed the following year to determine whether there is evidence that customers have reacted to the adjustment in ways that lead to inaccuracy.

1.3.1.7 Southern California Edison - Methods for Short-duration events

Between 2007 and 2011, Southern California Edison (SCE) investigated the feasibility of integrating shortduration dispatch events (fewer than 30 minutes) of its residential and commercial air conditioner cycling program into the California ISO market for non-spinning reserve ancillary services. ${ }^{26}$ Such short term events offer a different set of advantages and challenges relative to events lasting several hours. The load impact evaluation and related analyses of dispatch events using end-use and feeder-level SCADA data demonstrated the value of short-term direct load control programs and also the technological barriers that need to be overcome for aggregations of small $D R$ resources to meet ancillary service market requirements for electricity supply resources.

1.3.1.7.1 Key Findings

- Short duration events were found to have a minimal impact on customer comfort ${ }^{27}$ and a reduced postevent snapback.
- Because there was no pre-event notification of dispatch to participating customers and snapback was minimal, baseline modeling approaches that utilized both pre- and post-event load information proved to be effective. For example, such load characteristics allow for auto-regressive model approaches as well as approaches that estimate counterfactual load looking both forward and backward in time.
- While ex ante forecast accuracy improved concurrently with calibration to realized ex post impact estimates, inherent variability in the measurable load impact of the aggregate resources remains a barrier to wholesale market integration. Telemetry of the aggregate resource through technological developments in AMI deployment present the most promising opportunity for this barrier to be overcome.

1.3.2 PROTOCOLS FOR DR PROGRAM EVALUATION

The California Public Utilities Commission and the Ontario Power Authority (OPA) developed protocols for the evaluation of demand response programs. California's protocol cites the California Energy Action Plan II as affirming the importance of DR as an energy resource and "emphasizes the need for DR resources that result in cost-effective savings and the creation of standardized measurement and evaluation mechanisms to ensure verifiable savings" ${ }^{28}$ The OPA states their similar set of protocols were necessary "not only to assess progress toward meeting Provincial resource goals, but also to obtain information for improving program design and as input to resource planning." ${ }^{29}$ These protocols are comprehensive and specifically design to facilitate the inclusion of DR as a resource.

This section summarizes the latter protocol which was effectively a refined version of the CPUC protocols. Stated objectives from the OPA Protocols include

[^18]- Establish minimum requirements to support resource planning, cost-effectiveness analysis and program design and improvement;
- Focus on the outputs that should be provided, rather than on how to obtain them;
- Develop a common set of outputs to enable "apples-to-apples" comparison of load impacts across DR resource options, event conditions, and time;
- Be applicable to a wide range of DR resource options, to accommodate a changing landscape of policies, programs, and program delivery agents;
- Ensure that the documentation of methods and results allow knowledgeable reviewers to judge the quality of the work and the validity of the impact estimates provided; and
- Encourage recommendations for improvements to the evaluated DR resources and future load impact evaluations.

1.3.2.1 Ex Post Impact Methods

The DR protocols provide for standardized approaches for aggregate impact estimation methods that feed into ex post estimates of load reduction. Impact evaluation methods discussed include:

- Regression - Considered the leading method. Regression is only method that is equally suitable for producing both ex post and ex ante results. Though the intent of the protocols is not to dictate methods, the regression approach alone receives a full section discussing the methodology.
" Day-matching - A more traditional approach to DR evaluation that received more attention in the CPUC DR Protocols. Day-matching approaches offer a simple, intuitive approach to generating estimates of load reduction. The method does not provide a solid basis for ex ante estimates.
- Others, including sub-metering, duty cycle analysis, and operational experiment. These additional approaches refer to alternative forms of data acquisition, specialized regression techniques and experimental evaluation designs, respectively. Each of these will feed into one of the aforementioned methods, with regression being most likely approach.

1.3.2.2 Considerations for Ex Ante Estimates

Ex ante load impact estimates are designed to support program and resource planning.
Resource planning seeks to identify the optimal combination of resources that will balance supply and demand at least cost under a specified set of conditions. Program planning involves comparing the cost-effectiveness of different potential resource options, also under a specified set of conditions ${ }^{30}$

The protocol develops a long list of issues for consideration in the development of ex ante load reduction estimates. This list attempts to target the following:

- When DR will be called upon (day types, time periods, event window and extreme conditions),
- Who will participate and where will they be geographically (program enrollment and location specific), and
- How confident are the estimates of load reduction (uncertainty).

