

**Entergy New Orleans, LLC** 1600 Perdido Street, Bldg #505 New Orleans, LA 70112 Tel 504 670 3680 Fax 504 670 3615

Brian L. Guillot Vice President, Regulatory Affairs bguill1@entergy.com

October 28, 2020

Via Electronic Delivery

Ms. Lora W. Johnson, CMC, LMMC Clerk of Council City Hall, Room 1E09 1300 Perdido Street New Orleans, Louisiana 70112

#### RE: Filing of the New Orleans Technical Reference Manual Version 4.0 (Resolutions R-15-140; R-18-228; UD-08-02, UD-17-03)

Dear Ms. Johnson:

On April 9, 2015, the Council of the City of New Orleans ("Council") adopted Resolution R-15-140 that directed Entergy New Orleans, LLC ("ENO") to create a New Orleans Technical Reference Manual ("TRM"). On June 21, 2018 the Council adopted Resolution R-18-228 which approved the New Orleans TRM Version 1.0 and required updates to the TRM through biannual meetings. On October 16, 2019 ENO filed the TRM Version 3.0. On behalf of ADM Associates, ENO submits the New Orleans Technical Reference Manual Version 4.0. However, as a result of the remote operations of the Council's office related to COVID-19, ENO submits this filing electronically and will submit the requisite original and number of hard copies once the Council resumes normal operations, or as you direct. ENO requests that you file this submission in accordance with Council regulations as modified for the present circumstances.

Should you have any questions regarding this filing, please contact my office at (504) 670-3680.

Thank you for your assistance with this matter.

Sincerely, Brian L. Guillot

Enclosure

cc: Official Service List UD-08-02 and UD-17-03 (via electronic mail)

# A.1. Additional Sections and Updates Between TRM 3.0 and TRM 4.0

This version of the TRM expands upon the New Orleans TRM 3.0 by adding sections for new measure offerings through the Energy Smart Program, refinements of some existing sections and the development of EM&V protocols for evaluating New Construction and Retrocomissioning Energy Smart Programs. A list of these changes with a brief description of each follows below:

#### A.1.1. New Measures

### A.1.1.1. Residential

#### A.1.1.1.1. ENEGRY STAR® Freezers

This measure is for the purchase a freezer meeting the efficiency specifications of ENERGY STAR® is installed in place of a model meeting the federal standard (NAECA). An ENERGY STAR® freezer must be at least 10 percent more efficient than the minimum federal government standard.

#### A.1.1.1.2. ENEGRY STAR® Air Purifiers

This measure involves the installation of an ENERGY STAR® certified room air purifier. An air purifier, also known as an air cleaner, is defined as a portable electric appliance that removes dust and fine particles from indoor air.

#### A.1.1.1.3. Thermostatic Restrictor Valves on Showerheads

This measure consists of installing a thermostatic restrictor valve (TRV) between the existing shower arm and showerhead. The valve will reduce behavioral water waste by restricting water flow when the water reaches a set temperature (generally 95°F). Restricting the flow when the water reaches the temperature set point, reduces the amount of water that goes down the drain prior to the user entering the shower.

#### A.1.1.1.4. Tub Spout Diverters and Thermostatic Restrictor Valves on Showerheads

This measure consists of replacing existing tub spouts and shower heads with an automatically diverting tub spout and showerhead system with a thermostatic restrictor valve (TRV) between the existing shower arm and showerhead. When the water temperature reaches a set point (generally 95°F), the thermostatic restrictor valve will engage the anti-leak diverter. The water will divert from the spout to a showerhead with a closed valve, which prevents the hot water from flowing down the drain prior to use.

## A.1.1.2. Commercial

## A.1.1.2.1. Bi-Level Parking Garage Lighting

Automated bi-level lighting fixture with motion sensors installed in a parking garage. The fixture provides lower levels of lighting during unoccupied periods. This measure covers savings from operational changes. Savings are fixture operation only. Retrofit savings from fixture replacement should be calculated using section D.6. Commercial Lighting.

#### A.1.1.2.2. LED Refrigerated Case Lighting

This measure relates to the installation of LED lamps with and without motion sensors in vertical display refrigerators, coolers, and freezers replacing T8 or T12 linear fluorescent lamp technology. LED lamps should be systems intended for this application. LED lamps not only provide the same light output with lower connected wattages, but also produce less waste heat which decreases the cooling load on the refrigeration system and energy needed by the refrigerator compressor. Additional savings can be achieved from the installation of a motion sensor which automatically dims the lighting system when the space is unoccupied. Retrofit projects must completely remove the existing fluorescent fixture end connectors and ballasts to qualify, though wiring may be reused. Eligible fixtures include new, replacement, and retrofit. Savings and assumptions are based on a per door basis.

#### A.1.2. Measure Revisions

# A.1.2.1. Deemed Net-To-Gross Ratios (NTGR) based on primary data collection

#### A.1.2.1.1. Description

To estimate net savings<sup>1</sup> during Entergy New Orleans program years five through nine, the Third Party Evaluator (TPE) and implementation teams conducted participant surveys and used responses to estimate program and measure-level free ridership, spillover and to calculate the overall net energy impacts of the program.

Program-level free ridership was estimated by calculating free ridership scores for major and direct install measures, weighted by the participants' gross energy savings and demand reductions. The major and direct install measure free ridership ratios were used to factor the program verified gross savings for the two measure types to estimate free ridership. Spillover (free drivership) ratios were developed by dividing the total energy savings and demand reductions resulting from spillover measures by the total gross energy savings and demand reductions for the sample of survey respondents.

In addition to free ridership and spillover questions, in-service rate (ISR) data was collected for items acquired through residential energy kits<sup>2</sup>.

The results of these surveys were combined to develop robust net-to-gross-ratio (NTGR) estimates and in-service rates (ISR) based on primary data collection for common measures. In service rates vary considerably by delivery method and the New Orleans

<sup>&</sup>lt;sup>1</sup> The program net savings are equal to gross savings, less savings associated with free ridership, plus participant spillover savings.

<sup>&</sup>lt;sup>2</sup> Residential energy kits were either mailed to program participants or distributed to 6<sup>th</sup>-10<sup>th</sup> graders to bring home to parents/guardians, a significantly different delivery mechanism than other direct install items. In both cases, kits contained LED lighting, faucet aerators and low flow showerheads.

TRM does not contain in-service rates for mailer kit delivery. The primary data from these surveys establishes robust estimates of in-service rates for items commonly distributed to Energy Smart participants through this delivery mechanism.

Measure-specific NTGR and ISRs appear in applicable chapters and are summarized below.

#### A.1.2.1.2. Data

During program years six through nine, the TPE completed NTG surveys for a total of 578 major measures and 169 direct install measures, as well as 221 energy kits which were mailed to participants. This information was supplemented with self-reported data from 4,394 home energy kits which were distributed through the School Kits and Education program.

| Measure Type        | Count of<br>Surveys Used |
|---------------------|--------------------------|
| Major Measure       | 578                      |
| Direct Install      | 169                      |
| Home Energy Kits    | 221                      |
| School Kits         | 4,394                    |
| Commercial Lighting | 118                      |

Table A-1: Response Count by Measure Type and Delivery Mechanism

#### A.1.2.1.3. Results

#### A.1.2.1.3.1. Net-to-Gross Ratios

Table A-2: Residential Major Measure NTGR

| Measure                            | N   | NTGR | TRM<br>Section |
|------------------------------------|-----|------|----------------|
| Duct Sealing                       | 282 | 95%  | C.3.8          |
| Air Sealing                        | 78  | 95%  | C.4.7          |
| AC/HP Tune-up                      | 135 | 82%  | C.3.7          |
| ENERGY STAR Window Air Conditioner | 30  | 62%  | C.3.2          |
| ENERGY STAR Refrigerator           | 44  | 44%  | C.1.10         |

| Table A-3: Residential Direct Install NTGR |
|--------------------------------------------|
|--------------------------------------------|

| Measure               | N                | NTGR | TRM<br>Section |
|-----------------------|------------------|------|----------------|
| LED Lighting          | 126 <sup>3</sup> | 62%  | C.5.2, C.5.3   |
| Advanced Power Strips | 37               | 80%  | C.1.7          |

Table A-4: Residential Home Energy Kit NTGR

| Measure              | N   | NTGR | TRM<br>Section |
|----------------------|-----|------|----------------|
| LED Lighting         | 221 | 65%  | C.5.2, C.5.3   |
| Faucet Aerators      | 221 | 92%  | C.2.4          |
| Low-Flow Showerheads | 221 | 91%  | C.2.5          |

A.1.2.1.3.2. In-Service Rates

Table A-5: Residential Home Energy Kit ISR

| Measure              | Ν     | ISR | TRM<br>Section     |
|----------------------|-------|-----|--------------------|
| LED Lighting         | 4,572 | 71% | C.5.3 <sup>4</sup> |
| Faucet Aerators      | 4,572 | 45% | C.2.4              |
| Low-Flow Showerheads | 4,572 | 62% | C.2.5              |

<sup>&</sup>lt;sup>3</sup> Survey responses were also compared with the results of price-response and revenue neutral models used to measure NTG during years PY6 and PY9 respectively, and found the estimates to be comparable.

<sup>&</sup>lt;sup>4</sup> Results only applicable to omni-directional LED lighting.

# New Orleans Energy Smart Technical Reference Manual: Version 4.0

September 29, 2020

Prepared by:



ADM Associates, Inc.

# Acknowledgements

ADM Associates would like to thank the parties involved in the development of the New Orleans Technical Reference Manual. The City Council Advisors, Entergy New Orleans, and Energy Smart program implementation contractors have contributed significantly to this effort, and we appreciate the opportunity to provide this document in an effort to inform the continuous improvement of the Energy Smart Programs.

# **Table of Contents**

| A. Intr        | oductionA-1                                                                                        |
|----------------|----------------------------------------------------------------------------------------------------|
| A.1.           | Additional Sections and Updates Between TRM 3.0 and TRM 4.0                                        |
| A.1.1.         | New MeasuresA-1                                                                                    |
| A.1.2.         | Measure RevisionsA-3                                                                               |
| A.2.           | High Impact MeasuresA-5                                                                            |
| A.2.1.         | Residential High Impact MeasuresA-5                                                                |
| A.2.2.         | Commercial & Industrial (C&I) High Impact MeasuresA-6                                              |
| A.3.           | New Orleans EM&V StudiesA-6                                                                        |
| A.4.           | Incremental CostsA-9                                                                               |
| A.5.           | Simulation ModelingA-9                                                                             |
| A.6.           | WeatherA-10                                                                                        |
| A.7.           | Application of Values in this TRMA-10                                                              |
| A.8.           | Future StudiesA-10                                                                                 |
| B. Eva         | luation ProtocolsB-1                                                                               |
| B.1.           | Protocols IntroductionB-1                                                                          |
| В.2.           | Evaluation Principles and ConceptsB-5                                                              |
| B.3.<br>Prescr | Protocols for Impact Evaluation of Measures / Projects Not Included on List of iptive MeasuresB-11 |
| В.4.           | Protocols for Conducting Process EvaluationsB-29                                                   |
| В.5.           | Protocols for Evaluation of New Construction ProjectsB-38                                          |
| В.6.           | Protocols for Evaluation of Retrocommissioning ProjectsB-57                                        |
| B.7.<br>Progra | Protocols and Guidance for Establishing Quality Assurance / Quality Control for ams                |
| В.8.           | Protocol and Guidance for Updating the TRMB-1                                                      |
| C. Res         | idential MeasuresC-1                                                                               |
| С.1.           | Appliances                                                                                         |
| C.1.1.         | ENERGY STAR <sup>®</sup> Clothes WashersC-1                                                        |

| С.1.2.  | ENERGY STAR <sup>®</sup> DryersC-5                                    |
|---------|-----------------------------------------------------------------------|
| С.1.3.  | ENERGY STAR® Dishwashers C-9                                          |
| C.1.4.  | ENERGY STAR <sup>®</sup> Water CoolersC-12                            |
| С.1.5.  | ENEGRY STAR <sup>®</sup> Air PurifiersC-15                            |
| С.1.6.  | ENERGY STAR <sup>®</sup> Ceiling FansC-16                             |
| С.1.7.  | Advanced Power Strips                                                 |
| С.1.8.  | ENERGY STAR <sup>®</sup> DehumidifiersC-23                            |
| С.1.9.  | ENERGY STAR <sup>®</sup> Pool PumpsC-28                               |
| C.1.10. | ENERGY STAR <sup>®</sup> RefrigeratorsC-33                            |
| C.1.11. | ENERGY STAR <sup>®</sup> FreezersC-44                                 |
| С.1.12. | Refrigerator and Freezer RecyclingC-47                                |
| C.2. D  | omestic Hot WaterC-54                                                 |
| С.2.1.  | Water Heater Replacement C-54                                         |
| С.2.2.  | Water Heater JacketsC-64                                              |
| С.2.3.  | Water Heater Pipe InsulationC-66                                      |
| С.2.4.  | Faucet AeratorsC-69                                                   |
| С.2.5.  | Low-Flow ShowerheadsC-74                                              |
| С.2.6.  | Showerhead Thermostatic Restrictor Valves C-80                        |
| С.2.7.  | Tub Spout Diverters and Thermostatic Restrictor Valves on Showerheads |
| С.З. Н  | VAC C-89                                                              |
| С.З.1.  | Central Air Conditioner ReplacementC-89                               |
| С.З.2.  | Window Air Conditioner ReplacementC-93                                |
| С.З.З.  | Electronically Commutated Motors on Furnace Fans                      |
| С.З.4.  | Heat Pump ReplacementC-99                                             |
| С.З.5.  | Ground Source Heat Pump ReplacementC-105                              |
| С.З.б.  | Ductless Heat PumpC-108                                               |
| С.З.7.  | Central Air Conditioner and Heat Pump Tune-UpC-112                    |
| С.З.8.  | Duct Sealing                                                          |

| С.З.9. | Smart ThermostatsC-124                                                      |
|--------|-----------------------------------------------------------------------------|
| С.4.   | Envelope Measures                                                           |
| C.4.1. | Attic Knee Wall InsulationC-128                                             |
| С.4.2. | Ceiling InsulationC-130                                                     |
| С.4.3. | Wall InsulationC-134                                                        |
| С.4.4. | Floor InsulationC-137                                                       |
| С.4.5. | ENERGY STAR <sup>®</sup> Windows, Doors and Skylights                       |
| С.4.6. | ENERGY STAR <sup>®</sup> Low Emissivity Storm Windows                       |
| С.4.7. | Air InfiltrationC-148                                                       |
| C.4.8. | Window Film C-152                                                           |
| С.4.9. | Radiant BarriersC-155                                                       |
| С.5.   | Residential LightingC-157                                                   |
| C.5.1. | Residential Lighting EfficiencyC-157                                        |
| С.5.2. | ENERGY STAR <sup>®</sup> Omni-Directional LEDsC-164                         |
| С.5.3. | ENERGY STAR® Directional and Specialty LEDsC-167                            |
| С.5.4. | ENERGY STAR <sup>®</sup> Omni-Directional Compact Fluorescent Lamps (CFLs)  |
| С.5.5. | ENERGY STAR® Specialty Compact Fluorescent Lamps (CFLs)                     |
| D. Con | nmercial MeasuresD-1                                                        |
| D.1.   | Commercial MotorsD-1                                                        |
| D.1.1. | Electronically Commutated Motors for Refrigeration and HVAC ApplicationsD-1 |
| D.1.2. | Premium Efficiency MotorsD-5                                                |
| D.2.   | Commercial Water HeatingD-15                                                |
| D.2.1. | Water Heater ReplacementD-15                                                |
| D.2.2. | Commercial Faucet AeratorsD-22                                              |
| D.2.3. | Commercial Low-Flow ShowerheadsD-26                                         |
| D.2.4. | Commercial Water Heater Pipe InsulationD-33                                 |
| D.3.   | HVACD-36                                                                    |
| D.3.1. | Packaged Terminal AC/HP (PTAC/PTHP) EquipmentD-36                           |

| D.3.2. | Unitary and Split System AC/HP EquipmentD-41            |
|--------|---------------------------------------------------------|
| D.3.3. | Air- and Water-Cooled ChillersD-47                      |
| D.3.4. | Commercial Air Conditioner and Heat Pump Tune-UpD-54    |
| D.3.5. | Guest Room Energy Management (GREM) ControlsD-61        |
| D.3.6. | Demand Control VentilationD-63                          |
| D.3.7. | Commercial Smart ThermostatsD-67                        |
| D.4.   | RefrigerationD-71                                       |
| D.4.1. | Commercial Variable Refrigerant Flow SystemsD-71        |
| D.4.2. | Door Heater Controls for Refrigerators and FreezersD-79 |
| D.4.3. | Solid Door Refrigerators and FreezersD-83               |
| D.4.4. | Refrigerated Case Night CoversD-87                      |
| D.4.5. | Strip CurtainsD-92                                      |
| D.4.6. | Zero Energy DoorsD-99                                   |
| D.4.7. | Evaporator Fan ControlsD-101                            |
| D.4.8. | Beverage and Snack Machine ControlsD-103                |
| D.4.9. | Commercial Ice MakersD-107                              |
| D.5.   | Food ServiceD-111                                       |
| D.5.1. | Commercial GriddlesD-111                                |
| D.5.2. | Convection OvensD-116                                   |
| D.5.3. | Combination OvensD-119                                  |
| D.5.4. | Commercial FryersD-122                                  |
| D.5.5. | Commercial Steam CookersD-127                           |
| D.5.6. | Low-Flow Pre-Rinse Spray ValvesD-132                    |
| D.5.7. | Demand Control Ventilation (Kitchens)D-139              |
| D.5.8. | ENERGY STAR <sup>®</sup> Hot Food Holding CabinetsD-143 |
| D.5.9. | ENERGY STAR <sup>®</sup> Commercial DishwashersD-146    |
| D.5.10 | . ENERGY STAR <sup>®</sup> Commercial Ice MakersD-153   |
| D.6.   | Commercial LightingD-157                                |

| D.6.1. | 1. Commercial Lighting Efficiency                | D-157 |
|--------|--------------------------------------------------|-------|
| D.6.2. | 2. Lighting Controls                             | D-172 |
| D.6.3. | 3. Bi-Level Lighting Fixtures in Parking Garages | D-177 |
| D.6.4. | 4. LED Refrigerated Case Lighting                | D-179 |
| D.6.5. | 5. Light Emitting Diode (LED) Traffic Signals    | D-181 |
| D.7.   | Other Measures                                   | D-184 |
| D.7.1. | 1. Compressed Air Leak Repair                    | D-184 |
| D.7.2. | 2. Cool Roofs                                    | D-187 |
| D.7.3. | 3. Air Curtains                                  | D-190 |
| D.7.4. | 4. Window Film                                   | D-195 |
| D.7.5. | 5. Plug Load Occupancy Sensors                   | D-197 |
| D.7.6. | 6. Advanced Power Strips                         | D-199 |
| D.7.7. | 7. Computer Power Management                     | D-204 |
| E. App | ppendix A: Inputs                                | E-1   |
| E.1.1. | 1. Residential                                   | E-1   |
| E.1.2. | 2. Commercial                                    | E-10  |
| F. App | ppendix B: References                            | F-166 |
| F.1.1. | 1. New Construction                              | F-166 |
| F.1.2. | 2. Retrocomissioning                             | F-166 |