[^19]Other issues cited relate to more general program outcomes (e.g., free riders/structural benefiters, distributional impacts, persistence, and long-term impacts) or more specialized types of programs (customer price elasticity). The protocols introduced the concept of the $1-\mathrm{in}-2$ and $1-\mathrm{in}-10$ weather conditions. These facilitated the projection of ex post results onto potential future weather scenarios based on historical weather by simulating typical ($1-\mathrm{in}-2$) and extreme ($1-\mathrm{in}-10$) weather conditions.

1.3.2.3 Reporting

Five of the eight protocols in the OPA Protocols specifically refer to reporting. As stated in the objectives, a key goal of the protocols was to facilitate comparison across programs. Consistent report protocols make these kinds of comparison possible. The protocols address reporting in the following ways.
" Common Reporting Format (\#3) - The OPA Protocol format is simplified compared to the original CPUC format but retains the full day of load estimates, with and with load reduction, estimated load reduction and hourly temperature.

- Hourly Results Across the Full Day (\#2)
* Day Types and Event Conditions (\#4) The protocols provide a list of the day types for which results should be provided separately for ex post, ex ante and validation results. Different kinds of resources require different subsets of these options.
- Statistical Reporting and Validation (\#6) The protocols establish a set of regression results and statistics that provide sufficient information on the modeling effort to independently judge the success of the effort.
- Reporting and Documentation (\#8) This protocol reiterates the importance of consistent reporting of all of the elements listed above along with a full description of all the methods used.

1.4 Appendix D Information Sources and References

1.4.1 PRIMARY SOURCES USED TO PREPARE PROTOCOLS 1-4

Preparation of these protocols draws from leading industry references used to guide EM\&V activities for energy efficiency and demand response offerings throughout the United States. Materials that were used as primary sources to prepare these protocols include the following.

- Technical Reference Manuals for Arkansas and Texas.
- Protocols for net-to-gross analysis and for process evaluation were based on materials from the Arkansas TRM
- Texas TRM provided materials pertaining to TRM updating.
- Steven R. Schiller, Greg Leventis, Tom Eckman, and Sean Murphy. 2017. Guidance on Establishing and Maintaining Technical Reference Manuals for Energy Efficiency Measures. Prepared by Lawrence Berkeley National Laboratory for the State and Local Energy Efficiency Action Network.
- Reports on evaluation frameworks that were used included the following:
- California Public Utilities Commission. 2004 (June). California Evaluation Framework.
- California Public Utilities Commission. 2006 (April). California Energy Efficiency Evaluation Protocols: Technical, Methodological and Reporting Requirements for Evaluation Professionals [a.k.a. TPE's Protocols].
- DOE Office of Energy Efficiency and Renewable Energy (EERE). 2006 (February). EERE Guide for Managing General Program Evaluation Studies. (Referenced as EERE 2006.)
- DOE/EPA. 2007 (November) National Action Plan for Energy Efficiency (NAPEE) Action Plan and Resource Guides for Process, Impact Evaluations and Understanding Cost-Effectiveness of Energy Efficiency Programs. (Referenced as NAPEE 2007).
- Northeast Energy Efficiency Partnerships. 2010 (May). Regional EM\&V Methods and Savings Assumptions Guidelines. (Referenced as NEEP EM\&V Protocols).
- NMR Group et al. 2018 (May). Evaluation Framework for Pennsylvania Act 129 Phase III Energy Efficiency and Conservation Programs, Final Version. Prepared for Pennsylvania Public Utilities Commission.
- Steven R. Schiller and Tom Eckman. 2017 (June). Evaluation Measurement and Verification (EM\&V) Frameworks—Guidance for Energy Efficiency Portfolios Funded by Utility Customers. Prepared by Lawrence Berkeley National Laboratory for the State and Local Energy Efficiency Action Network.
- Chapters from Uniform Methods Project, administered for DOE by National Renewable Energy Laboratory
- Stewart, J.; Todd, A. (2017). Chapter 17: Residential Behavior Protocol, The Uniform Methods Project: Methods for Determining Energy-Efficiency Savings for Specific Measures
- Violette, Daniel M.; Rathbun, Pamela. (2017). Chapter 21: Estimating Net Savings - Common Practices: Methods for Determining Energy-Efficiency Savings for Specific Measures.

1.4.2 PRIMARY SOURCES USED TO PREPARE NEW CONSTRUCTION PROTOCOLS

ASHRAE. (2002). Guideline 14-2002, Measurement of Energy and Demand Savings. American Society of Heating, Refrigerating and Air-Conditioning.