# List of Tables

| Table A-1: Response Count by Measure Type and Delivery MechanismA-4                                        |
|------------------------------------------------------------------------------------------------------------|
| Table A-2: Residential Major Measure NTGR         A-4                                                      |
| Table A-3: Residential Direct Install NTGRA-4                                                              |
| Table A-4: Residential Home Energy Kit NTGRA-4                                                             |
| Table A-5: Residential Home Energy Kit ISRA-5                                                              |
| Table A-6: Parameters Validated with Primary Data Collection in New Orleans                                |
| Table B-1: Comparison of Objectives for Impact and Process EvaluationB-5                                   |
| Table B-2: IPMVP M&V OptionsB-13                                                                           |
| Table B-3: Spectrum of Measures: 100% Prescriptive to 100% Custom                                          |
| Table B-4: Summary of Recommended EM&V Methods for 100% Custom MeasuresB-17                                |
| Table B-5: Determining Appropriate Timing to Conduct a Process EvaluationB-29                              |
| Table B-6: Determining Appropriate Conditions to Conduct a Process EvaluationB-30                          |
| Table B-7: Recommended Elements of a Process Evaluation PlanB-33                                           |
| Table B-8: Recommended Areas of Investigation in a Process EvaluationB-34                                  |
| Table B-9: Recommended Areas of Investigation in a Process EvaluationB-35                                  |
| Table B-10: Suggested Reporting Requirements for Process Evaluation Report                                 |
| Table B-11: Suggested Structuring of Recommendations from Process EvaluationB-37                           |
| Table B-12: Common RCx MeasuresB-57                                                                        |
| Table B-13: Categorization of RCx MeasuresB-58                                                             |
| Table B-14: RCx Market BarriersB-59                                                                        |
| Table B-15: Adjusted Consumption for Scheduled Control/Variable Savings Measures                           |
| Table B-16: Adjusted Consumption for Variable Control/Variable Savings MeasuresB-72                        |
| Table B-17: Example of Data Required for Model Development       B-73                                      |
| Table B-18: Model Statistical Validity GuideB-74                                                           |
| Table B-19: Steps in PDCA Cycle for Quality Assurance       B-79                                           |
| Table B-20: Quality Control Activities during Pre-Implementationand Post-ImplementationPhases of a Program |

| Table C-1: ENERGY STAR <sup>®</sup> Clothes Washer – Baseline and Efficiency Levels |
|-------------------------------------------------------------------------------------|
| Table C-2: ENERGY STAR <sup>®</sup> Clothes Washer – Deemed SavingsC-2              |
| Table C-3: ENERGY STAR <sup>®</sup> Dryer – Baseline and Efficiency LevelsC-5       |
| Table C-4: ENERGY STAR <sup>®</sup> Clothes Dryer – Deemed SavingsC-6               |
| Table C-5: ENERGY STAR <sup>®</sup> Clothes Dryer Incremental CostsC-8              |
| Table C-6: ENERGY STAR <sup>®</sup> Criteria for DishwashersC-9                     |
| Table C-7: ENERGY STAR <sup>®</sup> Dishwashers – Deemed Savings ValuesC-10         |
| Table C-8: Energy Consumption Baseline and ENERGY STAR Efficiency CriteriaC-12      |
| Table C-9: Deemed kWh Savings and kW Reductions for Water Cooler ReplacementC-13    |
| Table C-10: Water Cooler Cost SummaryC-14                                           |
| Table C-11. ENERGY STAR <sup>®</sup> Air Purifiers Deemed SavingsC-15               |
| Table C-12: ENERGY STAR <sup>®</sup> Ceiling Fan – Deemed SavingsC-16               |
| Table C-13: Deemed Savings for Residential APSC-20                                  |
| Table C-14: APS AssumptionsC-21                                                     |
| Table C-15: ENERGY STAR <sup>®</sup> Dehumidifier StandardC-23                      |
| Table C-16: Federal Minimum Standards for DehumidifiersC-24                         |
| Table C-17: Annual Energy Savings by Capacity RangeC-25                             |
| Table C-18: Annual Energy Savings by Capacity RangeC-26                             |
| Table C-19: Demand Reductions by Capacity Range         C-26                        |
| Table C-20: Variable Speed Pool Pumps – Deemed Savings ValuesC-29                   |
| Table C-21: Multi-Speed Pool Pumps – Deemed Savings ValuesC-29                      |
| Table C-22: Conventional Pool Pumps AssumptionsC-31                                 |
| Table C-23: ENERGY STAR <sup>®</sup> Multi-Speed Pool Pumps Assumptions             |
| Table C-24: Formulas to Calculate the ENERGY STAR® Refrigerator CriteriaC-35        |
| Table C-25: Remaining Useful Life (RUL) of Replaced RefrigeratorC-41                |
| Table C-26. ENERGY STAR <sup>®</sup> SpecificationsC-44                             |
| Table C-27. Energy Usage SpecificationsC-44                                         |
| Table C-28. Deemed Energy Savings and Demand ReductionsC-46                         |

| Table C-29: Remaining Useful Life (RUL) of Replaced Refrigerator                          |
|-------------------------------------------------------------------------------------------|
| Table C-30: Savings Coefficients for Refrigerator SavingsC-50                             |
| Table C-31: Savings Coefficients for Freezer SavingsC-51                                  |
| Table C-32: Title 10: 430.32 (d) Water Heater StandardsC-55                               |
| Table C-33: Tank Water Heater Draw PatternC-55                                            |
| Table C-34: Instantaneous Water Heater Draw PatternC-55                                   |
| Table C-35: Heat Pump Water Heater Draw PatternC-56                                       |
| Table C-36: Calculated Electric Storage Water Heater Baseline Uniform Energy Factors C-56 |
| Table C-37: Estimated Annual Hot Water Use (gal)C-56                                      |
| Table C-38: Deemed kWh Savings for Water Heater Replacement                               |
| Table C-39: Deemed kW Savings for Water Heater Replacement                                |
| Table C-40: Average Ambient Temperatures and PA% Factors by Installation LocationC-60     |
| Table C-41: HPWH AdjustmentC-60                                                           |
| Table C-42: Incremental Costs                                                             |
| Table C-43: Water Heater Jackets – Baseline and Efficiency StandardsC-64                  |
| Table C-44: Water Heater Jackets – Electric Heating Deemed Savings Values                 |
| Table C-45: Water Heater Pipe Insulation – Baseline and Efficiency Standards              |
| Table C-46: Pipe Wrap – Deemed Savings Per Linear FootC-66                                |
| Table C-47: Faucet Aerators – Baseline and Efficiency StandardsC-69                       |
| Table C-48: Faucet Aerators – Deemed SavingsC-70                                          |
| Table C-49: Estimated Aerator Hot Water Usage ReductionC-71                               |
| Table C-50: Mixed Water Temperature CalculationC-72                                       |
| Table C-51: Example -Replacing 2.2 GPM with 1.5 GPM Faucet AeratorC-73                    |
| Table C-52: In-Service RatesC-73                                                          |
| Table C-53: Low-Flow Showerhead – Baseline and Efficiency StandardsC-74                   |
| Table C-54: Estimated Showerhead Hot Water Usage ReductionC-76                            |
| Table C-55: Mixed Water Temperature CalculationC-77                                       |
| Table C-56: Low Flow Showerhead Retrofit Deemed Energy SavingsC-78                        |

| Table C-57: In-Service Rates                                           | C-79  |
|------------------------------------------------------------------------|-------|
| Table C-58: Estimated Showerhead Hot Water Usage Reduction             | C-81  |
| Table C-59: Gallons of Hot Water Saved per Year                        | C-82  |
| Table C-60. Deemed Savings for TRVs – Showerheads                      | C-83  |
| Table C-61: Estimated Showerhead Hot Water Usage Reduction             | C-85  |
| Table C-62: Water Savings by Flow Rate (gallons)                       | C-86  |
| Table C-63. Deemed Savings for TRVs – Showerheads                      | C-88  |
| Table C-64: Central Air Conditioner – Baseline and Efficiency Levels   | C-89  |
| Table C-65: High Efficiency Central AC Deemed kWh                      | C-90  |
| Table C-66: High Efficiency Central AC Deemed kW                       | C-90  |
| Table C-67: High Efficiency Central AC Replacement Incremental Costs   | C-92  |
| Table C-68: Window Air Conditioner – Baseline and Efficiency Levels    | C-93  |
| Table C-69: Furnace Fan Efficiency Values                              | C-97  |
| Table C-70: Heat Pump – Baseline and Efficiency Levels                 | C-99  |
| Table C-71: Deemed Cooling kWh Savings                                 | C-100 |
| Table C-72: Deemed Cooling kW Savings                                  | C-100 |
| Table C-73: Deemed Heating kWh Savings – ROB/NC (Heat Pump Baseline)   | C-101 |
| Table C-74: Heating kWh Savings- ROB/NC (Electric Resistance Baseline) | C-101 |
| Table C-75: Replacement Incremental Costs (HP Baseline)                | C-104 |
| Table C-76: Replacement Incremental Costs (ER Baseline)                | C-104 |
| Table C-77: Heat Pump – Baseline and Efficiency Levels                 | C-105 |
| Table C-78: Geothermal Heat Pump Deemed Savings                        | C-106 |
| Table C-79: Heat Pump – Baseline and Efficiency Levels                 | C-108 |
| Table C-80: Ductless Mini-Split Average Savings                        | C-109 |
| Table C-81: Ductless Mini-Split Full Installed Cost                    | C-110 |
| Table C-82: Ductless Mini-Split Incremental Cost                       | C-110 |
| Table C-83: AC Tune-Up Deemed Savings Single Family Dwelling           | C-113 |
| Table C-84: AC Tune-Up Deemed Savings Multifamily Dwelling             | C-113 |

| Table C-85: Efficiency Loss by Refrigerant Charge Level (Fixed Orifice)         | C-114 |
|---------------------------------------------------------------------------------|-------|
| Table C-86: Efficiency Loss by Refrigerant Charge Level (TXV)                   | C-115 |
| Table C-87: Duct Sealing Deemed Savings Values – Single Family                  | C-119 |
| Table C-88: Duct Sealing Deemed Savings Values – Multifamily                    | C-119 |
| Table C-89: Model Results and Annual Savings                                    | C-126 |
| Table C-90: Attic Knee Wall Insulation – Baseline and Efficiency Standards      | C-128 |
| Table C-91: Knee Wall Insulation – Deemed Savings Values Per Residence          | C-128 |
| Table C-92: Knee Wall Insulation – Deemed Savings Values Per Square Foot        | C-129 |
| Table C-93: Ceiling Insulation – Baseline and Efficiency Standards              | C-130 |
| Table C-94: Deemed Savings for R-30 – Per-Residence                             | C-131 |
| Table C-95: Deemed Savings for R-38 – Per-Residence                             | C-131 |
| Table C-96: Deemed Savings for R-49 – Per-Residence                             | C-131 |
| Table C-97: Coefficients for kWh Savings Calculations                           | C-132 |
| Table C-98: Coefficients for kW Savings Calculations                            | C-133 |
| Table C-99: Wall Insulation – Baseline and Efficiency Standards                 | C-134 |
| Table C-100: Wall Insulation – Deemed Savings Values Per-Residence              | C-135 |
| Table C-101: Wall Insulation – Deemed Savings Values Per-Ft. <sup>2</sup>       | C-135 |
| Table C-102: Floor Insulation – Baseline and Efficiency Standards               | C-138 |
| Table C-103: R-19 Floor Insulation – Deemed Savings Values Per-Residence        | C-138 |
| Table C-104: R-19 Floor Insulation – Deemed Savings Values Per-Ft. <sup>2</sup> | C-138 |
| Table C-105: ENERGY STAR <sup>®</sup> Efficiency Requirements for New Orleans   | C-141 |
| Table C-106: Baseline Windows                                                   | C-141 |
| Table C-107: ENERGY STAR <sup>®</sup> Replacement for Single-Pane Window        | C-142 |
| Table C-108: ENERGY STAR <sup>®</sup> Replacement for Double-Pane Window        | C-142 |
| Table C-109: Average Savings for Single-Pane Windows                            | C-142 |
| Table C-110: Average Savings for Double-Pane Windows                            | C-142 |
| Table C-111: ENERGY STAR <sup>®</sup> Replacement for Doors (Opaque)            | C-143 |
| Table C-112: ENERGY STAR <sup>®</sup> Replacement for Doors (≤ ½-Lite)          | C-143 |

| Table C-113: ENERGY STAR <sup>®</sup> Replacement for Doors (> ½-Lite)                       | C-143 |
|----------------------------------------------------------------------------------------------|-------|
| Table C-114: ENERGY STAR <sup>®</sup> Replacement for Skylights                              | C-143 |
| Table C-115: ENERGY STAR <sup>®</sup> Requirements for Storm Windows (Southern Region) .     | C-145 |
| Table C-116: ENERGY STAR <sup>®</sup> Interior Storm Window Deemed Savings                   | C-146 |
| Table C-117: ENERGY STAR <sup>®</sup> Exterior Storm Window Deemed Savings                   | C-146 |
| Table C-118: Air Infiltration – N Factor                                                     | C-149 |
| Table C-119: Pre-Retrofit Infiltration Cap (CFM <sub>50</sub> / <sub>ft</sub> <sup>2</sup> ) | C-149 |
| Table C-120: Air Infiltration Reduction – Deemed Savings Values Per-Residence                | C-150 |
| Table C-121: Air Infiltration Reduction – Deemed Savings Values Per-Ft. <sup>2</sup>         | C-150 |
| Table C-122: Window Film – Baseline and Efficiency Standards                                 | C-152 |
| Table C-123: Window Film – Deemed Savings Values Per-Residence                               | C-153 |
| Table C-124: Window Film – Deemed Savings Values Per-Ft. <sup>2</sup>                        | C-153 |
| Table C-125: Required Substantiation                                                         | C-155 |
| Table C-126: Deemed Savings Values                                                           | C-156 |
| Table C-127: Hours of Use by Area                                                            | C-158 |
| Table C-128: Lighting Model Coefficients                                                     | C-158 |
| Table C-129: Average Hours of Use Per Year                                                   | C-160 |
| Table C-130: In Service Rates                                                                | C-160 |
| Table C-131: IEF for Cooling/Heating Savings                                                 | C-161 |
| Table C-132: Residential Lighting Efficiency – Summer Peak Coincidence Factor                | C-161 |
| Table C-133: IEF for Cooling Demand Savings                                                  | C-161 |
| Table C-134: ENERGY STAR <sup>®</sup> Omni-Directional LEDs – EISA Baselines                 | C-164 |
| Table C-135: ENERGY STAR <sup>®</sup> Omni-Directional LEDs – Measure Life                   | C-165 |
| Table C-136: ENERGY STAR <sup>®</sup> Omnidirectional LEDs – Deemed Savings Per Lamp         | C-165 |
| Table C-137: ENERGY STAR <sup>®</sup> Directional LEDs Incremental Costs                     | C-166 |
| Table C-138: ENERGY STAR <sup>®</sup> Directional LEDs – Reflector Lamps Baseline Watts      | C-168 |
| Table C-139: Baseline Wattage by Lumen Output for Specialty Lamps                            | C-169 |
| Table C-140: Baseline Wattage by Lumen Output for Specialty Lamps                            | C-169 |

| Table C-141: ENERGY STAR <sup>®</sup> Directional LEDs –Baseline Watts for EISA-Exempt LampsC-170        |
|----------------------------------------------------------------------------------------------------------|
| Table C-142: Deemed Savings for ENERGY STAR <sup>®</sup> Directional LEDsC-171                           |
| Table C-143: ENERGY STAR <sup>®</sup> Directional LEDs Incremental Costs from 2019 ForwardC-171          |
| Table C-144: ENERGY STAR <sup>®</sup> CFLs – EISA BaselinesC-173                                         |
| Table C-145: ENERGY STAR <sup>®</sup> CFLs – Measure LifeC-174                                           |
| Table C-146: ENERGY STAR <sup>®</sup> CFLs – Deemed Savings Per Lamp                                     |
| Table C-147: ENERGY STAR <sup>®</sup> Specialty CFLs - Baseline Watts for Reflector LampsC-176           |
| Table C-148: Baseline Wattage by Lumen Output for Specialty Lamps                                        |
| Table C-149: Baseline Wattage for Specialty, EISA Exempt Lamps                                           |
| Table C-150: ENERGY STAR <sup>®</sup> Specialty CFLs – Measure LifeC-179                                 |
| Table C-151: ENERGY STAR <sup>®</sup> Specialty CFLs – Deemed Savings Per LampC-180                      |
| Table D-1: Deemed Savings by Facility TypeD-2                                                            |
| Table D-2: Commercial Coincidence Factors by Building TypeD-4                                            |
| Table D-3: Premium Efficiency Motors – Replace on Burnout BaselineD-6                                    |
| Table D-4: Premium Efficiency Motors – Early Retirement BaselineD-7                                      |
| Table D-5: Premium Efficiency Motors – Operating Hours, Load Factor (HVAC)D-8                            |
| Table D-6: Premium Efficiency Motors – Operating Hours, Load Factor (Non-HVAC)D-8                        |
| Table D-7: Premium Efficiency Motors- Review of Motor Measure InformationD-9                             |
| Table D-8: Premium Efficiency Motors – Remaining Useful Life (RUL) of Replaced Systems <sup>,</sup> D-11 |
| Table D-9: Rewound Motor Efficiency Reduction Factors         D-12                                       |
| Table D-10: Motor Incremental Cost by SizeD-14                                                           |
| Table D-11: Commercial Water Heaters – Water Heater Performance RequirementsD-15                         |
| Table D-12: Small Commercial Water Heaters – Standards and their Compliance DatesD-16                    |
| Table D-13: Deemed Savings: Electric Resistant Water HeatersD-17                                         |
| Table D-14: Deemed Savings: Heat Pump Water HeatersD-17                                                  |
| Table D-15: Hot Water Requirements by Building Type and System CapacityD-18                              |
| Table D-16: Hot Water Requirements by Building SizeD-19                                                  |
| Table D-17: Faucet Aerator Deemed Savings – 1.5 GPMD-22                                                  |

| Table D-18: Faucet Aerator Deemed Savings – 1.0 GPM                               | D-23    |
|-----------------------------------------------------------------------------------|---------|
| Table D-19: Faucet Aerator Deemed Savings – 0.5 GPM                               | D-23    |
| Table D-20: Commercial Aerator Savings Parameters                                 | D-24    |
| Table D-21: Low-Flow Showerhead – Baseline and Efficiency Standards               | D-27    |
| Table D-22: Showerhead Deemed Savings – 2.0 GPM                                   | D-27    |
| Table D-23: Showerhead Deemed Savings – 1.75 GPM                                  | D-28    |
| Table D-24: Showerhead Deemed Savings – 1.5 GPM                                   | D-28    |
| Table D-25: Showers per Day (per Showerhead) and Days of Operation by Building Ty | /peD-28 |
| Table D-26: Reduction in Daily Hot Water Usage, $\Delta V$ (GPD)                  | D-29    |
| Table D-27: Parameters for Annual Energy and Peak Demand Savings Calculations     | D-31    |
| Table D-28: PTAC/PTHP Equipment – Baseline Efficiency Levels                      | D-37    |
| Table D-29: Deemed Savings by Building Type - PTAC                                | D-38    |
| Table D-30: Deemed Savings by Building Type - PTHP                                | D-38    |
| Table D-31: Equivalent Full-Load Hours by Building Type                           | D-39    |
| Table D-32: Commercial Coincidence Factors by Building Type                       | D-40    |
| Table D-33: Unitary AC/HP Equipment – Baseline Efficiency Levels                  | D-41    |
| Table D-34: Deemed Savings by Building Type - AC                                  | D-43    |
| Table D-35: Deemed Savings by Building Type – Heat Pump                           | D-44    |
| Table D-36: Equivalent Full-Load Hours by building type                           | D-45    |
| Table D-37: Commercial Coincidence Factors by Building Type                       | D-45    |
| Table D-38: Unitary AC Incremental Cost                                           | D-46    |
| Table D-39: Chillers – Baseline Efficiency Levels for Chilled Water Packages      | D-48    |
| Table D-40: Deemed Savings – Air-Cooled Chillers                                  | D-49    |
| Table D-41: Deemed Savings – Water-Cooled Chillers – Positive Displacement        | D-50    |
| Table D-42: Deemed Savings – Water-Cooled Chillers – Centrifugal                  | D-51    |
| Table D-43: Equivalent Full-Load Hours by Building type                           | D-52    |
| Table D-44: Commercial Coincidence Factors by Building Type                       | D-52    |
| Table D-45: Chiller Incremental Cost                                              | D-53    |

| Table D-46: Deemed Savings by Building Type – Commercial AC Tune-upD-55                  |
|------------------------------------------------------------------------------------------|
| Table D-47: Deemed Savings by Building Type – Commercial Heat Pump Tune-upD-55           |
| Table D-48: Efficiency Loss Percentage by Refrigerant Charge Level (Fixed Orifice)D-57   |
| Table D-49: Efficiency Loss Percentage by Refrigerant Charge Level (TXV)D-57             |
| Table D-50: Default Air Conditioner EER per Size CategoryD-58                            |
| Table D-51: Default Heat Pump EER per Size CategoryD-58                                  |
| Table D-52: Default Heat Pump HSPF per Size CategoryD-59                                 |
| Table D-53: Equivalent Full-Load Hours by Building TypeD-59                              |
| Table D-54: Commercial Coincidence Factors by Building TypeD-59                          |
| Table D-55: Occupant Density by Building TypeD-64                                        |
| Table D-56: Deemed Savings by Building Type – PTACD-64                                   |
| Table D-57: Deemed Savings by Building Type - PTHPD-64                                   |
| Table D-58: Equivalent Full-Load Hours by Building TypeD-69                              |
| Table D-59: Savings Percent by Baseline TypeD-69                                         |
| Table D-60: VRF Heat Pump System– Baseline Efficiency StandardsD-72                      |
| Table D-61: Deemed Savings by Building Type – VRF Air-Cooled Heat PumpsD-73              |
| Table D-62: Deemed Savings by Building Type – VRF Water Cooled Heat PumpD-74             |
| Table D-63: Measure Efficiency AssumptionsD-76                                           |
| Table D-64: Equivalent Full-Load Hours by Building TypeD-77                              |
| Table D-65: Commercial Coincidence Factors by Building TypeD-77                          |
| Table D-66: Anti-Sweat Heater Controls – Savings per Linear Foot of Case by LocationD-82 |
| Table D-67: Solid-Door Refrigerators and Freezers – Efficiency LevelsD-83                |
| Table D-68: Solid-Door Refrigerators and Freezers – Baseline Measure InformationD-84     |
| Table D-69: Solid-Door Refrigerators and Freezers – Qualifying Measure InformationD-84   |
| Table D-70: Solid-Door Refrigerators and Freezers – Deemed Savings ValuesD-85            |
| Table D-71: Solid-Door Refrigerators and Freezers – Review of Measure InformationD-85    |
| Table D-72: Solid-Door Refrigerators and Freezers Incremental CostsD-86                  |
| Table D-73: Vertical & Semi-vertical Refrigerated Case SavingsD-88                       |

| Table D-74: Horizontal Refrigerated Case SavingsD-89                                                       |
|------------------------------------------------------------------------------------------------------------|
| Table D-75: Refrigerated Case Night Covers – Deemed Savings Values (per Linear Foot)D-90                   |
| Table D-76: Refrigerated Case Night Covers – Deemed Savings Values (per Night Cover)D-91                   |
| Table D-77: Strip Curtain Universal Input AssumptionsD-92                                                  |
| Table D-78: Strip Curtain Input Assumptions for SupermarketsD-93                                           |
| Table D-79: Strip Curtain Input Assumptions for Convenience StoresD-93                                     |
| Table D-80: Strip Curtain Input Assumptions for RestaurantsD-94                                            |
| Table D-81: Strip Curtain Input Assumptions for Refrigerated WarehousesD-96                                |
| Table D-82: Strip Curtains – Deemed Savings Values (per Square Foot)D-97                                   |
| Table D-83: Strip Curtains – Deemed Savings Values (per Square Foot)D-98                                   |
| Table D-84: Assumptions for Savings CalculationsD-100                                                      |
| Table D-85: Zero Energy Doors – Deemed Savings Values (per door)D-100                                      |
| Table D-86: Evaporator Fan Controls Deemed Savings Values         D-101                                    |
| Table D-87: Default Connected Load by Machine TypeD-104                                                    |
| Table D-88: Energy Savings Factor by Machine TypeD-105                                                     |
| Table D-89: Occupancy-based Controls – Energy and Demand Savings by Machine TypeD-105                      |
| Table D-90: Schedule-based Controls – Energy and Demand Savings by Machine TypeD-106                       |
| Table D-91: Federal Minimum Standards for Air-Cooled Batch Ice MakersD-107                                 |
| Table D-92: Federal Minimum Standards for Air-Cooled Continuous Ice MakersD-108                            |
| Table D-93: ENERGY STAR <sup>®</sup> Requirements for Air-Cooled Batch Ice MakersD-108                     |
| Table D-94: ENERGY STAR <sup>®</sup> Requirements for Air-Cooled Continuous Ice MakersD-109                |
| Table D-95: ENERGY STAR <sup>®</sup> Criteria for Electric and Gas Single- and Double-Sided Griddles D-111 |
| Table D-96: Energy Consumption Related Parameters for Commercial GriddlesD-113                             |
| Table D-97: Baseline and Efficient Assumptions for Electric GriddlesD-114                                  |
| Table D-98: Deemed Savings for Electric and Gas Commercial Griddles per Linear FootD-115                   |
| Table D-99: ENERGY STAR <sup>®</sup> Criteria for Electric Convection OvensD-116                           |
| Table D-100: Baseline and Efficient Assumptions for Electric Convection OvensD-117                         |
| Table D-101: Deemed Savings Estimates for Electric Convection OvensD-118                                   |

| Table D-102: High Efficiency Requirements for Electric Combination Ovens by Pan Capacity119             | .D- |
|---------------------------------------------------------------------------------------------------------|-----|
| Table D-103: Energy Consumption Parameters for Commercial Combination OvensD-1                          | L20 |
| Table D-104: ENERGY STAR <sup>®</sup> Criteria and FSTC Baseline for Open Deep-Vat Electric Fryers .D-1 | L22 |
| Table D-105: Energy Consumption Related Parameters for Commercial FryersD-1                             | L24 |
| Table D-106: Baseline and Efficient Assumptions for Electric Standard and Large Vat Fryers<br>125       | .D- |
| Table D-107: Deemed Savings per Fryer VatD-1                                                            | L25 |
| Table D-108: ENERGY STAR <sup>®</sup> Criteria for Electric Steam CookersD-1                            | L27 |
| Table D-109: ENERGY STAR <sup>®</sup> Criteria for Gas Steam CookersD-1                                 | L27 |
| Table D-110: Energy Consumption Related Parameters for Commercial Steam CookersD-1                      | L29 |
| Table D-111: Deemed Savings Assumptions for Electric Steam CookersD-1                                   | L30 |
| Table D-112: Deemed Savings for Steam CookersD-1                                                        | L30 |
| Table D-113: Deemed Savings – Direct InstallD-1                                                         | L33 |
| Table D-114: Deemed Savings – Rebate/ROB/NCD-1                                                          | L33 |
| Table D-115: Variables for the Deemed Savings AlgorithmD-1                                              | L34 |
| Table D-116: Building Type DefinitionsD-1                                                               | L35 |
| Table D-117: Daily Operating HoursD-1                                                                   | L36 |
| Table D-118: Deemed Savings per Rated Exhaust kW by Building Type, with or without Dedica<br>MAUD-1     |     |
| Table D-119: Annual Hours of Operation by Building TypeD-1                                              | 140 |
| Table D-120: Regressed Load Savings Calibrated for NOLAD-1                                              | 141 |
| Table D-121: Maximum Idle Energy Requirements for ENERGY STAR QualificationD-1                          | 143 |
| Table D-122: HFHC Deemed SavingsD-1                                                                     | 144 |
| Table D-123: HFHC Peak Coincidence FactorsD-1                                                           | L45 |
| Table D-124: ENERGY STAR Requirements for Commercial DishwashersD-1                                     | L48 |
| Table D-125: Default Assumptions for Low Temperature, Electric and Gas Water HeatersD-1                 | 150 |
| Table D-126: Default Assumptions for High Temperature, Electric and Gas Water Heaters <sup>4</sup> D-1  | 150 |
| Table D-127: Deemed Savings for Commercial DishwashersD-1                                               | 151 |

| Table D-128: Federal Minimum Standards for Air-Cooled Batch Ice Makers                  | D-153          |
|-----------------------------------------------------------------------------------------|----------------|
| Table D-129: Federal Minimum Standards for Air-Cooled Continuous Ice Makers             | D-154          |
| Table D-130: ENERGY STAR <sup>®</sup> Requirements for Air-Cooled Batch Ice Makers      | D-154          |
| Table D-131: ENERGY STAR <sup>®</sup> Requirements for Air-Cooled Continuous Ice Makers | D-154          |
| Table D-132: New Maximum Wattages for General Service Incandescent Lamps, 2<br>158      | 2012-2014D-    |
| Table D-133: Lighting Efficiency – Current Federal Efficiency Standards for GSFLs       | D-159          |
| Table D-134: Adjusted Baseline Wattages for T12 Equipment                               | D-160          |
| Table D-135: Estimated Useful Life by Lamp Type                                         | D-162          |
| Table D-136: Transferability of Data across Geographic Regions                          | D-164          |
| Table D-137: Annual Operating Hours (AOH) and Coincidence Factors (CF)                  | D-166          |
| Table D-138: Commercial Conditioned and Refrigerated Space Interactive Effects          | FactorsD-167   |
| Table D-139: T8 Linear Fluorescent Incremental Costs                                    | D-168          |
| Table D-140: T5 Linear Fluorescent Incremental Costs                                    | D-168          |
| Table D-141: Omnidirectional LED Incremental Costs                                      | D-169          |
| Table D-142: LED Incremental Costs                                                      | D-170          |
| Table D-143: Lighting Controls – Energy Saving Estimates for Occupancy Sensors          | D-173          |
| Table D-144: Lighting Controls – Energy Saving Estimates for Daylighting Sensors .      | D-174          |
| Table D-145: Lighting Controls – Power Adjustment Factors                               | D-175          |
| Table D-146: Lighting Controls – Incremental Costs                                      | D-176          |
| Table D-147: Estimated Percent Time in "Low Power" (unoccupied) State                   | D-177          |
| Table D-148: Federal Standard Maximum Nominal Wattages, Wattages, and Deer 181          | ned savings.D- |
| Table D-149: Incandescent/LED Traffic Signal Fixture Wattages                           | D-182          |
| Table D-150: Estimated Useful Life by Measure                                           | D-183          |
| Table D-151: Variables for the Deemed Savings Algorithm                                 | D-185          |
| Table D-152: Estimated Leakage Rate                                                     | D-185          |
| Table D-153: Air Compressor Efficiency by Control Type                                  | D-185          |
| Table D-154: Annual Operating Hours                                                     | D-186          |

| Table D-155: DX Cooling with Gas Heating                              | D-187 |
|-----------------------------------------------------------------------|-------|
| Table D-156: DX Cooling with Electric Resistance Heating              | D-188 |
| Table D-157: Heat Pump                                                | D-188 |
| Table D-158: Chiller Loop Cooling W/ HW Boiler Loop Heating           | D-188 |
| Table D-159: Fan Horsepower                                           | D-192 |
| Table D-160: Average Enthalpy of Outside Air                          | D-192 |
| Table D-161: Average Humidity                                         | D-193 |
| Table D-162: Average Outdoor Air During Cooling Season                | D-194 |
| Table D-163: Incremental Cost by Door Size                            | D-194 |
| Table D-164: Window Film Deemed Savings by Direction and Heating Type | D-196 |
| Table D-165: Plug Load Without Occupancy Sensors- Baseline Data       | D-197 |
| Table D-166: Plug Load Occupancy Sensors – Minimum Requirements       | D-197 |
| Table D-167: Plug Load Occupancy Sensors – Deemed Savings Values      | D-198 |
| Table D-168: Review of Plug Load Occupancy Sensor Measure Information | D-198 |
| Table D-169: Peripheral Watt Consumption Breakdown                    | D-200 |
| Table D-170: Advanced Power Strips – Deemed Savings Values            | D-202 |
| Table D-171: Computer Power Management - Equipment Wattages           | D-205 |
| Table D-172: Computer Power Management - Deemed Savings Values        | D-205 |

[THIS PAGE INTENTIONALLY LEFT BLANK]

# A.Introduction

ADM Associates, Inc. (ADM) is contracted as the Third-Party Evaluator (TPE) for New Orleans Energy Smart Programs administered by Entergy New Orleans (ENO).

This Technical Reference Manual (TRM) provides Unit Energy Savings (UES, or "deemed savings") estimates of kWh (energy savings) and kW (demand reductions) for the Entergy New Orleans Energy Smart Programs. The selection of measures for inclusion in this TRM was based on:

- 1. Historical implementation rates of measures;
- 2. Identification of measures in other programs that may warrant inclusion in Energy Smart; and
- 3. An assessment of whether a measure is an appropriate candidate for deemed savings or if it warrants custom analysis. Some viable measures (such as HVAC variable frequency drives, or VFDs) have been excluded from this TRM as they are more appropriate for custom analysis.

# A.1. Additional Sections and Updates Between TRM 3.0 and TRM 4.0

This version of the TRM expands upon the New Orleans TRM 3.0 by adding sections for new measure offerings through the Energy Smart Program, refinements of some existing sections and the development of EM&V protocols for evaluating New Construction and Retrocomissioning Energy Smart Programs. A list of these changes with a brief description of each follows below:

## A.1.1. New Measures

## A.1.1.1.Residential

#### A.1.1.1.1. ENEGRY STAR® Freezers

This measure is for the purchase a freezer meeting the efficiency specifications of ENERGY STAR® is installed in place of a model meeting the federal standard (NAECA). An ENERGY STAR® freezer must be at least 10 percent more efficient than the minimum federal government standard.

#### A.1.1.1.2. ENEGRY STAR® Air Purifiers

This measure involves the installation of an ENERGY STAR® certified room air purifier. An air purifier, also known as an air cleaner, is defined as a portable electric appliance that removes dust and fine particles from indoor air.

#### A.1.1.1.3. Thermostatic Restrictor Valves on Showerheads

This measure consists of installing a thermostatic restrictor valve (TRV) between the existing shower arm and showerhead. The valve will reduce behavioral water waste by restricting water flow when the water reaches a set temperature (generally 95°F).

Restricting the flow when the water reaches the temperature set point, reduces the amount of water that goes down the drain prior to the user entering the shower.

# A.1.1.1.4. Tub Spout Diverters and Thermostatic Restrictor Valves on Showerheads

This measure consists of replacing existing tub spouts and shower heads with an automatically diverting tub spout and showerhead system with a thermostatic restrictor valve (TRV) between the existing shower arm and showerhead. When the water temperature reaches a set point (generally 95°F), the thermostatic restrictor valve will engage the anti-leak diverter. The water will divert from the spout to a showerhead with a closed valve, which prevents the hot water from flowing down the drain prior to use.

#### A.1.1.2. Commercial

#### A.1.1.2.1. Bi-Level Parking Garage Lighting

Automated bi-level lighting fixture with motion sensors installed in a parking garage. The fixture provides lower levels of lighting during unoccupied periods. This measure covers savings from operational changes. Savings are fixture operation only. Retrofit savings from fixture replacement should be calculated using section D.6.1 Commercial Lighting Efficiency.

#### A.1.1.2.2. LED Refrigerated Case Lighting

This measure relates to the installation of LED lamps with and without motion sensors in vertical display refrigerators, coolers, and freezers replacing T8 or T12 linear fluorescent lamp technology. LED lamps should be systems intended for this application. LED lamps not only provide the same light output with lower connected wattages, but also produce less waste heat which decreases the cooling load on the refrigeration system and energy needed by the refrigerator compressor. Additional savings can be achieved from the installation of a motion sensor which automatically dims the lighting system when the space is unoccupied. Retrofit projects must completely remove the existing fluorescent fixture end connectors and ballasts to qualify, though wiring may be reused. Eligible fixtures include new, replacement, and retrofit. Savings and assumptions are based on a per door basis.

#### A.1.2. Measure Revisions

# A.1.2.1.1. Deemed Net-To-Gross Ratios (NTGR) based on primary data collection

#### A.1.2.1.1.1. Description

To estimate net savings<sup>1</sup> during Entergy New Orleans program years five through nine, the Third Party Evaluator (TPE) and implementation teams conducted participant surveys and used responses to estimate program and measure-level free ridership, spillover and to calculate the overall net energy impacts of the program.

Program-level free ridership was estimated by calculating free ridership scores for major and direct install measures, weighted by the participants' gross energy savings and demand reductions. The major and direct install measure free ridership ratios were used to factor the program verified gross savings for the two measure types to estimate free ridership. Spillover (free drivership) ratios were developed by dividing the total energy savings and demand reductions resulting from spillover measures by the total gross energy savings and demand reductions for the sample of survey respondents.

In addition to free ridership and spillover questions, in-service rate (ISR) data was collected for items acquired through residential energy kits<sup>2</sup>.

The results of these surveys were combined to develop robust net-to-gross-ratio (NTGR) estimates and in-service rates (ISR) based on primary data collection for common measures. In service rates vary considerably by delivery method and the New Orleans TRM does not contain in-service rates for mailer kit delivery. The primary data from these surveys establishes robust estimates of in-service rates for items commonly distributed to Energy Smart participants through this delivery mechanism.

Measure-specific NTGR and ISRs appear in applicable chapters and are summarized below.

#### A.1.2.1.1.1. Data

During program years six through nine, the TPE completed NTG surveys for a total of 578 major measures and 169 direct install measures, as well as 221 energy kits which were mailed to participants. This information was supplemented with self-reported data from 4,394 home energy kits which were distributed through the School Kits and Education program.

<sup>&</sup>lt;sup>1</sup> The program net savings are equal to gross savings, less savings associated with free ridership, plus participant spillover savings.

<sup>&</sup>lt;sup>2</sup> Residential energy kits were either mailed to program participants or distributed to 6<sup>th</sup>-10<sup>th</sup> graders to bring home to parents/guardians, a significantly different delivery mechanism than other direct install items. In both cases, kits contained LED lighting, faucet aerators and low flow showerheads.

| Measure Type        | Count of<br>Surveys Used |
|---------------------|--------------------------|
| Major Measure       | 578                      |
| Direct Install      | 169                      |
| Home Energy Kits    | 221                      |
| School Kits         | 4,394                    |
| Commercial Lighting | 118                      |

Table A-1: Response Count by Measure Type and Delivery Mechanism

#### A.1.2.1.1.2. Results

#### A.1.2.1.2. Net-to-Gross Ratios

#### Table A-2: Residential Major Measure NTGR

| Measure                            | N   | NTGR | TRM<br>Section |
|------------------------------------|-----|------|----------------|
| Duct Sealing                       | 282 | 95%  | C.3.8          |
| Air Sealing                        | 78  | 95%  | C.4.7          |
| AC/HP Tune-up                      | 135 | 82%  | C.3.7          |
| ENERGY STAR Window Air Conditioner | 30  | 62%  | C.3.2          |
| ENERGY STAR Refrigerator           | 44  | 44%  | C.1.10         |

#### Table A-3: Residential Direct Install NTGR

| Measure               | N                | NTGR | TRM<br>Section  |
|-----------------------|------------------|------|-----------------|
| LED Lighting          | 126 <sup>3</sup> | 62%  | C.5.2,<br>C.5.3 |
| Advanced Power Strips | 37               | 80%  | C.1.7           |

| Table A-4: Residential Home Energy Kit NTGR |
|---------------------------------------------|
|---------------------------------------------|

| Measure              | Ν   | NTGR | TRM<br>Section  |
|----------------------|-----|------|-----------------|
| LED Lighting         | 221 | 65%  | C.5.2,<br>C.5.3 |
| Faucet Aerators      | 221 | 92%  | C.2.4           |
| Low-Flow Showerheads | 221 | 91%  | C.2.5           |

<sup>&</sup>lt;sup>3</sup> Survey responses were also compared with the results of price-response and revenue neutral models used to measure NTG during years PY6 and PY9 respectively, and found the estimates to be comparable.