ASHRAE. (2007). Standard 90.1-2007, Energy Standard for Buildings Except Low-Rise Residential. American Society of Heating, Refrigerating and Air-Conditioning.

CADMAC. (1998). Appendix J - Quality Assurance Guidelines For Statistical, Engineering, and Self-Report Methods for Estimating DSM Program Impacts. California DSM Measurement Advisory Council.

CPUC. (2004). The California Evaluation Framework. California Public Utilities Commission and the Project Advisory Board.

Crawley, D. B., Griffith, B. T., Hand, J. W., \& Kummert, M. (2005). Contrasting The Capabilities of Building Energy Performance Simulation Programs.

IPMVP. (2006). Volume III, Part I: Concepts and Practices for Determining Energy Savings in New Construction. International Performance Measurement and Verification Protocol.

1.4.3 PRIMARY SOURCES USED TO PREPARE RETROCOMISSIONING PROTOCOLS

1.4.3.1 Bibliography

ASHRAE. (2002). Guideline 14-2002: Measurement of Energy and Demand Savings. American Society of Heating, Refrigerating and Air-Conditioning.

BPA. (2011b). Regression for M\&V: Reference Guide. Bonneville Power Administration.
California Commissioning Collaborative. (2006). California Commissioning Guide: Existing Buildings.
California Public Utilities Commission. (2006). California Energy Efficiency Evaluation Protocols: Technical, Methodological, and Reporting Requirements for Evaluation Professionals.

Dethman, L., Kunkle, R., and Degens, P. (2007). Chasing O\&M Savings: Process Lessons from Two Pilot Programs in the Northwest. Prepared for the International Energy Program Evaluation Conference.

Natural Resources Canada. (2009). Recommissioning (RCX) Tools Assessment Report.
Northeast Energy Efficiency Partnerships. (2010). Regional EM\&V Methods and Savings Assumptions Guidelines.
RLW Analytics, Inc. (2008). 2004-2005 Los Angeles County—Internal Services Department/Southern California Edison/Southern California Gas Company Energy Efficiency Partnership Impact Evaluation Study. Prepared for California Public Utilities Commission.
U.S. Department of Energy Federal Energy Management Program. (2008). M\&V Guidelines: Measurement and Verification for Federal Energy Projects—Version 3.0.
U.S. Environmental Protection Agency. (2008). ENERGY STAR Building Upgrade Manual.

1.4.3.2 References

BPA. (2011a). Existing Building Commissioning: An M\&V Protocol Application Guide. Bonneville Power Administration.

EVO. (2012). International Performance Measurement and Verification Protocol-Concepts and Options for Determining Energy and Water Savings, Volume 1. Efficiency Valuation Organization.

Itron Inc. (2008). San Diego Gas and Electric 2005-2005 Retrocommissioning Program Final Report. Prepared for Portland Energy Conservation Inc.

Luskay, L., Haasl, T., Irvine, L., and Frey, D. (2002). Retrocommissioning Case Study - Applying Building Selection Criteria for Maximum Results. Prepared for the International Conference for Enhanced Building Operations.

PECI. (2009). A Study on Energy Savings and Measure Cost Effectiveness of Existing Building Commissioning. Prepared for Lawrence Berkeley National Laboratory. Portland Energy Conservation Inc.

PECI. (2010). Building Optimization Analysis Tool—Final Project Report to PG\&E. Prepared for Pacific Gas and Electric. Portland Energy Conservation Inc.

Seventhwave. (2018). Gunasingh,, S., Zhou, J., \& Hackel, S. Persistence of Savings from Retro-Commissioning Measures. Prepared for ComEd. https://slipstreaminc.org/sites/default/files/documents/publications/retrocommissioning-persistence-studyfinal-reportoct-2018.pdf

Thorne, J., and Nadel, S. (2003). Retrocommissioning: Program Strategies to Capture Energy Savings in Existing Buildings. Prepared for American Council for an Energy-Efficient Economy.

Tso, B., Hall, N., Lai, P., and Pulliam, R. (2007). How Much Does Retrocommissioning Really Save? Results from Three Commissioning Program Evaluations in California. Prepared for the International Energy Program Evaluation Conference.