#### A.1.2.1.3. In-Service Rates

| Measure              | N     | ISR | TRM<br>Section     |
|----------------------|-------|-----|--------------------|
| LED Lighting         | 4,572 | 71% | C.5.3 <sup>4</sup> |
| Faucet Aerators      | 4,572 | 45% | C.2.4              |
| Low-Flow Showerheads | 4,572 | 62% | C.2.5              |

Table A-5: Residential Home Energy Kit ISR

### A.2. High Impact Measures

In this TRM, we refer to "High Impact Measures" (HIMs). Measures are classified as HIMs if they exceed a minimum of 1% of the sector-level savings for the residential or non-residential components of Energy Smart. Most HIMs have deemed savings parameters based off primary research conducted by the TPE as part of the Program Year 5 (PY5) through PY8 evaluation, measurement, and verification (EM&V) efforts. Measures that are not HIMs have savings values that are typically either direct reference to existing sources (such as ENERGY STAR®, Food Service Technology Center, the Department of Energy, or the California Database for Energy Efficient Resources (DEER)). These measures have been updated to reflect New Orleans weather where appropriate.

The HIMs are summarized in the subsections to follow.

#### A.2.1. Residential High Impact Measures

The following list includes all measures that produced a minimum of 1% of residential Energy Smart gross energy savings (kWh) in PY9<sup>5</sup>.

- Lighting: 59.3%
- Duct Sealing: 29.3%
- Self-install Kits<sup>6</sup>: 6.2%
- Insulation: 1.9%
- Air Sealing: 1.2%

To-date, the EM&V activities have included primary research to refine savings estimates for all residential HIMs other than ceiling insulation and air sealing. The primary research informed 96.8% of Energy Smart PY9 residential savings. Smart Thermostats are targeted for primary research in PY11. Their savings in this TRM are based on pilot

<sup>&</sup>lt;sup>4</sup> Results only applicable to omni-directional LED lighting.

<sup>&</sup>lt;sup>5</sup> Not including the behavioral program.

<sup>&</sup>lt;sup>6</sup> Kits include aerators, a showerhead and lighting.

program results only. This limited EM&V sample size as well as pre-select a portion of Energy Smart participants. If PY11 measure participation is sufficient to conduct an expanded study, the TPE recommends revising Smart Thermostat Savings estimates to be based on dwelling square footage, possibly including additional relevant characteristics.

### A.2.2. Commercial & Industrial (C&I) High Impact Measures

This following list includes all measures that produced a minimum of 1% of commercial Energy Smart savings in Program Year 8 (PY8):

- Custom: 95.1% and
- Prescriptive: 4.9%

As:

- Lighting: 72.6% and
- Non-Lighting: 27.4%

Custom measures are not included in the TRM and receive analysis unique to the facility based on the International Measurement & Verification Protocols (IPMVP). Though metering studies have not been completed for all facility types, the adjustments to New Orleans-specific projects has been significant. The primary research informed 93.8% of Energy Smart PY9 C&I savings.

#### A.3. New Orleans EM&V Studies

The following EM&V studies have been completed, allowing for incorporation of primary data into the TRM:

- Metering of residential air conditioning runtime, applied to AC replacement and duct sealing;
- Field assessment of average SEER for air conditioning units in duct sealing projects;
- Billing analysis to support reductions achieved from residential air conditioning tune-ups;
- Measurement of residential domestic hot water (DHW) temperature setpoints, incorporated into DHW replacements and low flow devices;
- Metering of residential lighting run-time;
- Metering of commercial lighting run-time for the following facility types:
  - K-12 Education;
  - Exterior Lighting (all commercial);
  - Food Preparation;
  - Food Sales: Non-24 Hour Supermarket;
  - Food Service: Fast Food;
  - Food Service: Sit-down Restaurant;

- Health Care: In-Patient;
- Lodging: Common Areas;
- Lodging: Guest Rooms;
- Multifamily: Common Area;
- Religious Assembly/Worship;
- Retail: Freestanding; and
- Warehouse: Non-Refrigerated.

The data collected for these studies is summarized in Table A-6 below.

| Parameter                                         | Measures Affected                                                                                                                    | Value                                                                    | Sample Size                      |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------|
| Residential Cooling Equivalent<br>Full-load Hours | Duct Sealing, AC<br>replacement, AC tune-up                                                                                          | 1,637                                                                    | 68 homes                         |
| Residential Cooling Peak<br>Coincidence Factor    | Duct Sealing, AC<br>replacement, AC tune-up                                                                                          | 77%                                                                      | 68 homes                         |
| Residential Heating Equivalent<br>Full-load Hours | Duct Sealing, Central AC<br>and Heat Pump Tune-Up,<br>Ductless Heat Pump,<br>Ground Source Heat Pump<br>and Heat Pump<br>Replacement | HP: 396<br>ER: 600                                                       | 295 homes                        |
| Lighting hours of use                             | CFLs, Specialty CFLs,<br>Directional LEDs,<br>Omnidirectional LEDs                                                                   | 2.38                                                                     | 40 homes, 355<br>loggers         |
| Residential Lighting Peak<br>Coincidence Factor   | CFLs, Specialty CFLs,<br>Directional LEDs,<br>Omnidirectional LEDs                                                                   | 11.74%                                                                   | 40 homes, 355<br>loggers         |
| Residential DHW Setpoint (deg.<br>F)              | Water Heater<br>Replacement, Faucet<br>Aerators, Low Flow<br>Showerheads                                                             | 122.24                                                                   | 37 homes                         |
| Residential AC Tune-Up Annual %<br>Savings        | AC Tune-Up                                                                                                                           | 10.1%                                                                    | 260                              |
| Commercial Lighting Hours of<br>Use               | Commercial Lighting                                                                                                                  | Original values created<br>for 10 facility types.<br>See Section D.6.1.5 | 59 premises, 210<br>loggers      |
| Commercial Lighting Peak<br>Coincidence           | Commercial Lighting                                                                                                                  | Original values created<br>for 10 facility types.<br>See Section D.6.1.5 | 59 premises, 210<br>loggers      |
| Average Duct Sealing Leakage<br>Reduction         | Duct Sealing                                                                                                                         | SF: 471<br>MF: 443                                                       | SF: 4,939<br>MF: 325             |
| Deemed Net-to-Gross Ratios                        | Residential:<br>• Duct Sealing<br>• Air Sealing<br>• AC/HP Tune-Up<br>• ENERGY STAR® Window<br>AC<br>• ENERGY STAR®<br>Refrigerator  | Varies, see section<br>A.1.2.1.2                                         | Varies, see<br>section A.1.2.1.2 |
| Deemed ISRs for Mailer kit Items                  | LED lighting, Faucet<br>Aerators and Low-Flow<br>Showerheads                                                                         | LEDs: 71%<br>Aerators: 45%<br>Showerheads: 62%                           | 4,572 participant responses      |

Table A-6: Parameters Validated with Primary Data Collection in New Orleans

The following EM&V studies have been completed, allowing for incorporation of primary data into the TRM:

 Metering of residential air conditioning runtime, applied to AC replacement and duct sealing;

- Field assessment of average SEER for air conditioning units in duct sealing project; and
- Billing analysis of electric resistant heating homes to estimate equivalent full load heating hours.

Primary data collection has continued during PY7 and PY8 evaluations. After PY8 program close, the following data will be analyzed to either develop or refine important savings inputs:

- Billing data from households which installed Smart Thermostats during the PY8 program will be added to existing data from the Smart Thermostat Pilot, creating a sample size large enough to estimate kWh savings based on average annual energy use per home.
- Lighting measures constituted 52.8% of expected Residential savings in PY7. During PY8 residential M&V visits, lighting operation loggers were left in 60 homes. Their data will be used to further supplement the home annual lighting hours of operation estimate.

### A.4. Incremental Costs

The TRM also provides incremental cost values for most measures. Incremental cost is defined under two possible scenarios:

- <u>Normal replacement / New construction / Replace-on-burnout</u>: these costs reflect the cost premium of efficient equipment compared to minimum code-compliant equipment.
- Early replacement: these costs reflect the full installed cost of the new equipment. For some measures, such as lighting controls, this is meant to capture that the measure is an add-on to existing equipment. For measures that have parameters defined for the early replacement of functioning equipment, this approach also includes the subtraction of the net present value (NPV) of the second equipment purchase.

#### A.5. Simulation Modeling

The savings for some weather sensitive measures were developed via simulation modeling. The model software platforms included are as follows:

- eQuest<sup>©</sup>;
- BEopt<sup>TM</sup>;
- EnergyGauge USA<sup>®</sup>; and
- EnergyPlus<sup>™</sup>

#### A.6. Weather

Various measures in the TRM refer to Typical Meteorological Year version 3 (TMY3) weather data. This data is publicly available from the National Renewable Energy Laboratory (NREL) National Solar Radiation Database (NSRDB).

This data reflects the typical year of New Orleans weather based off historical data and is the common practice for projecting average annual savings of weather sensitive measures. Inputs from the TMY3 dataset for New Orleans included the following:

- Temperature;
- Humidity;
- Wind speed and direction;
- Cloud cover; and
- Solar radiation.

#### A.7. Application of Values in this TRM

It is the intent to have the values in this TRM provide parameters to stipulate ex-post gross energy savings (kWh) and demand reduction (kW) estimates. The values in this TRM do not account for free-ridership, as that is a parameter that may vary based on a program delivery mechanism (for example, the free-ridership rates for residential lighting differ significantly between retail markdown in the Consumer Products versus direct install in Green Light New Orleans). The measurement of free-ridership and the application of net-to gross is discussed in detail in Section B.3.1.4, Impact Protocol 4: Net-to-Gross Analysis.

The values in this TRM will be used to verify ex post gross energy savings (kWh) and demand reductions (kW), except when specified otherwise in an EM&V plan.

#### A.8. Future Studies

Each measure section includes a discussion of future studies suggested by the authors of this TRM. For many measures, no studies are recommended, and suggested updates include only updating when codes and standards affecting the specific measure change. The suggestion of future studies is focused on areas of high impact in the Energy Smart portfolio (such as duct sealing) and for the identification of potential future high impact measures (such as ductless mini-split HVAC systems and smart thermostats).

The studies detailed are suggestions on the part of the authors of the TRM and guidance and feedback on these issues is welcomed as part of the stakeholder advisory process.

The general guidelines that are provided for when a study is warranted are as follows (though occasionally subject to modification as specified in a measure-specific chapter):

- Measures should be flagged for further review if they exceed 1% of savings within the residential or non-residential portfolio. In such instances, it should be determined whether:
  - I. Primary data has been collected in Energy Smart evaluations to support the deemed savings;
  - II. The data is sufficiently recent to support its continued use; and
  - III. If data collection to support a deemed savings revision is costeffective or cost-feasible given the implementation and EM&V budgets for Energy Smart programs.
- Measures that are not over the high-impact threshold should be considered for impact or market assessment studies if:
  - I. Stakeholders (the Council and their Advisors, ENO, implementers, interveners, the EM&V contractor, and/or other appropriate parties) conclude a measure is of strategic importance to future program implementation efforts; or
- A measure is high-impact within an important market sub-segment (such as lowincome multifamily or municipal government).

# **B.Evaluation Protocols**

### **B.1.** Protocols Introduction

This section provides protocols for various activities related to performing Evaluation, Measurement, and Verification (EM&V) for the Energy Smart programs that Entergy New Orleans is offering to its residential, commercial, and industrial customers.

Protocols are provided as follows:

- Protocol with guidance for setting rigor level and timing of evaluations;
- Protocol for EM&V of custom measures;
- Protocol and methods for EM&V for measures that are not addressed in the Technical Reference Manual but whose savings may nonetheless be treated as prescriptive;
- Protocol with guidance for net-to-gross estimation;
- Protocol with guidance for conducting process evaluations;
- Protocol with guidance for establishing quality assurance guidelines for program implementation; and
- Protocol with guidance for future updating of TRM.

#### B.1.1.1. Description of the Energy Smart Program

Through Energy Smart, Entergy New Orleans offers energy efficiency solutions to help New Orleans residents and businesses save energy and money. The Energy Smart implements a comprehensive energy efficiency plan that was developed by the New Orleans City Council. Any residential, commercial or industrial Entergy New Orleans electric customer is eligible to participate. Participants in the Program are offered cash incentives for energy efficiency audits, upgrades and more.

Energy Smart offerings for residential customers include the following:

- Home Performance with ENERGY STAR® ("HPwES")
- Residential Lighting and Appliances
- Low Income Audit and Weatherization
- High Efficiency AC Tune Up Program
- Energy Smart Multifamily
- EasyCool (Residential Direct Load Control)
- School Kits & Education

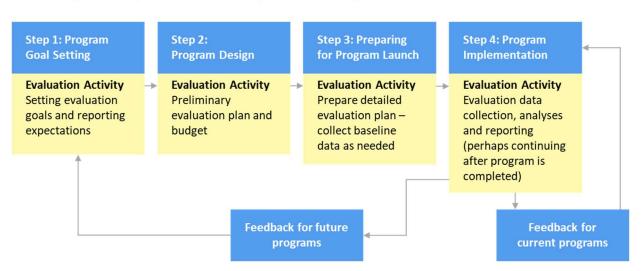
- Green Light New Orleans
- Energy Smart Scorecard

The Energy Smart offerings for commercial and industrial customers include incentives for prescriptive and custom energy efficiency measures and projects. The offerings are organized according to the following categories:

- Small Commercial
- Large Commercial and Industrial
- Publicly Funded Institutions
- Retrocommissioning

The types of commercial and industrial customers eligible for the incentives include:

- Small businesses
- Non-profit organizations
- Large commercial facilities
- Industrial facilities
- Warehouses
- Parking lots and garages
- Office buildings
- Commercial retail buildings
- Schools
- Publicly funded buildings


#### B.1.1.2. Purpose of Evaluation

As defined by the American Evaluation Association, evaluation of an offering involves "assessing the strengths and weaknesses of programs, policies, personnel, products and organizations to improve their effectiveness." In the context of energy efficiency and demand response offerings, the role of future Program evaluation is two-fold:

- Quantify Results: Document, measure and estimate the energy and demand savings
  of an offering to determine how well it has achieved its goals and managed its budget.
- Gain Understanding: Determine why certain effects occurred (or didn't occur) and identify ways to improve and refine current and future offerings; also, to help select future offerings (NAPEE 2007).

Figure 1 provides a visual representation of the role of Program evaluation activities during the implementation life cycle of a typical energy efficiency or demand response

offering. As Figure 1 shows, Program evaluation should be viewed as an ongoing process that provides information regarding changes in Program direction and adjustments to Program goals and objectives over time.



# **Program Implementation Cycle With High-level Evaluation Activities**

(Source: NAPEE 2007, modified for formatting)

Figure B-1: High-Level Evaluation Activities in Program Implementation Cycle

# B.1.1.3. Purpose of EM&V Protocols Presented in This Volume

The protocols are intended to provide a common framework and set of reference points for conducting cost-effective evaluations of the Energy Smart Program, both energy efficiency and demand response offerings. Protocols describe the types of information that must be collected to conduct a comprehensive examination of the Program's overall effectiveness, the recommended frequency for conducting these Program evaluations, and the key metrics that must be reported during these evaluation activities.

# B.1.1.4. Primary Sources Used to Prepare Protocols

Preparation of these protocols draws from leading industry references used to guide EM&V activities for energy efficiency and demand response offerings throughout the United States. Materials that were used as primary sources to prepare these protocols include the following.

- Technical Reference Manuals for Arkansas and Texas.
  - Protocols for net-to-gross analysis and for process evaluation were based on materials from the Arkansas TRM
  - Texas TRM provided materials pertaining to TRM updating.
- Steven R. Schiller, Greg Leventis, Tom Eckman, and Sean Murphy. 2017. Guidance on Establishing and Maintaining Technical Reference Manuals for Energy

**Efficiency Measures**. Prepared by Lawrence Berkeley National Laboratory for the State and Local Energy Efficiency Action Network.

- Reports on evaluation frameworks that were used included the following:
  - California Public Utilities Commission. 2004 (June). California Evaluation Framework.
  - California Public Utilities Commission. 2006 (April). California Energy Efficiency Evaluation Protocols: Technical, Methodological and Reporting Requirements for Evaluation Professionals [a.k.a. TPE's Protocols].
  - DOE Office of Energy Efficiency and Renewable Energy (EERE). 2006 (February).
     EERE Guide for Managing General Program Evaluation Studies. (Referenced as EERE 2006.)
  - DOE/EPA. 2007 (November) National Action Plan for Energy Efficiency (NAPEE) Action Plan and Resource Guides for Process, Impact Evaluations and Understanding Cost-Effectiveness of Energy Efficiency Programs. (Referenced as NAPEE 2007).
  - Northeast Energy Efficiency Partnerships. 2010 (May). Regional EM&V Methods and Savings Assumptions Guidelines. (Referenced as NEEP EM&V Protocols).
  - NMR Group et al. 2018 (May). Evaluation Framework for Pennsylvania Act 129
     Phase III Energy Efficiency and Conservation Programs, Final Version.
     Prepared for Pennsylvania Public Utilities Commission.
  - Steven R. Schiller and Tom Eckman. 2017 (June). Evaluation Measurement and Verification (EM&V) Frameworks—Guidance for Energy Efficiency Portfolios Funded by Utility Customers. Prepared by Lawrence Berkeley National Laboratory for the State and Local Energy Efficiency Action Network.
- Chapters from Uniform Methods Project, administered for DOE by National Renewable Energy Laboratory
  - Stewart, J.; Todd, A. (2017). Chapter 17: Residential Behavior Protocol, The Uniform Methods Project: Methods for Determining Energy-Efficiency Savings for Specific Measures
  - Violette, Daniel M.; Rathbun, Pamela. (2017). Chapter 21: Estimating Net Savings Common Practices: Methods for Determining Energy-Efficiency Savings for Specific Measures.

# B.2. Evaluation Principles and Concepts

Evaluation of an energy efficiency or demand response offering is generally undertaken with two major objectives.

- A first objective is to quantify and verify savings resulting from the implementation of the offering. This is impact evaluation.
- A second objective is to collect and analyze data on offering implementation to guide decisions about future offering implementation. This is process evaluation.

Table B-1 summarizes the objectives for the two aspects of offering evaluation.

| Type of Evaluation | Objective                                                                                                                                                                                                                                                |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Impact             | Quantify and verify savings that<br>can be attributed to the program's<br>activities, i.e., what are the results or<br>outcomes that would not have<br>occurred without the influence of the<br>program. This is also called "net<br>impacts."           |
| Process            | <i>Efficiency of program</i><br><i>implementation processes</i> , e.g., to<br>document the effectiveness of specific<br>activities, what works and what does<br>not work, where additional resources<br>could be leveraged, participant<br>satisfaction. |

Table B-1: Comparison of Objectives for Impact and Process Evaluation

(Source: Modified from EERE 2006)

Examples of common offering evaluation objectives are:

- Assess impact of offering on customer awareness and knowledge of energy efficiency actions.
- Measure customer response to "follow-up" offering elements designed to encourage audit participants to implement recommendations.
- Examine offering awareness, delivery channels, factors that influenced participation, offering effects and customer satisfaction levels.
- Document energy efficiency actions taken by offering participants compared to actions taken by non-participants.