Table 1-28 EUL Model

$p Y \rightarrow$				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
EUL	Measure	Slope YR1	Slope YR+	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
3.76	Air Dist.	0.155	0.153	1.00	0.85	0.69	0.54	0.38	0.23	0.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
8.17	Plant Opt.	0.155	0.040	1.00	0.87	0.69	0.65	0.61	0.57	0.53	0.49	0.45	0.41	0.37	0.33	0.29	0.25	0.21	0.17	0.13	0.09	0.05	0.01	0.00
5.39	Ventilation	0.050	0.137	1.00	0.96	0.90	0.76	0.63	0.49	0.35	0.22	0.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20.65	Scheduling	0.120	0.007	1.00	0.89	0.76	0.75	0.75	0.74	0.73	0.73	0.72	0.71	0.71	0.70	0.69	0.69	0.68	0.67	0.67	0.66	0.65	0.65	0.64
28.68	Filters	0.270	-0.180	1.00	0.76	0.46	0.64	0.82	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
6.13	General	0.025	0.123	1.00	0.98	0.95	0.83	0.70	0.58	0.46	0.33	0.21	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table 1-29 EUL Model Results

Measure	Persistence (1-3)	Persistence (4-7)	Persistence (8+)	EUL Uncapped	EUL Capped (yr 7)
Air distribution	2.54	1.23	0.00	3.76	3.76
Plant optimization	2.56	2.36	3.25	8.17	4.92
Ventilation	2.86	2.23	0.30	5.39	5.09
Scheduling	2.65	2.97	15.03	20.65	5.62
Filters	2.22	3.46	23.00	28.68	5.68
General	2.93	2.57	0.63	6.13	5.50

1.4.4 PRIMARY SOURCES USED TO PREPARE BEHAVIORAL PROTOCOLS

SEE Action. 2012. Evaluation, Measurement, and Verification (EM\&V) of Residential Behavior-Based Energy Efficiency Programs: Issues and Recommendations. State and Local Energy Efficiency Action Network. Prepared by A. Todd, E. Stuart, S. Schiller, and C. Goldman, Lawrence Berkeley National Laboratory. https://www4.eere.energy.gov/seeaction/system/files/documents/emv behaviorbased eeprogram s.pdf.
Stewart, James and Annika Todd. 2020. Chapter 17: Residential Behavior Evaluation Protocol, The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures: September 2011 August 2020. Golden, CO: National Renewable Energy Laboratory. NREL/SR-7A40-77435. https://www.nrel.gov/docs/fy21osti/77435.pdf.

1.4.4.1 References

ADM Associates, Inc. 2018. Evaluation of 2016-2017 Home Energy Reports Program. Report Submitted to Pacific Power.
https://www.pacificorp.com/content/dam/pcorp/documents/en/pacificorp/environment/dsm/wash ington/Home Energy Reports 2016-2017.pdf.
Allcott, H. 2011. "Social Norms and Energy Conservation." Journal of Public Economics, 95(2), pp. 1082-1095.
Allcott, H., and T. Rodgers. 2014. "The Short-Run and Long-Run Effects of Behavioral Interventions: Experimental Evidence from Energy Conservation." American Economic Review 104 (10), pp. 3003-3037.

Allcott, H. 2015. "Site Selection Bias in Program Evaluation." The Quarterly Journal of Economics 130 (3), pp. 1117-1165.

Baylis, P., P. Cappers, L. Jin, A. Spurlock, A. Todd. 2016. "Go for the Silver? Evidence from field studies quantifying the difference in evaluation results between "gold standard" randomized controlled trial methods versus quasi-experimental methods." ACEEE Summer Study on Energy Efficiency in Buildings 2016.
Bertrand, M., E. Duflo, S. Mullainathan. 2004. "How Much Should We Trust Difference-inDifferences Estimates?" Quarterly Journal of Economics 119 (1), 249-275.

Brandon, A., P. J. Ferraro, J. A. List, R. D. Metcalfe, M. K. Price, F. Rundhammer. 2017. "Do the Effects of Social Nudges Persist? Theory and Evidence from 38 Natural Field Experiments." National Bureau of Economic Research working paper 23277. http://www.nber.org/papers/w23277.
Brandon, A., J. A. List, R. D. Metcalfe, M. K. Price, and F. Rundhammer. 2019. "Testing for Crowd Out in Social Nudges: Evidence from a Natural Field Experiment in the Market for Electricity." Proceedings of the National Academy of Sciences 116 (12), 5293-5298.
Bruhn, M., and D. McKenzie. 2009. "In Pursuit of Balance: Randomization in Practice in Development Field Experiments." American Economic Journal: Applied Economics 1(4): 200-232.
Burlig, F., L. Preonas, M. Woerman. 2017. "Panel Data and Experimental Design." Energy Institute at Haas working paper. https://ei.haas.berkeley.edu/research/papers/WP277.pdf.
Cadmus. 2018. Residential Customer Behavioral Savings Pilot Evaluation. Prepared by Cadmus for the Vermont Public Service Department.
https://publicservice.vermont.gov/sites/dps/files/documents/VT\%2OPSD\%2ORCBS\ Y3\ E valuation\%20Report\%20FINAL.pdf.
Cappers, P., A. Todd, M. Perry, B. Neenan, R. Boisvert, R. 2013. Quantifying the Impacts of Time-based Rates, Enabling Technology, and Other Treatments in Consumer Behavior Studies: Protocols and Guidelines. Lawrence Berkeley National Laboratory, Berkeley, CA and the 52 Electric Power Research Institute, Palo Alto, CA. LBNL-6301E. https://emp.Ibl.gov/sites/default/files/lbnl-6301e.pdf. Consortium for Energy Efficiency Database. 2018. https://library.cee1.org/content/2018- behavior-program-summary-public-version.
Costa, D. L., M. E. Kahn. 2010. Energy Conservation "Nudges" and Environmentalist Ideology: Evidence from a Randomized Residential Electricity Field Experiment. NBER Working Paper 15939.
http://www.nber.org/papers/w15939.
Davis, M. 2011. Behavior and Energy Savings: Evidence from a Series of Experimental Interventions. Environmental Defense Fund Report.
DNV GL. 2016. Puget Sound Energy: 2015 Home Energy Reports Impact Evaluation. http://www.oracle.com/us/industries/utilities/home-energy-reports-err-2015-3697558.pdf
DNV GL. 2018. Puget Sound Energy: 2017 Home Energy Reports Impact Evaluation-Final Report. https://conduitnw.org/Pages/File.aspx?rid=4415
Electric Power Research Institute. 2010. Guidelines for Designing Effective Energy Information Feedback Pilots: Research Protocols. Electric Power Research Institute: Palo Alto, CA. 1020855.
Fowlie, M. 2010. U.S. Department of Energy Smart Grid Investment Grant Technical Advisory Group Guidance Document \#7, Topic: Design and Implementation of Program Evaluations that Utilize Randomized Experimental Approaches. November 8, 2010.
Fowlie M., Michael Greenstone, and Catherine Wolfram. 2018. "Do Energy Efficiency Investments Deliver? Evidence from the Weatherization Assistance Program." The Quarterly Journal of Economics 133 (3), 15971644.

Frison, L., and S. J. Pocock. 1992. "Repeated measures in clinical trials: Analysis using mean summary statistics and its implications for design." Statistics in Medicine 11.13 (1992): pp. 1685-704.
Greene, W. 2011. Econometric Analysis. New Jersey: Prentice Hall.
Harding, M., and A. Hsiaw. 2012. Goal Setting and Energy Efficiency. Stanford University working paper.