- Estimate energy savings accruing from participation in the offering over time; verify the reported energy savings as results of the offering.
- Determine if there have been any changes in the building characteristics of offering participants between Program years.
- Evaluate the effectiveness of Program modifications made in a specific fiscal year.
- Complete a customer segmentation analysis of the primary target population.
- Explore barriers to participation in Program activities and develop recommendations for improving the promotion and targeting of existing services, as well as new offering knowledge and services (Source: Expanded and modified from EERE 2006).

# B.2.1.1. What is Impact Evaluation?

Impact evaluation is directed at measuring and verifying the changes in energy usage and demand (kWh, kW) that result from measures or projects implemented through an energy efficiency or demand response offering. There are two measures of energy savings.

- Gross energy or demand savings is the change in energy consumption or demand that results directly from actions taken by participants that are promoted by the Program ((e.g., installing energy efficient lighting) under pre-defined assumed conditions.
- Net energy or demand savings refer to the portion of gross savings that is directly attributable to the influence of the Program. This involves separating out the impacts that are a result of other influences, such as weather, energy prices, or even consumer self-motivation.

Conceptually, the relationship between gross and net savings is shown by Equations 1 and 2:

Gross Savings Impact = Actual Energy Use<sub>post</sub> – Projected Energy Use<sub>pre</sub> (1)

Net Savings Impact = Actual Energy Use<sub>post</sub> – Projected Energy Use<sub>pre</sub> ± Adjustments (2)

Most program evaluations seek estimates for both gross and net energy/demand savings.

A variety of approaches can be used to quantify (estimate) gross energy savings, including statistical comparisons, engineering estimation, and modeling, metering, and billing analysis. The impact evaluation approach selected is primarily a function of the available budget, the technologies or energy end-use measures (EUMs) targeted in the program, the level of certainty of original program estimates, and the overall level of estimated savings attributable to the program (NAPEE 2007).

The net savings attributable to an offering may differ from gross savings because of freeridership and spillover.

• Free ridership impacts are the energy savings impact attributable to energy efficiency measures that would have been installed even without the influence of a Program.

Spillover pertains to several effects. First, participants may be influenced by the Program to invest in energy-efficient measures not included in the program. Second, non-participants may adopt measures promoted by the Program as a direct result of the program but do so outside of the Program. One savings impact of spillover is the additional energy savings that result because non-participants purchase greater efficiency than they otherwise would have, due to differences in dealer and contractor actions or equipment availability at the time of purchase. There may also be additional energy savings from non-participants due to program marketing impact on awareness of energy-efficiency.

The goal of net savings analysis is to infer the magnitude of the free-ridership and spillover effects and hence to determine the net savings impact of an offering. Net-to-gross ratios or factors are applied to the adjusted or verified gross savings to estimate net offering savings for the Program.

There are several methods for estimation of program net-to-gross ratios. Examples include:

- Self-reporting surveys;
- Enhanced self-reporting surveys;
- Statistical analysis of billing data that compares participants' and non-participants' energy and demand patterns; and
- Statistical modeling using multi-equation discrete choice and energy consumption models of participant and non-participant participation, measure adoption, and energy consumption behavior.

Other factors might affect energy and demand levels at customer sites and need to be considered when evaluating a Program. By accounting for these factors that are beyond the control of the Program implementer or end-user, the adjustments bring energy use in the two time periods (before offering launch and after or during offering delivery) to the same set of conditions. Examples of adjustment factors include the following:

- Weather corrections;
- Changes in occupancy levels and hours;
- Production levels;
- Economic conditions;
- Energy prices;
- Changing codes/standards and common practice/changes to the baseline;
- Interactions with other offerings; and
- Changes in household or building characteristics.

These factors all affect total energy used and energy demand levels. There are a few methods for isolating the impacts of these factors to accurately attribute energy and demand reductions to the offering being evaluated.

The decision to calculate gross energy savings or net energy savings depends on the program objectives and available evaluation resources.

- Gross savings are calculated when all that is needed is an estimate of the savings for each project participating in a Program. The most common example of this is a project involving a contractor completing energy efficiency measures in a facility for the sole purpose of achieving energy savings (e.g., performance contracts).
- Net savings are calculated when one wants to know the level of savings that occurred because of the Program's influence on offering participants and non-participants.

# B.2.1.2. What is Process Evaluation?

As defined in the California Evaluation Framework, a process evaluation is "a systematic assessment of an energy efficiency program for the purposes of (1) documenting program operations at the time of the examination, and (2) identifying and recommending improvements that can be made to the program to increase the program's efficiency or effectiveness for acquiring energy resources while maintaining high levels of participant satisfaction."7 Process evaluation of a program examines the process of implementing the program and determines whether the program is operating as planned. The goal of a process evaluation is to recommend ways to improve processes to increase a program's effectiveness.

Examining program operations through a process evaluation can identify ways to make enhancements and improvements to an Offering that reduces overall Program costs, expedites Offering delivery, improves customer satisfaction, and fine-tunes Offering objectives. The evaluation can also be used to assess the effectiveness of various Offering incentives and technology rebates.

Various researchable issues that are typically addressed in a process evaluation include the following.

- Assessing the effectiveness of current operations
- Determining customer awareness of energy efficiency overall as well as awareness of the particular offerings and measures
- Characterizing customer decision-making, especially the drivers for customer participation and key motivators including energy and non-energy benefits.
- Assessing customer satisfaction with the program and key drivers
- Assessing trade ally satisfaction and key drivers
- Documenting inter-relationship between a given Offering and other Program Offerings
- Recommending areas for Program improvement

<sup>&</sup>lt;sup>7</sup> California Evaluation Framework, 2004.

Process evaluation can be done as a one-time assessment or continuously. Performed periodically, a process evaluation of a Program can be a management tool that focuses on improving both the design and delivery of energy efficiency offerings. A process evaluation can also provide feedback on ways to streamline and enhance data collection strategies for operation of a Program.

Process evaluations make use of various types of information and data. The spectrum of data collection activities for process evaluation is shown in Figure B-2. (Activities are ordered according to relative cost, from low cost to higher cost.) As can be seen, a variety of qualitative and quantitative research methods are used, beginning with a review of program materials and records, conducting in-depth interviews with program staff and implementers, and surveys with key customer and trade ally groups.

|                        |                                                              | - Laur Cast |
|------------------------|--------------------------------------------------------------|-------------|
| Records                | Review of program database                                   | Low Cost    |
| Review                 | Review of marketing materials                                |             |
|                        | Review of secondary materials                                |             |
| Literature             | Review of secondary materials                                |             |
| Review                 | Review of engineering estimates and approved databases       |             |
|                        | Review of secondary materials                                |             |
| Focus Groups           | Small group discussions with customers trade allies, or both |             |
| In-depth               | Program staff                                                |             |
| interviews<br>with key | Outside consultants                                          |             |
| stakeholders           | Industry representatives                                     |             |
| Surveys                | Participating customers                                      |             |
|                        | Non-participating customers                                  |             |
|                        | Surveys of trade allies                                      |             |
| Site Visits            | On-site observation of program operations / customers        |             |
|                        | On-site verification of equipment operation and/or metering  | High Cost   |
|                        |                                                              |             |

#### Types of Data Collection Activities for Process and Impact Evaluations

(Source: Reynolds, Johnson & Cullen 2008, adapted for NOLA TRM V3.0) Figure B-2: Types of Data Collection Activities for Impact and Process Evaluations

# B.2.1.3. What are "GOOD" Evaluation Practices?

NAPEE 2007 summarizes what it considers to be the *"Best Practices in Evaluation"*. These EM&V best practices are summarized below to provide further guidance for evaluation activities conducted for the Energy Smart Program.

- Incorporate an overall evaluation plan and budget into the Program plan at the beginning of Program planning;
- Adopt a more in-depth evaluation plan each Program year;
- Prioritize evaluation resources where the risks are highest. This includes focusing impact evaluation activities on the most uncertain outcomes and highest potential

savings. New and pilot programs have the most uncertain outcomes, as do newer technologies;

- Allow evaluation criteria to vary across offering types to allow for education, outreach, and innovation;
- Conduct ongoing verification as part of the program process;
- Establish a program tracking system that includes necessary information for evaluation;
- Match evaluation techniques to the situation regarding evaluation costs, level of precision required, and feasibility;
- Maintain separate staff for evaluation and for program implementation. Rely on an outside review of evaluations (e.g., state utility commission), especially if the program is implemented by internal utility staff. It is important that the program evaluation is an activity conducted independently of program operations; and
- Evaluate regularly to refine offerings as needed to meet changing market conditions.

Even the best evaluation practices are based on highly refined estimates and do not provide absolute findings. The energy savings from an offering cannot be determined directly from available energy use data but must be measured against *what would have happened if the offering did not exist*. Therefore, the goal of a good EM&V protocol is to identify the best approaches for determining reasonable and defensible estimates – largely based on surveys with program participants, non-participants and other market actors – about events that would have happened in the absence of the programs.

With any evaluation, there is a level of *risk* that the estimations are inaccurate, and there are different points for an acceptable margin of error (or levels of confidence). These protocols manage the risk of inaccuracy, and minimize the margin of error, by specifying the information and data points required to properly document savings and provide the best possible estimates of energy savings.

A second major issue regarding good EM&V practices relates to the level of effort required to obtain meaningful results, while managing evaluation costs. It is important to weigh the costs associated with obtaining additional, incremental information (or developing more precise estimates of program impacts, i.e., higher certainty), with the incremental costs associated with gathering and studying additional information.

Therefore, EM&V methodologies involve a series of tradeoffs guided by answering two questions:

- Q1. "What is the comparison point?
- Q2. "How good is good enough?"

The answers to these questions are based on the size, scale, and scope of the overall program portfolio as it relates to the ultimate energy savings goals and objectives.

# B.3. Protocols for Impact Evaluation of Measures / Projects Not Included on List of Prescriptive Measures

This chapter provides guidance and protocols pertaining to impact evaluation activities for measures and projects that are not included on the list of prescriptive measures for Energy Smart programs. Protocols are presented as follows:

- Impact Protocol 1: Timing of Impact Evaluation Activities
- Impact Protocol 2: Level of Rigor for Impact Evaluations
- Impact Protocol 3: Evaluation of Savings for Non-prescriptive Measures or Projects
  - Impact Protocol 3.1: Evaluation Approach for 100% Custom Measures
  - Impact Protocol 3.2: Impact Evaluation of Non-Prescriptive Measures Whose Savings May Be Treated as Prescriptive
  - Impact Protocol 3.3: Impact Evaluation of Information-Based Programs
- Impact Protocol 4: Net-to-Gross Analysis

# B.3.1.1. Impact Protocol 1: Timing of Impact Evaluation Activities

The decision regarding the appropriate time frame for impact evaluation has two components:

- When and over what period of time the evaluation effort will take place?
- What is the level of detail or "granularity" required for the evaluation analyses?

# B.3.1.1.1. When and Over What Period of Time Evaluation Effort Will Take Place.

A standard evaluation begins before program implementation begins to collect important baseline data and then continues for some time after the program is completed to analyze persistence of savings and other program elements.

The actual timing of evaluation efforts influenced by several factors, including:

- What will be the time period of analyses (i.e., how many years)?
- Will persistence of savings be determined, and if so, how?
- What is the timing for policy decisions and evaluation planning?
- What is the need for early feedback for program implementers?
- Where is the program in its life cycle?
- What are the evaluation data collection time lags?
- What are the other regulatory and/or management oversight requirements to be addressed in this evaluation?
- What information or data are needed to update specific energy and demand savings from the measure, and to quantify life estimates?

What is the timing and format required for the reporting process? Is a single, final program report needed, or are more frequent reports required?

In general, program evaluations are conducted with a three-year plan. Process evaluations are usually conducted at the end of the first year of program operations and at the conclusion of the program period. Impact evaluations may be conducted annually or at the conclusion of Program Years 2 and 3, and generally free ridership and spillover no more frequently than once every three years provided there are sufficient data to determine energy savings estimates and adjustments and no significant changes in a program design. The timing for the EM&V activities should be specified in EM&V plans for the programs to be evaluated.

# B.3.1.1.2. What Level of Detail or "Granularity" Is Required for Evaluation Analyses?

This relates to whether 15-minute, hourly, monthly, seasonal, or annual data collection and savings reporting are necessary. The granularity decision is based how the information will be used for evaluation purposes. Annual savings data provide an overview of program benefits. More detailed data are usually required for both costeffectiveness analyses and resource planning purposes.

If demand savings are to be calculated, the choice of definition (e.g., annual average, peak summer, coincident peak, etc.) is related to time granularity. When evaluating energy or demand savings, it is important to properly define the project boundaries (i.e., what equipment, systems, or facilities will be included in the analyses). Ideally, all primary effects (the intended savings) and secondary effects (unintended positive or negative effects), and all direct (at the project site) and indirect (at other sites) will be captured in the evaluation. The decision concerns whether savings will be evaluated for specific pieces of equipment. For example, the "boundary" may include motor savings or light bulb savings estimates, the end-use system (e.g., the HVAC system or the lighting system), the entire facility, or the entire energy supply and distribution system (Modified NAPEE 2007).

The EM&V plan for each program should stipulate the confidence and precision levels necessary to provide for a robust EM&V analysis of the savings estimates and describe the sampling strategy that will be used. Sampling strategies will vary by program and across the program portfolio. The sampling strategy for a particular program should therefore be fully described in the EM&V plan for that program.

# B.3.1.2. Impact Protocol 2: Level of Rigor for Impact Evaluations

Impact evaluation of gross savings can be performed under different levels of rigor, depending on available evaluation resources, uncertainty in expected savings, magnitude of expected savings, program budget, and other criteria.

The level of effort necessary to assess savings impacts is driven by the equipment type and data collection needs. The International Performance Measurement and Verification Protocol (IPMVP) is an important and widely used guidance document that provides guidelines about the "level of effort" required to document energy efficiency savings. The IPMVP presents various M&V options, summarized in Table B-2, that help guide savings verification methods and levels of effort.

| IPMVP Option                                                                                                                                                  | Measure<br>Performance<br>Characteristics | Data Required                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Option A:</b> Engineering<br>calculations using spot or<br>short-term measurements<br>and/or historical data                                               | Constant performance                      | <ul> <li>Verified installation</li> <li>Nameplate or stipulated performance parameters</li> <li>Spot measurements</li> <li>Runtime hour measurements</li> </ul>                                                                                  |
| <b>Option B:</b> Engineering calculations using metered data                                                                                                  | Constant or variable performance          | <ul> <li>Verified installation</li> <li>Nameplate or stipulated performance parameters</li> <li>End-use metered data</li> </ul>                                                                                                                  |
| <b>Option C:</b> Analysis of<br>utility meter (or sub-<br>meter) data using<br>techniques from simple<br>comparison to<br>multivariate regression<br>analysis | Variable performance                      | <ul> <li>Verified installation</li> <li>Utility metered or end-use metered data</li> <li>Engineering estimate of savings input into SAE model</li> </ul>                                                                                         |
| <b>Option D:</b> Calibrated<br>energy simulation /<br>modeling; calibrated with<br>hourly or monthly utility<br>billing data and / or end-<br>use metering    | Variable performance                      | <ul> <li>Verified installation</li> <li>Sport measurements, runtime hour monitoring, and/or end-use metering to prepare inputs into models</li> <li>Utility billing records, end-use metering, or other indices to calibrate modeling</li> </ul> |

(Source: IPMVP Protocols 2010, formatted for this document)

In the California Energy Efficiency Evaluation Protocols, IPMVP M&V options are used to identify two levels of rigor for evaluation of gross energy savings.

- Basic rigor level, which is consistent with IPMVP Option A (or, in some cases, Option C).
- Enhanced rigor level, which is consistent with IPMVP Options B or D (or, in some cases, Option A).

The levels of rigor for evaluating impacts of a program can be assigned by using this correspondence between IPMVP M&V options and levels of rigor by determining which IPMVP option should be applied to assess savings for measures or projects in a program. For example, Lawrence Berkeley National Laboratory (LBNL) maintains a webpage on its Measurement & Verification portal that allows use of interactive tools to identify the IPMVP option that is best suited to evaluating savings for a particular project. (See <a href="http://mnv.lbl.gov/interactive/ipmvp-1a-2">http://mnv.lbl.gov/interactive/ipmvp-1a-2</a>.) This tool can be used to assign an IPMVP Option and corresponding level of rigor (basic, enhanced) to measures or projects included in a program.

The LBNL application (which is adapted from IPMVP 2012 Volume 1) identifies an appropriate M&V option based on responses to questions about the energy conservation measure/project that's being considered for evaluation. Items of information needed include the following:

- Claimed kWh savings, claimed kW reductions
- Number of different measures in a project;
- Number of installed measures;
- Descriptions of any equipment changed or of new equipment installed;
- Interactive effects between measures;
- Percentage of savings vs. baseline;

For Energy Smart programs, there are prescriptive and non-prescriptive measures. Prescriptive measures are explicitly listed as such in program materials. Non-prescriptive measures are those that are not included on the list of prescriptive measures for the Energy Smart programs. Within the set of non-prescriptive measures, a distinction can be made between 100% custom measures and measures where deemed calculation methods might be used but data need to be collected or developed to be put into the calculation algorithms.

This distinction is shown in Table B-3. For Prescriptive Measures that are included on the list of prescriptive measures, savings are deemed. (These deemed savings values are provided in the current Technical Reference Manual.) Protocols for assessing savings for Non-Prescriptive and 100% Custom Measures are discussed in Section 3.3.

|                                                                                                                                                                                       | 100% Prescriptive              | Non-Prescriptive                                        |                                                                                                                       | 100%<br>Custom                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                       | Exclusive Source               | Primary<br>Source                                       | Used as a<br>Source                                                                                                   | May be used<br>as a Source                                                                                                                                         |
| Deemed<br>Calculation(s)                                                                                                                                                              | No                             | Yes                                                     | Yes                                                                                                                   | No, unless custom<br>measure EM&V protocols<br>are included                                                                                                        |
| Deemed<br>Variables or<br>Factors                                                                                                                                                     | No                             | Mix of site-<br>/project-specific<br>and deemed<br>data | None or<br>minimal                                                                                                    | None or minimal                                                                                                                                                    |
| Site- or<br>Project-<br>Specific<br>Variables or<br>Factors                                                                                                                           | No                             | Mix of site-<br>/project-specific<br>and deemed<br>data | Exclusively or mostly                                                                                                 | Exclusively or mostly                                                                                                                                              |
| Deemed<br>Savings<br>Values                                                                                                                                                           | Fully deemed<br>savings values | Partially<br>deemed<br>savings values                   | No, savings<br>determined per<br>deemed<br>calculations,<br>resulting in site-<br>/project-specific<br>savings values | No, savings determined<br>per project-/measure-<br>specific analyses and data<br>collection, resulting in site-<br>/project-specific savings<br>values             |
| EM&V<br>Method                                                                                                                                                                        | Deemed savings                 | M&V Option A                                            | M&V Option B,<br>C, or D                                                                                              | M&V Options B, C, or D<br>(e.g., for individual<br>commercial building<br>projects) or control group<br>methods (e.g., for mass<br>market residential<br>projects) |
| Source: Carroll 2013, as adapted and presented in SEE Action Guide for States: Guidance on Establishing and Maintaining<br>Technical Reference Manuals for Energy Efficiency Measures |                                |                                                         |                                                                                                                       |                                                                                                                                                                    |

#### Table B-3: Spectrum of Measures: 100% Prescriptive to 100% Custom

#### B.3.1.3. Impact Protocol 3: Evaluation of Savings for Non-Prescriptive Measures or Projects

As discussed in Section 3.2, levels of rigor with which savings for non-prescriptive and 100% custom measures are assessed are determined depends on the particular methods chosen for the analysis of savings. Protocols pertaining to the choice of methods are presented in this section. In general, documentation information is used to determine (1) what methods of savings analysis to use and (2) specifications of assumptions and sources for these specifications. Protocols are provided for the following:

- 100% Custom measures
- Non-prescriptive measures that are not 100% custom
- Measures promoted through mass market programs

# B.3.1.3.1. Impact Protocol 3.1: Evaluation Approach for 100% Custom Measures

Types of measures that can be considered to be 100% Custom include (1) measures or projects that site-specific but that are considered too complex or unique to be included in the list of standard measures provided in the TRM or (2) measures that may involve metered data, but that require additional assumptions to arrive at a 'typical' level of savings as opposed to an exact measurement.