Hoffman, Ian, Steven R. Schiller, et al. 2015. Energy Savings Lifetimes and Persistence: Practices, Issues, and Data. Lawrence Berkeley National Laboratory Technical Brief. https://emp.lbl.gov/sites/default/files/savings-lifetime-persistence-brief.pdf
Ignelzi, P., J. Peters, L. Dethman, K. Randazzo, L. Lutzenhiser. 2013. Paving the Way for a Richer Mix of Residential Behavior Programs. Prepared for Enernoc Utility Solutions. CALMAC Study SCE0334.01.
Illinois Statewide Technical Reference Manual. 2018. 2019 Illinois Statewide Technical Reference Manual for Energy Efficiency Version 7.0, Volume 4: Cross-Cutting Measures and 53 Attachments.
https://www.icc.illinois.gov/downloads/public/ILTRM_Effective_010119_v7.0_Vol_4_X-
Cutting_Measures_and_Attach_092818_Final.pdf
Integral Analytics. 2011. Sacramento Municipal Utility District Home Energy Report Program Impact and Persistence Evaluation Report, Years 2008-2011. Prepared by May Wu, Integral Analytics.
Jenkins, Cheryl et al. 2017. Accounting for Behavioral Persistence-A Protocol and a Call for Discussion.
Presented at the 2017 International Energy Program Evaluation Conference.
https://www.iepec.org/?attachment_id=13250.
Khawaja, M. S. and J. Stewart. 2014. Long-Run Savings and Cost Effectiveness of Home Energy Report Programs. Cadmus Research Report.
http://www.cadmusgroup.com/wpcontent/uploads/2014/11/Cadmus_Home_Energy_Reports_Winter2014.p df.
List, J. A. 2011. "Why Economists Should Conduct Field Experiments and 14 Tips for Pulling One Off." Journal of Economic Perspectives (25), pp. 3-16.
List, J. A., S. Sadoff, S., and M. Wagner. 2010. So You Want to Run an Experiment, Now What? Some Simple Rules of Thumb for Optimal Experimental Design. National Bureau of Economic Research Paper 15701. Mazur-Strommen, S., and K. Farley. 2013. ACEEE Field Guide to Utility-Run Behavior Programs. American Council for an Energy Efficient Economy, Report Number B132.
Minnesota Department of Commerce, Division of Energy Resources. 2015. Energy Efficiency Behavioral Programs: Literature Review, Benchmarking Analysis, and Evaluation Guidelines. Prepared by Illume Advising with subcontractors Indica Consulting and Dr. Edward Vine. http://mn.gov/commerce-stat/pdfs/card-report-energy-efficiency-behavorial-prog.pdf.
National Renewable Energy Laboratory. 2017. Strategic Energy Management Protocol: The Uniform Methods Project. Prepared by James Stewart. https://www.nrel.gov/docs/fy17osti/68316.pdf.
Navigant Consulting. 2016. ComEd Home Energy Report Program Decay Rate and Persistence Study - Year Two. Prepared for Commonwealth Edison Company by C. Olig and E. Young.
Navigant Consulting. 2017. ComEd Home Energy Report Program Decay Rate and Persistence Study - Year Three. Prepared for Commonwealth Edison Company by W. Sierzchula and D. Dinsmoor.
NMR Group. 2017. 1606 Eversource Behavior Persistence Evaluation. Submitted to Energy Efficiency Board Evaluation Administrator.
https://www.energizect.com/sites/default/files/R1606_Eversource\ Behavior\ Persistence\% 20Evaluation_FINAL_10.15.17.pdf.
Pennsylvania Act 129 Phase IV TRM. 2019.
http://www.puc.pa.gov/filing_resources/issues_laws_regulations/act_129_information/technical_ reference_manual.aspx

Pennsylvania Statewide Evaluation Team. 2018. Residential Behavioral Program Persistence Study. Prepared by A. Ciccone and J. Smith. http://www.puc.state.pa.us/Electric/pdf/Act129/SWE_Res_Behavioral_ProgramPersistence_Study_Addendu m2018.pdf.
Pacific Gas \& Electric. 2013. Evaluation of Pacific Gas and Electric Company's Home Energy Report Initiative for the 2010-2012 Program. Prepared by Freeman, Sullivan \& Co.
http://www.oracle.com/us/industries/utilities/evaluation-pacific-gas-company-3631944.pdf.
Rosenberg, M., G. Kennedy Agnew, K. Gaffney. 2013. "Causality, Sustainability, and Scalability - What We Still Do and Do Not Know about the Impacts of Comparative Feedback Programs." Paper prepared for 2013 International Energy Program Evaluation Conference, Chicago.
Seelig, M. J. 2013. Business Energy Reports. Presentation at BECC 2013. http://beccconference.org/wp-content/uploads/2013/12/BECC_PGE_BER_11-19-13_seelig-.pdf.
Shadish, W. R., T. D. Cook, D. T. Campbell. 2002. Experimental and Quasi-experimental Designs for Generalized Causal Inference. Belmont, CA: Wadsworth Cengage Learning.
Skumatz, L. 2016. "Persistence of Behavioral Programs: New Information and Implications for Program Optimization." The Electricity Journal 29 (5): pp. 27-32.
Sacramento Municipal Utility District. 2013. SmartPricing Options Interim Evaluation. Prepared for the U.S. Department of Energy and Lawrence Berkeley National Laboratory by Sacramento Municipal Utility District and Freeman, Sullivan, \& Co.
Stewart, J. 2013a. Peak-Coincident Demand Savings from Behavior-Based Programs: Evidence from PPL Electric's Behavior and Education Program. UC Berkeley: Behavior, Energy and Climate Change Conference. http://escholarship.org/uc/item/3cc9b30t.
Stewart, J. 2013b. Energy Savings from Business Energy Feedback. Presentation at BECC 2013.
http://beccconference.org/wp-content/uploads/2015/10/presentation_stewart.pdf.
Todd, A. 2014. Insights from Smart Meters: The Potential for Peak-Hour Savings from Behavior-Based Programs. Lawrence Berkeley National Laboratory. LBNL Paper LBNL6598E.
http://escholarship.org/uc/item/2nv5q42n.

1.4.5 PRIMARY SOURCES USED TO PREPARE DEMAND RESPONSE PROTOCOLS

Goldberg, Miriam L, and G. Kennedy Agnew. Measurement and Verification for Demand Response. 2013 Measurement and Verification for Demand Response was produced by Miriam L. Goldberg (Measurement and Verification Working Group chair) and Kennedy Agnew of DNV KEMA Energy and Sustainability, for the Lawrence Berkeley National Laboratory, who is managing this work under a contract to the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability under Contract No. DE-AC02-05CH11231 https://www.ferc.gov/sites/default/files/2020-04/napdr-mv.pdf
Midcontinent Independent System Operator (MISO). 2021. BPM-026-r6. Demand Response Business Practices Manual.
https://cdn.misoenergy.org/BPM\ 026\ -\ Demand\ Response49596.zip

1.4.5.1 Links to referenced Business Practice Manuals and related MISO resources:

" BPM-001 Market Registration https://cdn.misoenergy.org//BPM\ 001\ \ Market\ Registration49545.zip

- BPM-002 Energy and Operating Reserve Markets https://cdn.misoenergy.org//BPM\ 002\ \ Energy\ and\ 0perating\ Reserve\ Markets49546.zip
- BPM-005 Market Settlements https://cdn.misoenergy.org/BPM\ 005\ Market\ Settlements49550.zip
- BPM-007 Physical Scheduling https://cdn.misoenergy.org/BPM\ 007\ \ Physical\ Scheduling49551.zip
- BPM-009 Market Monitoring and Mitigation https://cdn.misoenergy.org//BPM\ 009\ \ Market\ Monitoring\ and\ Mitigation49600.zip
- BPM-010 Network and Commercial Model https://cdn.misoenergy.org//BPM\ 010\ -
\%20Network\%20and\%20Commercial\%20Model49557.zip
- BPM-011 Resource Adequacy https://cdn.misoenergy.org//BPM\ 011\ -
\%20Resource\%20Adequacy110405.zip
- BPM-020 Transmission Planning https://cdn.misoenergy.org//BPM\ 020\ -
\%20Transmission\%20Planning113822.zip
- MISO Tariff https://docs.misoenergy.org/legalcontent/TariffAsFiledVersion.pdf
- Module C: Energy and Operating Reserve Markets https://docs.misoenergy.org/legalcontent/Module A Common Tariff Provisions.pdf
- Module D: Market Monitoring and Mitigation Measures https://docs.misoenergy.org/legalcontent/Module D Market Monitoring and Mitigation Measures.pdf
- Module E-1: Resource Adequacy https://docs.misoenergy.org/legalcontent/Module E-1 Resource Adequacy.pdf
- Schedule 29-A: ELMP for Energy and Operating Reserve Market https://docs.misoenergy.org/legalcontent/Schedule 29-A ELMP for Energy and Operating Reserve Market.pdf
- Schedule 30: Emergency Demand Response Initiative https://docs.misoenergy.org/legalcontent/Schedule 30 - Emergency Demand Response Initiative.pdf
- Attachment L: Credit Policy https://docs.misoenergy.org/legalcontent/Attachment L - Credit Policy.pdf
- Attachment TT: Measurement and Verification (M\&V) Criteria https://docs.misoenergy.org/legalcontent/Attachment TT Measurement and Verification \%28M and V\%29 Criteria.pdf
- Demand Response Tool User Guide (version 3, 5/20/2010) https://cdn.misoenergy.org/Demand\ Response\ Tool\ User\ Guide177286.pdf
- Demand Side Resource Interface (DSRI) On-line User Guide https://cdn.misoenergy.org/Demand\ Side\ Resource\ Interface\ (DSRI)\ \ Frequently\ Asked\ Questions575012.pdf

[^0]: ${ }^{1} 2009$ RECS, Available at: http://www.eia.gov/consumption/residential/data/2009/
 ${ }^{2}$ Simulating a Nationally Representative Housing Sample Using EnergyPlus, Available at: http://www.osti.gov/scitech/servlets/purl/1012239

[^1]: ${ }^{3}$ Building America Home Simulation Protocols (BAHSP), Available at: http://www.nrel.gov/docs/fy11osti/49246.pdf
 ${ }^{4}$ Referenced information is from 2009 ASHRAE Fundamentals, Section 16.17 Residential Ventilation.