Most measures in this category are custom measures installed in both retrofit and new construction situations in commercial and industrial (C&I) facilities. In general, these custom measures are more complex measures that require site-specific information and detailed calculations to estimate energy and demand savings. These measures do not comply with a prescriptive calculation approach or may benefit from having more detailed savings analysis.

Because custom measures are often unique, their savings are evaluated using a sitespecific M&V approach, with more reliance placed on using site-specific engineering analysis and end-use metering as methods to estimate savings. The site-specific approach involves (1) selecting a representative sample of custom projects or measures that participated in a program; (2) determining the savings for each project or measure in the sample, usually by using one or more of M&V Options defined in the IPMVP; and (3) applying the results of estimating the savings for the sample projects or measures to the entire population in the program. Further information on the EM&V methods recommended for 100% Custom Measures in provided in Table B-4. Methods to determine gross savings for 100% custom measures depend on the type of measure and the end use affected (e.g., lighting, HVAC, industrial process).

| Characteristic         | Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Additional Comments                                                                                                                                            |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Program Tracking       | Initial gross estimates of energy<br>and demand savings and initial<br>net impacts as applicable.<br>Measure description with, as<br>applicable, unit quantities, sizes/<br>capacities, baseline and<br>installed efficiencies, and<br>operating hours.                                                                                                                                                                                                                                                                                                    | Any additional parameters that<br>could be useful for quality<br>control or for evaluation design,<br>such as sampling that are<br>described in the EM&V plan. |
| Recommended M&V Method | On-site inspections with partial<br>(Option A) or complete (Options<br>B,C,D) measurements on a<br>census or sample of program<br>participants. Site visits with<br>short-term metering is the most<br>appropriate approach for C&I<br>Custom measures. A detailed<br>engineering spreadsheet model<br>can be used to capture the<br>dynamics and interactions on an<br>hourly basis. Data collected<br>from Energy Management<br>Systems (EMS) may also<br>provide cost-effective<br>information and should be<br>included in EM&V plans if<br>available. | Metering methods often include<br>time-of-use loggers, interval kW<br>recorders, and spot power<br>measurements.                                               |
| Alternative M&V Method | If the Custom measure involves<br>significant HVAC equipment<br>and/or controls, calibrated<br>simulation modeling (Option D)<br>offers a viable alternative for<br>capturing measure dynamics<br>and interaction.                                                                                                                                                                                                                                                                                                                                         | Metering can be used to<br>calibrate the model. Such<br>metering may include whole<br>premise interval kW recorders<br>with some end-use metering.             |

Table B-4: Summary of Recommended EM&V Methods for 100% Custom Measures

(Source: Modified from the NEEP EM&V Protocols 2010)

Evaluating savings impacts for 100% custom measures or projects requires that baseline conditions be defined. The baseline reflects the conditions, including energy consumption, that were occurring before the installation of the measure. Baseline definitions consist of site-specific issues and broader, policy-oriented considerations.

Site-specific issues include the characteristics of equipment in place before an efficiency measure is implemented as well as how and when the affected equipment or systems are operated. When defining the baseline, it is also important to consider where in the life cycle of the existing equipment or systems the new equipment was installed. The options are:

- Early replacement of equipment that had not reached the end of its useful life;
- Failed equipment replacement, with new energy efficient equipment installed; or
- New construction.

For each option, there are two generic approaches to defining baselines.

- Project-Specific Baseline. With the project-specific procedure (used with all or a sample of the projects in a program), the baseline is defined by a specific technology or practice that would have been pursued, at the site of individual projects, if the program had not been implemented. For energy efficiency programs, the baseline is established by:
  - 1. Assessing the existing equipment's energy consumption rate, based on measurements or historical data;
  - 2. Completing an inventory of pre-retrofit equipment; or
  - 3. Comparing to a control group's energy equipment (used where no standard exists or when the project is an "early replacement," i.e., implemented prior to equipment failure).

The most widely accepted method, and recommended for these EM&V Protocols, is to define the baseline by determining what technologies the new equipment actually replaces. That is, the baseline is related to actual historical base year energy consumption or demand and carried forward to future years (NAPEE 2007).

Performance Standard Baseline. For the Performance Standard Baseline approach, a performance standard is developed that provides an estimate of baseline energy and demand for all the projects in a program. The assumption is that any project activity will produce additional savings if it has a "lower" baseline than the performance standard baseline. Performance standards are sometimes referred to as "multi-project baselines" because they can be used to estimate baseline savings for multiple project activities of the same type.

Under the performance standard procedure, baseline energy and demand are estimated by calculating an average (or better-than-average) consumption rate (or efficiency) for a blend of alternative technologies or practices. These standards are used in large-scale retrofit (early replacement) programs when the range of equipment being replaced and how it is operated cannot be individually determined. This would be the case, for example, in a residential compact fluorescent lamp (CFL) incentive program, where the types of lamps being replaced and the number of hours they operate cannot be determined for each home. Instead, studies are used to determine typical conditions. Another common use of performance standards is to define a baseline as the minimum efficiency standard for a piece of equipment as defined by a law, code, or standard industry practice. This is commonly used for new construction or equipment that replaces failed equipment (NAPEE 2007).

This approach is especially important when it is difficult to determine baselines, such as in new construction programs since no comparison period exists.

However, the concepts of project and performance standard baseline definitions can still be used in these circumstances. The industry-accepted methods of defining new construction baselines are based on:

- Specifications of buildings that would have been built or equipment installed, without the influence of the program, at the specific site of each construction project. This might be evaluated by standard practice evaluation or building plans and specifications that were prepared prior to the program being launched.
- Existing building codes and/or equipment standards; and
- Performance of equipment, buildings, etc., in a comparison group of similar program non-participants.

Because custom projects or measures are usually site-specific, site visits are generally required to collect appropriate information to analyze savings. This includes collecting information on the quantity, sizing, servicing, and scheduling for HVAC, lighting, refrigeration, motors, process and other equipment. Information may also be collected on the capabilities of control systems (e.g., whether centralized or distributed, capabilities for control monitoring, automation possibilities, and expansion possibilities).

# B.3.1.3.2. Impact Protocol 3.2: Impact Evaluation of Non-Prescriptive Measures Whose Savings May Be Treated as Prescriptive

Energy Smart programs may include non-prescriptive measures that are not 100% custom measures. Savings for these measures are not deemed. However, savings can be assessed using savings calculation algorithms with stipulated and "open variables". Examples of open variables include the following:

- Capacity of an A/C unit
- Change in connected load
- Square footage of insulation
- Hours of operation of a facility or of a specific electric end-use
- Horsepower of a fan or pump motor

Essentially, the savings calculation algorithms can be considered deemed, but the algorithms require customer-specific input for open variables to calculate the energy and demand savings. With customer-specific information used for open variables, savings values for the same measure can differ across customers.

Information on open variables can be collected from program participants or through site visits. For some open variables, a default value may have to be used when data for the open variable cannot be collected. For example, an average value can be provided that can be considered the default value for input to the algorithm and that can be used when customer-specific information is not available.

Some issues that should be considered in evaluating savings for non-prescriptive measures include the following.

- Algorithms and definitions of terms should be reviewed to verify that accepted industry standards are being used to reasonably estimate savings. This review should be used to ensure that the deemed methodologies for calculating savings are clearly defined and can be implemented practically and effectively.
- High-impact measures should be identified for review and clarifications or modifications.
- Low-impact measures with unrealistic and inaccurate savings values should be reviewed. This review can be done periodically to adjust the level of EM&V rigor based on market adoption.
- For nonresidential measures, consider establishing energy impact thresholds by measure type in the TRM, above which customer-specific data collection is required for open variables. The intent of this is to reduce the overall uncertainty of portfolio savings estimates by increasing the accuracy of project-level savings estimates for extremely high-impact measure installations.
- When to use default values for open variables in the *ex ante* and/or *ex post* savings calculations should be determined considering the savings impact and the uncertainty associated with the measure. Default values for open variables can be used if customer-specific or program-specific information is unreliable or cannot be easily obtained. The default values are appropriate for low-impact and low-uncertainty measures (e.g., lighting retrofits in a small business facility). In contrast, customer-specific values are appropriate for high-impact and high-uncertainty measures, (e.g., HVAC or lighting retrofits in universities or hospitals that have diverse facilities) and where those types of projects represent a significant share of program savings for a year.
- For key open variables where default values are provided that are based on evaluations completed in other jurisdictions or taken from industry or other associations, the literature supporting use of the particular default values should be reviewed and assessed. This may include reviewing the population from which source data were used for deriving the default values and providing recommendations as to what populations or technologies the derived default values can be applied.

Because customer-specific data for open variables are collected and used to estimate savings, there will be a variety of savings values for the same measure. Customer-specific or program-specific data for the ex ante and/or ex post savings calculations should be used for as many open variables as possible to improve the accuracy of estimated savings. Site-specific data or information should be used for measures with important variations in one or more input values (e.g. delta watts, efficiency level, equipment capacity, operating hours). Customer-specific data can come directly from

measure application forms, be collected during the application process, or collected through site visits.

To guide the customer-specific data collection, measures can be grouped into various end-use categories (e.g. lighting, HVAC, motors & VFDs) and kWh savings thresholds established for each end-use category level that can be used to determine whether customer-specific information should be used for estimating ex ante and/or ex post savings. If a project involves multiple measures or types of technology that fall under the same end-use category, the savings for all those measures/technology types should be grouped together to determine if the project falls below or above a particular threshold.

# B.3.1.3.3. Impact Protocol 3.3: Impact Evaluation of Savings for Information-Based Programs

Through the Energy Scorecard program, Entergy New Orleans provides information to customers that they can use to adjust their use of electricity. The protocol provided here is intended to give guidance on evaluating the impacts of this and other information-based programs that might be used to provide information to customers.

There are several evaluation approaches that can be used to determine the savings impacts of an information-based program that provides customers with information that they can use to voluntarily take actions to adjust their energy. The approaches differ in their ability to produce accurate and robust results and are therefore discussed in descending order of desirability. Because of differences in performance, Option 1 is the preferred approach. Option 2 should be used only when Option 1 is infeasible. Option 3 should only be used when both Option 1 and Option 2 are infeasible.

If available, interval meter data should be used to estimate load impacts. Where advanced metering infrastructure (AMI) data is not available for all participants, estimates based on a sample of metered homes may be used.

The three options for estimation of impacts from information-based programs are as follows.

Option 1 uses an analysis based on an experimental design that makes appropriate use of random assignment so that the reference load is estimated using a representative control group of program participants.<sup>8</sup> The most common type of design satisfying this criterion is a randomized control trial (RCT), but other designs may also be used. An evaluation contractor can select a specific design, based on their professional experience.

<sup>&</sup>lt;sup>8</sup> For discussion on the rationale of random assignment, see Stewart, J.; Todd, A. (2017). Chapter 17: Residential Behavior Protocol, The Uniform Methods Project: Methods for Determining Energy-Efficiency Savings for Specific Measures. Golden, CO; National Renewable Energy Laboratory. NREL/SR-7A40-68573. http://www.nrel.gov/docs/fy17osti/68573.pdf

- Option 2 uses a comparison group analysis where the loads of a group of nonparticipating customers that are similar to participating homes with respect to observable characteristics (e.g. electricity consumption) are used to estimate the reference load. Because there is a variety of matching techniques that are available, an evaluation contractor can choose the technique used to select the comparison group based on their professional judgment. Difference-in-differences estimators should be used in the analysis to control for any differences that may remain after matching.
- Option 3 is a 'within-subjects' analysis where the reference energy use of participating customers is estimated using data on their energy use during a period before their participation in the information-based program began.

The analysis for all three options can be accomplished through regression analysis that relates energy use to weather conditions (particularly temperature) and other variables that influence usage. Panel regression modeling is the recommended technique.9

# B.3.1.4. Impact Protocol 4: Net-to-Gross Analysis

Net-to-Gross (NTG) analysis is directed at quantifying those savings attributable to a program. This protocol presents general definitions and methods that can be employed as part of a sound NTG analysis.

There are five approaches commonly used for determining net-to-gross ratios (NTGR).

- Self-Reporting Surveys: From participants and non-participants without independent verification;
- Enhanced Self-Reporting Surveys: Self-reporting surveys are combined with interviews and independent documentation review and analysis. They may also include analysis of market-based sales data;
- Econometric Methods: Statistical models are used to compare participant and nonparticipant energy and demand patterns. These models often include survey inputs and other non-program-related factors such as weather and energy costs (rates);
- Deemed Net-to-Gross Ratios: An NTGR is estimated using information available from evaluation of similar programs; and
- Stipulated Net-to-Gross Ratios: The stipulation of a net-to-gross ratio may be used when the expense of NTGR analysis and the uncertainty of the results are considered significant barriers (NAPEE 2007). Use of stipulated values is not recommended if they yield results that are uncertain and/or costly; instead, the protocol would support the usage of literature reviews.

These approaches for assessing the energy savings attributable to a program are based on determining NTGRs that have two main components: free ridership and spillover.

<sup>&</sup>lt;sup>9</sup> ibid

**Free ridership** refers to program participants who received an incentive but would have installed the same efficiency measure on their own had the program not been offered. This includes partial free riders, defined as customers who, at some point, would have installed the measure anyway, but the program persuaded them to install it *sooner* or customers who would have installed the measure anyway, but the program persuaded them to install it *sooner* or customers who would have installed the measure anyway, but the program persuaded them to install more efficient equipment and/or more equipment. For the purposes of EM&V activities, participants who would have installed the equipment within one year will be considered full free riders; participants who would have installed the equipment later than one year will not be considered to be free riders (thus no partial free riders will be allowed).

Free ridership is the share of gross program savings that is generally the savings accounted for in program records and then adjusted for the naturally occurring adoption; the free ridership rate is based on actions participants "would have taken anyway" (i.e., actions that were not induced by the program). Each energy efficiency program covers a range of energy efficiency measures and is designed to move the overall market for energy efficiency forward. However, it is likely that some participants would have wanted to install some high efficiency measures (possibly a subset of those installed under the program) even if they had not participated in the program or been influenced by the program in any way.

**Spillover** refers to energy savings that are due to the influence of a program but are not counted in program records. For example, a customer installs a set of efficiency measures in one of his/her buildings. These measures were promoted (and incented) under a DSM program. The customer then decides to install the same measures at another site, where there is no program incentive. In this case, the program had an influence on the market beyond the energy savings in this customer's first building. Spillover can be broken out in three categories:

- Participant Internal Spillover represents energy savings from additional measures implemented by participants at participating sites not included in the program but directly attributable to the influence of the program.
- Participant External Spillover represents energy savings from measures taken by participants at non-participating sites not included in the program but directly attributable to the influence of the program.
- Non-Participant Spillover represents energy savings from measures that were taken by non-participating customers but are directly attributable to the influence of the program.

Spillover adds to a program's measured savings by incorporating indirect (i.e., not incented) savings and effects that the program has had on the market above and beyond the directly incented or directly induced program measures.

Total spillover is a combination of several factors that may influence non-reported actions to be taken at the project site itself (inside spillover) or at other sites by the participating

customer (outside spillover). Each type of spillover is meant to capture a different aspect of the energy savings caused by the program, but not included in program records. Because a primary goal of most DSM programs is to transform markets through a variety of strategies – including education, promotion, and increasing awareness of the benefits of energy efficiency – one would expect spillover to occur to some extent in the market.

The overall NTGR is meant to account for both the net savings at participating projects and spillover savings that result from the program (but are not included in program records). When the gross program savings multiplies the NTG ratio, the result is an estimate of energy savings that are attributable to the program (i.e., savings that would not have occurred without the program). The basic equation is:

# NTG = 1 – Free ridership + Spillover

The underlying concept inherent in the application of the NTG formula is that only savings caused by the program should be included in the final net program savings estimate, but this estimate should include all savings caused by the program (i.e., the net program savings should account for free ridership and include spillover).

# B.3.1.4.1. Estimating Free Ridership: Survey Techniques

Data to assess free ridership should be gathered through a series of survey questions asked of end-use customers and trade allies who participated in the program. Free ridership can be evaluated by asking direct questions, aimed at obtaining respondent estimates of the appropriate free ridership rate that should be applied to them, and by supporting, or influencing questions used to verify whether the direct responses are consistent with participants' views of the program's influence.

The direct free ridership questions ask respondents to estimate the share of measures that would have been incorporated at high efficiency if not for the technical and financial assistance of the program. The questions also ask respondents to estimate the likelihood that they would have incorporated measures "of the same high level of efficiency" if not for the technical and financial assistance of the program. This flexibility in how respondents conceptualize and convey their views on free ridership will allow respondents to provide their most informed response, thus improving the accuracy of the free-ridership estimates.

The "program influence" questions clarify the role that program interventions (e.g., financial incentives and technical assistance) played in decision-making and provide supporting information on free ridership. Responses to these questions are analyzed for each respondent and used to identify whether the direct responses on free ridership are consistent with how each respondent rated the "influence" of the program.

These results will then be compared to free ridership estimates based on on-site inspections/audits, and/or estimates derived from similar surveys completed in other jurisdictions.

# B.3.1.4.2. Estimating Spillover: Survey Techniques

The basic method for assessing participant (inside and outside) spillover employs a threestep approach to determine the following:

**1. Whether spillover exists at all**. These are yes/no questions that ask, for example, whether the respondent incorporated energy efficiency measures or designs that were not recorded in program records. Questions relate to extra measures installed at the project site (inside spillover) and to measures installed in non-program projects (outside spillover).

**2. Extent of the spillover.** These questions request information about the number or share of projects/jobs/facilities into which additional measures or technologies are installed (these questions are not asked for inside spillover because the value is simply the one project on which the interviewee focuses).

**3. Amount of savings per spillover project.** These questions ask respondents to estimate the energy savings associated with the non-recorded measures relative to the savings from the participating project itself.

The outcome of these inquiries is an estimate of the share of those non-recorded savings that can be attributed to the influence of the program.

# B.3.1.4.3. Timing of Data Collection for Free Ridership vs. Spillover

Where possible, a staggered data collection approach should be used to collect information in support of NTG analysis. The rationale for this approach is that free ridership and spillover data are best collected at different points in time.

- Free ridership data are considered to be most accurate when collected as closely as possible to the point in time when the participation decision is made. Doing so helps to ensure accurate participant recall of motivating factors and relative program influence while also producing other benefits, including near-term feedback for program staff regarding program influence effects.
- Conversely, spillover data are considered most accurate when collected sometime after the participating project has been completed. Allowing a reasonable amount of time to pass before asking participants about spillover effects ensures that participants have sufficient time to: a) install the incented equipment, b) experience its operating parameters and costs, and c) then decide whether or not to install additional energy efficiency measures at the project site or some other location independent of any program support or financial incentive (Johnson et al., 2010).

# B.3.1.4.4. Hierarchical Approaches for Determining When to Update NTG Values

A decision tree with several steps can be used to determine the timing for updating attribution analysis. The framework for updating net savings follows the hierarchical approach presented visually in Figure B-3. Each step in the decision is discussed in the following paragraphs.