[^2]: ${ }^{5}$ ENERGY STAR, Duct Sealing: http://www.energystar.gov/?c=home_improvement.hm_improvement_ducts

[^3]: ${ }^{6}$ ANSI/ASHRAE/IESNA Standard 90.1-2007, Table 9.5.1

[^4]: ${ }^{7}$ ANSI/ASHRAE/IESNA Standard 90.1-2007, Table 9.6.1
 ${ }^{8}$ In cases where both a common space type and a building-specific space type are listed, the building-specific space type shall apply.

[^5]: ${ }^{9}$ ANSI/ASHRAE/IESNA Standard 90.1-2007, Table 9.6.1
 ${ }^{10}$ In cases where both a common space type and a building-specific space type are listed, the building-specific space type shall apply.

[^6]: ${ }^{11}$ ANSI/ASHRAE/IESNA Standard 90.1-2007, Table 9.4.5
 ${ }^{12}$ Exterior Building Lighting Power: The total exterior lighting power allowance for all exterior building applications is the sum of the individual lighting power densities permitted in Table 4 for these application plus an additional unrestricted allowance of 5\% of that sum. The trade-offs are allowed only among exterior lighting applications listed in Table 4 "Tradable Surfaces" section.

[^7]: ${ }^{13}$ KEMA, Inc. PJM Empirical Analysis of Demand Response Baseline Methods. April 20, 2011 http://pjm.com/markets-and-operations/demand-response/~/media/markets-ops/dsr/pjm-analysis-of-dr- baseline-methods-full-report.ashx

[^8]: ${ }^{14}$ Goldberg, Miriam L, and G. Kennedy Agnew. Measurement and Verification for Demand Response (2013). Format modified for this document. "

[^9]: ${ }^{15}$ MISO (2021). BPM-026-r6. Demand Response Business Practices Manual

[^10]: ${ }^{16}$ MISO (2021). BPM-026-r6. Demand Response Business Practices Manual

[^11]: ${ }^{17}$ MISO (2021). BPM-026-r6. Demand Response Business Practices Manual

[^12]: ${ }^{18}$ Protocol Development for Demand Response Calculation - Findings and Recommendations. California Energy Commission, February 2003. 400-02-017F.

[^13]: ${ }^{19}$ ISO New England Inc., Docket No. ER11-4336-000, Order No. 745 Compliance Filing (Part 1 of 2) (August 19, 2011), Exhibit C to Attachment 5 "Analysis and Assessment of Baseline Accuracy: Final Report"

[^14]: ${ }^{20} 2011$ Statewide Evaluation of California Aggregator Demand Response Programs Volume II: Baseline Calculation Rules and Accuracy. Freeman, Sullivan \& Co. June 1, 2012

[^15]: ${ }^{21}$ http://pjm.com/markets-and-operations/demand-response/~/media/markets-ops/dsr/pjm-analysis-of-dr- baseline-methods-full-report.ashx

[^16]: ${ }^{22}$ Empirical Data on Settlement of Weather Sensitive Loads. Freeman, Sullivan \& Co. ERCOT Demand Side Working Group, September 20, 2012

[^17]: ${ }^{23}$ "Peak Time Rebates: The Promise vs. The Reality", National Town Meeting on Demand Response and Smart Grid, Dr. Stephen S. George. Freeman, Sullivan \& Co. June 26-28, 2012.
 24 "BGE's Smart Energy Pricing Pilot" Cheryl Hindes PLMA Panel, November 8, 2012
 ${ }^{25}$ Assessment of Settlement Baseline Methods for Ontario Power Authority's Commercial \& Industrial Event Based Demand Response Programs. September 2010. Freeman, Sullivan and Co. The report is not public, but was made available to the authors. Contact the OPA Manager of Technical Services in the Conservation Area.

[^18]: ${ }^{26}$ http://www3.sce.com/sscc/law/dis/dbattach10.nsf/0/8DAF6B099083E88B8825784700749DD7/\$FILE/A.11- 03-003+DR+2012-14+-+SCE-1+Volume+5++Appendix.pdf
 ${ }^{27}$ http://certs.lbl.gov/pdf/lbnl-3550e.pdf
 ${ }^{28}$ ATTACHMENT A: Load Impact Estimation for Demand Response: Protocols and Regulatory Guidance. California Public Utilities Commission Energy Division, April 2008. P. 11.
 ${ }^{29}$ Protocols for Estimating Load Impacts Associated with Demand Response Resources in Ontario. Ontario Power Authority, December 31, 2009. P. 2

[^19]: ${ }^{30}$ Ibid. p. 13.