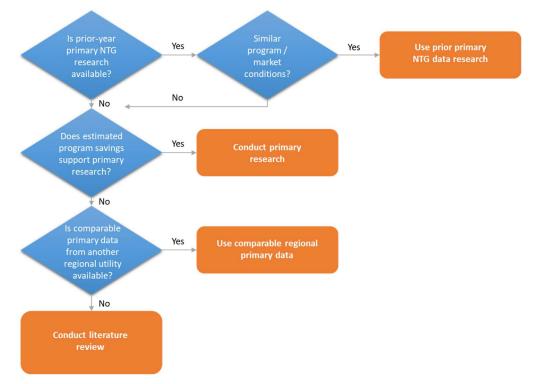



Figure B-3: Decision Tree for Timing and Selection of NTG Research

- 1. Has NTG research been conducted on the same program in a prior year? The first step to determining whether primary NTG research should be conducted in a given program year is to assess whether primary data collected for the same program are available from a prior year. If prior data are available, it should be determined whether the prior values are applicable in the current year. There are at least two overarching components of this decision.
  - First, determine if the current program is similar to the program in which the primary data was collected: Is the mix of measures the same? Is the contribution to savings for each measure similar? Are the incentive levels comparable? Is (are) the delivery method(s) similar?
  - Second, determine if the market conditions are similar to the time period in which the prior data were collected: Has there been a substantial change in incremental cost for the efficient measures? Has there been a substantial change in the supply or availability of the efficient measures? Has there been a substantial change in

the market share of efficient measures (i.e., the ratio of efficient measures sold to total comparable standard and efficiency measures)? Are the local or federal codes and standards the same as when the prior NTG values were estimated?

If the program and market conditions are comparable to the time period(s) in which the prior primary NTG research was conducted, these prior values can be considered applicable to the current program year.

- 2. If prior year primary data are not available or are determined not to be applicable due to changes to either program or market conditions. The TPE should then determine whether estimated savings from the program support primary research. In general, programs that represent at least 5-10 percent of the portfolio estimated savings in any given year should use NTG ratios that are estimated via primary data research for that specific program.
- 3. If prior year data for the program are not available or applicable, and the program savings does not support primary data collection. The evaluation should then consider if NTG values derived from Arkansas-based comparable programs are available. A comparable program is defined as one that is similar in terms of program maturity, incentive levels, delivery mechanism, and measure types. Ideally, NTG values derived in the same program year would be used, but values from prior years may also be used if the comparability conditions are met.
- **4.** For existing and new programs that do not meet any of the above specifications. A literature review may be undertaken to locate a similar program (or programs) that has (or have) an established NTG value(s). This approach requires that the research be well documented. A program may be identified as similar if it meets the following conditions:
  - Program Similarity: maturity, incentive levels, delivery mechanism, and measure types are similar; and
  - Market Similarity: demographic, household, and business characteristics are similar (or as similar as possible) to those for New Orleans.

With this hierarchical approach, evaluation resources can be directed towards programs that could benefit most from primary research, thus avoiding unnecessarily repeating NTG research every year for the same programs. However, to prevent NTG values from being repeated too many years and becoming potentially "stale", NTG values for programs that meet the contribution to savings threshold should be updated at least via primary research at least once during every three-year program cycle.

The steps along this decision tree should be clearly presented and discussed as part of program evaluation plans.

Evaluations using trade ally responses should be collected for programs where the trade allies play a key role in the installation decision. The evaluation work plan should present

a discussion of the representation from the trade ally respondents. If use of information supplied by trade allies is applicable, evaluation plans should include details regarding how trade ally responses will be integrated with customer survey responses to determine overall program attribution.

Annual EM&V reports should include robust reporting related to NTG research, methods, and findings. To ensure consistency and transparency in reporting, an annual EM&V report should include the following information regarding NTG analyses.

- Summary of each programs NTG source. For example, a table could show which programs received updated NTG research versus those where NTG analysis used previous values, deemed values, or secondary research.
- Discussion of rationale for use of previous estimate or literature review. EM&V Reports should cite evidence that the delivery, incentives, measures, and program design were unchanged.
- If unique NTG values are assigned to distinct program components, then each component should be reported with gross and net savings contributions. Where different program components (e.g., measures) have different NTG values, savings for each program component should be presented along with the respective NTG values.
- It is recommended that an appendix be included in the report that details NTG approach and methods. This appendix should include the following:
  - High-level discussion of approach and methods. A methods section should detail the overarching NTG approach across programs, especially if the same algorithms and logic are used across multiple programs.
  - Detailed discussion of logic (including questions, full battery of survey question).
     Complete survey battery logic, flow-charts, and comprehensive details of the program NTG approach should be included in the appendix.
  - Discussion of program-specific logic in each section. If individual program NTG research includes customized logic that is distinct from the overall approach included in the methods section, then the differences in approach should be reported within each individual program section.

# B.4. Protocols for Conducting Process Evaluations

This protocol provides guidance regarding scope and timing for process evaluation of a programs. A process evaluation involves examining the process of implementing a program and determining whether the program is operating as planned. The goal of a process evaluation is to recommend ways to improve processes to increase a program's effectiveness. A process evaluation focus on determining the overall effectiveness of program delivery, identifying opportunities for program improvements and assessing key program metrics, including participation rates, market barriers, and overall program operations.

# B.4.1.1. Process Protocol 1: Determining Whether to Conduct a Process Evaluation of a Program

Two major criteria can be applied to determine if a process evaluation of a program is needed.

- The first criterion is to determine if it is time for a process evaluation;
- The second criterion is to determine if there is a need for a process evaluation.

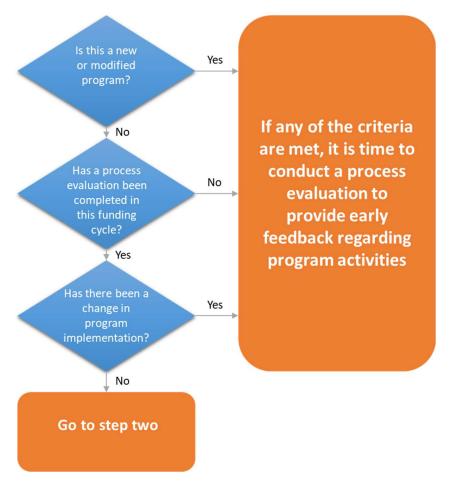

Table B-5 addresses the first criterion, setting out conditions for determining what timing is appropriate for conducting a process evaluation.

 Table B-5: Determining Appropriate Timing to Conduct a Process Evaluation

| 1. | No Previous Process Evaluation: If a program has not had a comprehensive process                 |
|----|--------------------------------------------------------------------------------------------------|
|    | evaluation, conducting a process evaluation should be considered.                                |
| 2. | New and Innovative Components: If a program has new or innovative components that have           |
|    | not been evaluated previously, then a process evaluation should be considered for assessing      |
|    | their level of success in the current program and their applicability for use in other programs. |
| 3. | New Vendor or Contractor: If a program is a continuing or ongoing program but is now being       |
|    | implemented, in whole or in part, by a different vendor than in the previous program cycle, then |
|    | a process evaluation should be considered to determine if the new vendor is effectively          |
|    | implementing the program.                                                                        |
|    | If any of these criteria are met, it is time to conduct a process evaluation.                    |
|    |                                                                                                  |

If none of these criteria are met, proceed to Table 2 (Step 2) in the Process Evaluation Decision Map.

Figure B-4 provides a flow chart for determining whether it is time to perform a process evaluation of a program.



(Source: Arkansas TRM Version 7, modified for formatting) Figure B-4: Determining Timing for a Process Evaluation

Process evaluations may be used to diagnose areas where a program is not performing as expected. Conditions to consider in this respect are shown in Table B-6.

Table B-6: Determining Appropriate Conditions to Conduct a Process Evaluation

| 1.                | Impact Problems: Are program impacts lower or slower than expected?                                                                                       |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2.</b><br>pro  | Informational/Educational Objectives: Are the educational or informational goals not meeting gram goals?                                                  |
| 3.                | Participation Problems: Are the participation rates lower or slower than expected?                                                                        |
| <b>4.</b><br>runr | <b>Operational Challenges:</b> Are the program's operational or management structure slow to get up and ning or not meeting program administrative needs? |
| 5.                | Cost-Effectiveness: Is the program's cost-effectiveness less than expected?                                                                               |
| 6.                | <b>Negative Feedback:</b> Do participants report problems with the program or low rates of satisfaction?                                                  |
| 7.                | Market Effects: Is the program producing the intended market effects?                                                                                     |
|                   | ny of the criteria is met, a process evaluation is needed to identify ways to address and correct<br>se operational issues.                               |
|                   | one of these criteria is met in either Step 1 or Step 2, then a process evaluation is not needed at s time.                                               |

Figure B-5 defines the method to identifying problems in program administration that may warrant a process evaluation.



(Source: Arkansas TRM, Version 7, modified for formatting) *Figure B-5: Determining Need to Conduct a Process Evaluation* 

Throughout an evaluation cycle, limited or focused process evaluation activities (e.g., review of program database, interviews of staff) may be used to determine interim

progress for a program. Findings from focused process evaluation activities serve several purposes.

- Provide a progress report for each recommendation for program improvement made in previously conducted evaluations. For each evaluation recommendation, the report should indicate whether the recommendation has been accepted and implemented, rejected, or is still under consideration. If the recommendation is rejected, an explanation of the reason for rejection should be provided. If a recommendation is still under consideration, then an explanation should be provided for the steps underway to reach an implementation decision for that recommendation;
- Identify progress made towards achieving program objectives;
- Identify any issues that may need to be explored more fully in future program evaluations.

# B.4.1.2. Process Protocol 2: Planning Process Evaluation

This protocol provides guidance on the key issues that should be addressed in planning process evaluation activities. Aspects of program operations to address any deficiencies identified in Figure B-5.

Three tables are provided that outline the key researchable issues that should be addressed in a process evaluation.

- Table B-7 provides a general outline of the key elements that should be included in a process evaluation plan.
- Table B-8 provides more detailed information regarding the key areas for investigation that need to be addressed in a process evaluation.
- Table B-9 identifies those topic areas that should be covered in all process evaluations, those areas that should be investigated when the program is experiencing specific operational issues or challenges, and those areas that are most applicable to new programs or pilot programs.

| Element                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Introduction                   | Description of the program or portfolio<br>under investigation; specific characteristics<br>of the energy organization providing the<br>program including current marketing,<br>educational or outreach activities and<br>delivery channels                                                                                                                                                                                                                         |
| Process Evaluation Methodology | Process evaluation objectives,<br>researchable issues, and a description of<br>how specific evaluation tactics will address<br>the key researchable issues including the<br>proposed sampling methodology for<br>program/third-party staff, key stakeholders,<br>trade allies/vendors, and customers. The<br>sampling methodology should be clearly<br>explained with specific targets of<br>completed surveys or interviews clearly<br>described in the EM&V Plan. |
| Timeline                       | Summarized by key tasks identifying the<br>length of the process evaluation and key<br>dates for completion of major milestones                                                                                                                                                                                                                                                                                                                                     |
| Budget                         | Costs of conducting the process evaluation<br>by specific tasks and deliverables                                                                                                                                                                                                                                                                                                                                                                                    |

Table B-7: Recommended Elements of a Process Evaluation Plan

Source: Modified and Expanded from the California Evaluation Protocols, 2006, (as presented in Arkansas TRM Version 7).

| Program Design                                                                                                                                                                                                                                                                                                              | Additional Guidance                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Program mission, vision and goal setting and goal setting process</li> <li>Assessment or development of program and market operations theories</li> <li>Program design and design characteristics, and program design process</li> <li>Use of new or best practices</li> </ul>                                     | This area is especially<br>important to address in first-<br>year evaluations and<br>evaluations of pilot programs.                                                                              |
| <ul><li>Program Administration</li><li>Program management process</li></ul>                                                                                                                                                                                                                                                 | Additional Guidance                                                                                                                                                                              |
| <ul> <li>Program staffing allocation and requirements</li> <li>Management and staff skill and training needs</li> <li>Program tracking information and information support systems</li> <li>Reporting and relationship between effective tracking and management, including operational and financial management</li> </ul> | This area should be covered<br>in all process evaluations, but<br>it is especially important to<br>address in those evaluations<br>where operational or<br>administrative deficiencies<br>exist. |
| Program Implementation and Delivery                                                                                                                                                                                                                                                                                         | Additional Guidance                                                                                                                                                                              |
| <ul> <li>Description and assessment of program implementation<br/>and delivery process</li> </ul>                                                                                                                                                                                                                           | This is critical to gathering the<br>information necessary to<br>assess the program's<br>operational flow.                                                                                       |
| <ul> <li>Program marketing, outreaching, and targeting activities</li> <li>Quality control methods or operational issues</li> <li>Program management and management's operational practices</li> <li>Program delivery systems, components and implementation practices</li> </ul>                                           | These are areas that should<br>be addressed if program is not<br>meeting its participation goals<br>or if the program is under-<br>performing.                                                   |
| <ul> <li>Program targeting, marketing and outreach efforts</li> </ul>                                                                                                                                                                                                                                                       | All marketing and outreach<br>materials should be reviewed<br>and assessed as part of<br>document review task.                                                                                   |
| <ul> <li>Program goal attainment and goal-associated implementation processes and results</li> <li>Program timing, timelines and time-sensitive accomplishments</li> </ul>                                                                                                                                                  | These areas should be<br>addressed in all process<br>evaluations but are especially<br>important if the program is<br>under- performing regarding<br>savings or participation rates.             |

Table B-8: Recommended Areas of Investigation in a Process Evaluation

| Areas of Investigation                                                                                                                                                                                                        | Additional Guidance                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Documentation of program tracking methods and reporting formats                                                                                                                                                               | This is a key element of the review of the<br>program database and the TPE should<br>request copies of the program records or<br>extracts along with the data dictionary. |
| Customer interaction and satisfaction<br>(both overall satisfaction and satisfaction<br>with key program components, including<br>satisfaction with key customer- product-<br>provider relationships and support<br>services) | These topics should be investigated in                                                                                                                                    |
| Customer or participant's energy efficiency<br>or load reduction needs and ability of<br>program to deliver on those needs                                                                                                    | customer surveys and should be a priority<br>if the program is experiencing negative<br>feedback or lower-than-expected                                                   |
| Market allies' interaction and satisfaction with program                                                                                                                                                                      | participation rates or energy savings.                                                                                                                                    |
| Reasons for low level of market effects<br>and spillover                                                                                                                                                                      |                                                                                                                                                                           |
| Intended or unanticipated market effects                                                                                                                                                                                      |                                                                                                                                                                           |

Table B-9: Recommended Areas of Investigation in a Process Evaluation

# B.4.1.3. Process Protocol 3: Process Evaluation Report and Recommendations

The suggested reporting requirements for a process evaluation report are given in Table B-10.

| Suggested Reporting<br>Requirement            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Detailed Program<br>Description            | Process evaluation report should present a detailed<br>operational description of the program that focuses on<br>program components being evaluated. The use of a<br>program flow model is highly recommended. Report<br>should provide sufficient detail so that a reader can<br>understand program operations and likely results of<br>recommended program changes.                                                                                                                                       |
| 2. Program Theory                             | Process evaluation report should include a presentation<br>of the program theory. If the program theory is not<br>available or cannot be provided in time for the<br>evaluation report due date, a summary program theory<br>built from the evaluation team's program knowledge<br>may be included instead. However, it should be<br>complete enough for a reader to understand the context<br>for program recommendations. It does not need to be a<br>finely detailed program theory or logic model.      |
| 3. Support for Recommended<br>Program Changes | All recommendations need to be adequately supported.<br>Each recommendation should be included in the<br>Executive Summary and then presented in the Findings<br>text along with the analysis conducted and the<br>theoretical basis for making the recommendation. The<br>Findings section should also include a description of<br>how the recommendation is expected to help the<br>program, including the expected effect that<br>implementing the change will have on the operations of<br>the program. |
| 4. Detailed Presentation of<br>Findings       | A detailed presentation of the findings from the study is<br>essential. The presentation should convey the<br>conditions of the program being evaluated and should<br>provide enough detail so that any reader can<br>understand the findings and the implications of the<br>overall operations of the program and its cost-<br>effectiveness                                                                                                                                                               |

Table B-10: Suggested Reporting Requirements for Process Evaluation Report

(Modified from the CA Evaluation Protocols 2006).

Table B-11 provides guidance on structuring recommendations from a process evaluation.

Table B-11: Suggested Structuring of Recommendations from Process Evaluation

| Recommendations from a Process Evaluation<br>should be:                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Realistic, appropriate to Entergy New Orleans' structure, constructive, and<br>achievable using available resources                                                                                                                                                                                                                                                                                                                              |
| Linked to specific conclusions                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Adequately supported. Each recommendation should be included in the<br>Executive Summary of the report and then presented in the findings text along<br>with analysis conducted and theoretical basis for making recommendation.<br>Findings section should include a description of how recommendation is<br>expected to help the program, including the expected effect implementing the<br>change will have on the operations of the program. |
| Focused on ways to increase overall program effectiveness and be linked to researchable issues addressed in process evaluation (e.g., ways to improve program design, approach, operations, marketing, or address issues related to program under-performance)                                                                                                                                                                                   |
| Providing specific steps / tasks for implementation (to extent possible)                                                                                                                                                                                                                                                                                                                                                                         |
| Compared across program evaluations to identify areas for portfolio-level improvements                                                                                                                                                                                                                                                                                                                                                           |

(Source: Modified from the CA Evaluation Protocols, 2006, as presented in Arkansas TRM Version 7)

### B.5. Protocols for Evaluation of New Construction Projects

#### B.5.1. Description

This protocol is intended to describe the recommended method when evaluating the whole building performance of new construction projects in the commercial sector. The protocol focuses on energy conservation measures (ECMs) or packages of measures where evaluators can analyze impacts using building simulation. These ECMs typically require the use of calibrated building simulations under Option D of the International Performance Measurement and Verification Protocol (IPMVP).<sup>10</sup>

Examples of such measures include Leadership in Energy & Environmental Design (LEED) building certification, novel and/or efficient heating, ventilation, and air conditioning (HVAC) system designs, and extensive building controls systems. In general, it is best to evaluate any ECM expected to significantly interact with other systems within the building and with savings sensitive to seasonal variations in weather.<sup>11</sup> The protocol classifies commercial new construction projects as:

- Newly constructed buildings: The design and construction of an entirely new structure on a greenfield site or wholesale replacement of a structure torn down to the ground.
- Addition (expansion) to existing buildings: Significant extensions to an existing structure that requires building permits and triggers compliance with current codes.
- Major renovations or tenant improvements of existing buildings: Significant reconstruction or "gut rehab" of an existing structure that requires building permits and triggers compliance with current codes.

Evaluators may need to apply the evaluation methods described here for new construction projects for some projects in the retrofit programs. While some retrofit projects have much in common with new construction projects, their scope does not uniformly fall under the new construction categories previously described. Evaluators should assess these projects according to the guidelines described for retrofit equipment (described in separate protocols).

<sup>&</sup>lt;sup>10</sup> As discussed in the section "Considering Resource Constraints" of the Introduction chapter to this report, small utilities (as defined under U.S. Small Business Administration regulations) may face additional constraints in undertaking this protocol. Therefore, alternative methodologies should be considered for such utilities.

<sup>&</sup>lt;sup>11</sup> Note the term whole-building modeling does not necessitate use of sophisticated stand-alone simulation software (e.g., eQUEST, EnergyPlus). It is acceptable to employ engineering models using spreadsheet calculations, provided they meet the guidelines set forth in Section 4

Evaluation, measurement, and verification (EM&V) of new construction programs involves unique challenges, particularly when defining baseline energy performance. An agreed-upon building energy code or industry standard defines the baseline equipment evaluators use to measure energy impacts for new construction measures. As the baseline equipment for new construction measures does not physically exist and cannot be measured or monitored, evaluators typically employ a simulation approach. Due to the nuances involved in appropriately determining baseline equipment/performance evaluations, experienced professionals with a good understanding of building construction practices, simulation code limitations, and the relevant building codes should oversee these types of projects.

Further, evaluators typically assess new construction measures within the first few years of construction. During this period, there is often considerable change in building occupancy and operation before the measures design intent becomes realized. This results in additional challenges for evaluators using monitored data and/or facility utility billing or energy consumption history to define as-built building performance.

## **B.5.2.** Application Conditions of Protocol

Use the algorithms and protocols described here to evaluate new construction wholebuilding performance ECMs installed in commercial facilities. When new construction ECMs do not directly impact HVAC energy use, it is often possible to use spot measurements and engineering calculations to evaluate savings with sufficient rigor (ASHRAE 2002). This is usually the case, for example, with lighting and domestic hot water retrofits.<sup>12</sup> This protocol does not cover the guidelines for selecting the appropriate monitoring and verification (M&V) rigor for such measures. Consult the IPMVP or measure-specific protocols within the Uniform Methods Project protocols to review evaluation guidelines for measures that do not require calibrated building simulation.

# B.5.2.1. Incentive Types

Program administrators typically classify new construction demand-side management (DSM) program incentives as being either component-based or performance-based and design the program to offer one or both types of incentives.

# B.5.2.1.1. Component-Based Incentives

Component-based (or "prescriptive") incentives tend to involve individual technologies and equipment. Examples of prescriptive incentives may include lighting fixtures,

<sup>&</sup>lt;sup>12</sup> While the general magnitude of the secondary impacts imparted by lighting measures on HVAC equipment are well-established for various building types, take care to estimate these impacts appropriately in new construction building stock. New buildings typically have more efficient HVAC equipment, which reduces the magnitude of heating and cooling interactive effects. Secondary impacts can be estimated using prototypical building models, representative of the physical facility. See the Uniform Method Project's Chapter 2: Commercial and Industrial Lighting Evaluation Protocol or CPUC 2004 for guidelines regarding HVAC interactive factors.

occupancy sensors, motors, and small packaged (unitary) HVAC units. Evaluators often determine rebate amounts and claimed savings estimates based on stipulated per-unit estimates.<sup>13</sup> Evaluators will sometimes assess component-based rebates according to measure-specific protocols using partial or complete retrofit isolation evaluation strategies (IPMVP Option A or Option B).

## B.5.2.1.2. 2.1.2 Performance-Based Incentives

Performance-based incentives tend to target more complex projects involving improvements to the overall building energy performance. Whole-building performance incentives can:

- Encompass various specific (above-code) upgrades
- Fund design, analysis, equipment, and/or installation (labor) costs.<sup>14</sup>

An example of a performance-based project is LEED certification. Buildings that are LEED certified often encompass ECMs that range from envelope improvements to highefficiency equipment installations (often going beyond just HVAC) and complicated controls algorithms.

The complex interactions between these ECMs can only be reliably determined through the use of calibrated building simulation models.

Performance-based incentive amounts are typically determined by the expected annual energy and/or demand impacts (e.g., per kilowatt-hour, therm, kilowatt).<sup>15</sup> Annual energy-savings estimates for performance-based projects (and programs) require evaluators to use custom calculations via whole-building simulation modeling tools. Therefore, highly skilled technical labor is required to successfully implement and evaluate these programs.<sup>16</sup>

#### **B.5.3. Savings Calculations**

Use the following algorithm to calculate energy savings for new construction measures. Note that evaluators can calculate demand savings using the same algorithms by simply substituting "demand" for "energy use."<sup>17</sup>

#### **Equation 1**

<sup>&</sup>lt;sup>13</sup> Units used do not necessarily represent quantity. Frequently applied units include: installed horsepower, tons of refrigeration, and square footage.

<sup>&</sup>lt;sup>14</sup> Some new construction programs have been successfully implemented without direct financial incentives (design assistance, financing, etc.).

<sup>&</sup>lt;sup>15</sup> Depending on program design, the "expected" energy impacts can be either ex ante or ex post.

<sup>&</sup>lt;sup>16</sup> See Johnson & Nadel 2000 for more information.

<sup>&</sup>lt;sup>17</sup> When calculating the coincident peak demand savings, average the hourly demand savings over the "peak demand window" period, as defined by the utility.

*Energy Savings* = *Projected Baseline Energy Use* - *Post Construction Energy Use* Where:

- Projected Baseline Energy Use = Projected energy use of baseline system at full designed occupancy and typical building operating conditions.
- *Post Construction Energy Use* = Energy use of measure systems at full design occupancy and typical building operating conditions.

As described in Section 4, *Measurement and Verification Plan,* calculate projected baseline energy use and post-construction energy use using a whole-building simulation model that is calibrated to monthly (or hourly) utility energy consumption histories. Evaluators can use four components to report savings for new construction ECMs:

- Expected (planned) measure savings
- Rebated measure savings
- Non-rebated measure savings
- Total achieved savings

Section 4 discusses each component.

## B.5.4. Measurement and Verification Plan

## **B.5.4.1.** International Performance Measurement and Verification Protocol Option

The preferred approach to calculate savings for whole-building performance new construction projects is calibrated building simulation models according to IPMVP Option D (IPMVP 2006). The recommended approach requires sufficient resources be allocated to the project to allow for detailed onsite data collection, preparation of the simulation models, and careful calibration. The method is less costly when a functioning ex-ante model is available to the evaluator, though obtaining the ex-ante model is not a prerequisite to its application.

Determine the appropriate modeling software by the specifics of the evaluated buildings (e.g., HVAC system and zoning complexity, building constructions, complexity of the ECMs); there is no single software (currently available) that can simulate all variations of HVAC system types, building constructions, and ECMs. Thus, it may be necessary to use multiple tools to evaluate building performance accurately.

In general, the appropriate software for modeling building systems and energy performance must:

- Create outputs that comply with American National Standards Institute (ANSI)/ASHRAE Standard 140-2011<sup>18</sup>
- Accurately simulate the building's systems and controls
- Use an hourly or sub-hourly time step to perform simulation<sup>19</sup>
- Simulate building performance using user-defined weather data at hourly intervals

For more information on specific requirements for simulation software, see pp. 133 in *The California Evaluation Framework* (CPUC 2004) and pp. 26-27 in *Appendix J* – *Quality Assurance for Statistical, Engineering, and Self-Report for Estimating DSM Program Impacts* (CADMAC 1998). <sup>20</sup>

The U.S. Department of Energy's (DOE) Energy Efficiency and Renewable Energy website<sup>21</sup> contains a list of building energy simulation software. Although some tools listed are proprietary, the website also lists public-domain DOE-sponsored tools. Summary comparisons and descriptions of commonly used software can be found in Crawley (2005).

The preferred full Option D approach will in some cases be intractable due to limited data availability or evaluation budgetary limitations. In such cases, alternate methodologies are acceptable but the following guidelines should be followed:

- Onsite verification and review of as-built drawings and commissioning reports (as available) should be performed to verify which energy saving features were actually installed and are functioning
- Ex-ante savings calculations should be based in a whole building simulation model of the building or of a building that is representative of the actual facility
- Results should be compared with billing data (when available), engineering rules of thumb, and/or secondary literature to review reasonability.

## B.5.4.1.1. Verification Process

Figure 1 depicts the overall process to verify savings under Option D, from The *California Evaluation Framework* (CPUC 2004). The process starts by specifying which site data collection and equipment monitoring requirements are in an M&V plan. Additionally, the M&V plan should specify:

<sup>&</sup>lt;sup>18</sup> ANSI/ASHRAE Standard 140-2011 establishes test procedures validating software used to evaluate thermal performance of buildings (and applicable HVAC equipment).

<sup>&</sup>lt;sup>19</sup> It is preferable the software use unique time steps for each interval (e.g., 8,760 hours).

<sup>&</sup>lt;sup>20</sup> For further commentary on simulation software requirements, see ASHRAE 2002, IPMVP 2001, and IPMVP 2006.

<sup>&</sup>lt;sup>21</sup> The DOE's Energy Efficiency and Renewable Energy website can be found at: http://apps1.eere.energy.gov/buildings/tools\_directory/.

The applicable version of the building codes and equipment standards that determine the baseline (or applicable 'practice' that may determine baseline). This is discussed in more detail in Section 4.3.

- The above-code technologies present in the building (claimed as ECMs)
- The software for modeling building performance
- Appropriate data for calibrating the simulations
- How to address modeling uncertainties
- Against what statistical indices calibration will be measured.

While reviewing the energy consumption data can be useful in developing data collection needs, it is not a prerequisite to creating and implementing the M&V plan. However, when developing the M&V plan, evaluators should consider how long a building has been occupied because that will determine amount and granularity of energy consumption data available. Fewer months of consumption data, or the availability of only monthly data, usually means there will be a greater emphasis on metering specific pieces of equipment. Conversely, the presence of a building automation system, energy monitoring system, lighting control panels, (collectively referred to here as building automation system) or other devices to control and/or store data about the operational characteristics of the building will allow for a lesser dependence upon utility usage data.

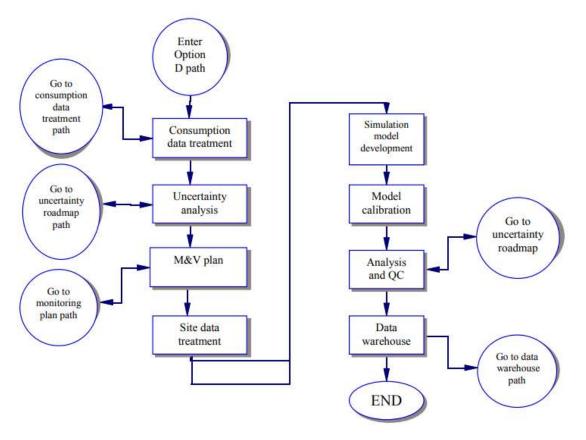



Figure 6: Roadmap for IPMVP Option D

# B.5.4.1.2. Data Requirements and Collection Methods

Data collected during this step includes all of the information required to define and calibrate the building simulation model. Due to the unique nature of each new construction project, it is impractical to prescribe a comprehensive list of specific parameters evaluators should collect on site. Instead, use the following guidelines to identify key data points and minimize the uncertainty in the final calibrated simulations. After identifying specific parameters, refer to the Uniform Methods Project's *Metering Cross-Cutting* Protocols for instructions regarding the methods to submeter the physical parameters. The data used to define building simulation models come from stipulated and physical sources. Furthermore, these data can be static or dynamic in nature, as described here:

 Static data points. These are essentially constant values that describe physical properties of the equipment and the building surfaces or the set point and operational range controlling the building equipment.<sup>22</sup> Examples of static data points are window glazing, motor efficiencies, and thermostat set points.

<sup>&</sup>lt;sup>22</sup> 3 Set points can refer to a control zone, thermostat, control valve, flow rate, voltage, photocell, or other parameter that is designed to maintain optimal environmental conditions within the building. Some set points are "dynamic" in that they may change according to the time of day.

Dynamic data. These are time-dependent variables that describe building and equipment operations. These data capture the behavioral and operational details (e.g., weather, motor loading, and building occupancy) needed to establish a building's energy-use characteristics. Dynamic data, which are often the most difficult to collect, represent the greatest source of uncertainty in a building simulation.

IPMVP Option D (IPMVP 2006) allows use of stipulated data, although it is important to minimize the number of these inputs, as they represent degrees of freedom (and, therefore, additional uncertainty) in the model. Sources for such data include peer-reviewed research, engineering references, simulation program defaults, manufacturers' specifications, and/or survey information from on-site visits (e.g., mechanical and architectural drawings and visual inspection of nameplate information).

The following are convenient categories of important physical data to collect on site (ASHRAE 2002):

- Lighting systems
- Plug loads
- HVAC systems
- Building envelope and thermal mass
- Building occupants
- Other major energy-using loads.<sup>23</sup>

Another important element of the data collection process entails the use of submetering to define behavioral and dynamic aspects of a building and its subsystems. In this protocol, the term submetering encompasses both direct placement of monitoring equipment by evaluation personnel and collecting data from the building automation systems (also known as trend data) when available. Even when the absolute accuracy of the collected data is unknown, submetered data is useful for informing operational schedules (e.g., lighting and ventilation) and calibrating the model.

The degree of submetering required is largely dependent upon the quality and resolution of the facility's energy consumption history. The following descriptions of submetering represent the minimum amount of data collected for calibrating simulation models. Additional submetering may be necessary to verify complex control schemes and/or set points. Perform additional submetering as budget and time permit.<sup>24</sup> Use such data to inform model inputs rather than to function as a calibration target.

<sup>&</sup>lt;sup>23</sup> This category is particularly important in buildings such as grocery stores, refrigerated warehouses, and some retail.

<sup>&</sup>lt;sup>24</sup> For example, verifying functionality of chilled water reset controls or condensing water relief set points

## B.5.4.1.2.1. Submetering With Monthly Bills

When only a monthly utility billing history is available for a facility, it is important to submeter both HVAC fan schedules<sup>25</sup> and interior lighting fixtures. Also, if the facility has unique or considerable equipment loads (e.g., data centers), meter these as well.

When monitoring unitary HVAC equipment, isolate the power used by fans from that used by compressors. This ensures evaluators can use the resulting data when calibrating time-of-use and magnitude of fan power.

If, due to site or budget limitations, the electrical monitoring must comprise the unitary system as a whole, use motor nameplate information and fan curves in conjunction with local weather data to disaggregate the fan and compressor power.<sup>26</sup>

Alternatively, use one-time power measurements to establish a unit's demand for each operation mode. Combine these measurements with time-series data to identify time spent in each operation mode and, thereby, determine the fan schedules.

## B.5.4.1.2.2. Submetering With Hourly Bills

Hourly (or sub-hourly) energy consumption histories contain much more information for model calibration than monthly usage alone. While this additional information reduces submetering requirements, it does not eliminate the need to submeter HVAC fan schedules as they are important for disaggregating base loads from ventilation. As described for monthly billing data, consider submetering other large energy-using features (e.g., pool-heating and space-cooling equipment, atria lighting, and internet technology loads) if possible given evaluation budgets.

## B.5.4.2. Simulation Model Development

It is important to model several iterations of the simulated building so as to fully capture the various aspects of the savings for new construction ECMs. Table 1 lists this iterative process, which entails three versions of the as-built building and two versions of the baseline building, including:

- As-built physical
- As-built design
- As-built expected design
- Whole-building reference
- Measure building reference.

<sup>&</sup>lt;sup>25</sup> It is important to capture a building's ventilation schedule when HVAC systems are used to supply outside air to maintain required fresh requirements. If performing submetering on a sample of HVAC fans, place priority on accurately capturing when (and how much) outside air is introduced into the building.

<sup>&</sup>lt;sup>26</sup> To employ this method, the modeler must have the requisite expertise to apply appropriate statistical and engineering modeling techniques to perform this analysis. For further information on energy consumption analysis, see the Whole-Building Retrofit with Consumption Data Analysis Evaluation Protocol.

Table 1 does not include intermediate modeling of individual ECMs. Intermediate modeling can be used to disaggregate individual measure impacts and interactive effects. If measure-level savings estimates (and therefore, intermediate modeling of measures) is required, work with the governing jurisdiction for the evaluation process to establish an appropriate hierarchy to govern the order in which measures are stacked and individual measure savings assessed.

| Model | Model Name and<br>Purpose                          | Model Description                                                                                       |
|-------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------|
|       |                                                    | Model and simulate, as found during site visit.                                                         |
| 1     | As-Built Physical<br>To calibrate simulations      | Use the occupancy and building operation, as reflected in billed<br>energy history and submetered data. |
|       | and assess uncertainty                             | Simulate using actual local weather observations matching the<br>consumption history period.            |
|       |                                                    | Base on as-built physical model.                                                                        |
|       | As-Built Design                                    | Use full design occupancy and expected typical building<br>schedules.                                   |
| 2     | To estimate typical usage<br>at full occupancy     | Use construction and equipment efficiencies, as found during site visits.                               |
|       |                                                    | Simulate using normalized weather data (e.g., typical meteorological year [TMY] datasets). <sup>a</sup> |
|       |                                                    | Base on as-built design model.                                                                          |
| 3     | As-Built Expected Design<br>To estimate difference | Use full design occupancy and expected typical building<br>schedules.                                   |
|       | between original and as-<br>built models           | Use assumed constructions and equipment efficiencies.                                                   |
|       | Som models                                         | Simulate using normalized weather data (e.g., TMY datasets).                                            |
|       |                                                    | Base on as-built design model.                                                                          |
|       | Whole-Building Reference                           | Use full design occupancy and expected typical building<br>schedules.                                   |
| 4     | To estimate savings of the<br>ECMs                 | Apply baseline requirements defined by reference codes or<br>standards.                                 |
|       |                                                    | Simulate using normalized weather data (e.g., TMY).                                                     |
|       |                                                    | Base on whole-building reference model.                                                                 |
|       | Measure Building                                   | Use full design occupancy and expected typical building<br>schedules.                                   |
| 5     | Reference<br>To isolate savings claimed            | Apply baseline requirements defined by reference codes or<br>standards.                                 |
|       | by the participant                                 | Include ECMs not incentivized by DSM program.                                                           |
|       |                                                    | Simulate using normalized weather data (e.g., TMY).                                                     |

| Table 1. List of Models Used To Simulat | te Savings for New Construction ECMs |
|-----------------------------------------|--------------------------------------|
|-----------------------------------------|--------------------------------------|

<sup>a</sup> Note the TMY are referenced here as an example series of normalized weather data. When incorporating TMY weather data, use TMY3 weather data when available. While TMY weather represents a common standard, review the reporting needs of the project, as other normalized weather datasets may be more appropriate (e.g. Weather year for Energy Calculations [WYEC] or California Thermal Zones [CTZ]).

Begin the development of the model by generating a model of the building as it was built and is operating during the site visit—and as reflected by utility energy consumption data. Use this initial model, the as-built physical model, to calibrate the modeled building to available physical data. This ensures evaluators can use successive iterations in a predictive capacity. A detailed discussion of the calibration process falls outside the scope of this protocol; however, for detailed calibration procedures and guidelines see Section 6.3.3.4 in ASHRAE Guideline 14- 2002 (ASHRAE 2002).

Once calibrated, use the as-built physical model to generate the as-built design model, which should reflect the building at full-design occupancy and operation according to expected typical schedules. The only differences between these models are building occupancy, operational schedules, and any modeling guidelines incorporated from codes or standards used to define baseline performance. For buildings currently operating at full occupancy, there may be very little difference between these models. Refer to Tables 11.3.1 and G3.1 in ASHRAE Standard 90.1-2007 (ASHRAE 2007) for examples of modeling requirements specified by codes and standards.

Then, use the as-built design model to generate the as-built expected design model. While this model simulates the building's operation according to its design intent, it also includes claimed assumptions regarding envelope constructions and equipment efficiencies. Review the model for discrepancies between claimed assumptions and the physical building; if no discrepancies exist, this model will be identical to the as-built design.

After developing as-built models, evaluators can model baseline building performance, which results in the whole-building reference model; to generate this model, apply the appropriate codes and standards used to define baseline building performance to the asbuilt design model. The M&V plan should identify such standards before modeling begins. The following section, *Baseline Considerations,* discusses additional considerations for baseline selection. Similar to the as-built design model, the whole-building reference model should reflect the building's operation according to its expected long-term patterns while using equipment and construction that minimally complies with the reference code or standard.

Finally, start with the whole-building reference model to generate the measure building reference model—this model will include ECMs not incentivized by the DSM program. It is likely all the implemented ECMs are included in the whole-building performance incentives; therefore, both the baseline models may be identical. However, as incentives often are applied for during the building's design and construction process, additional above-code equipment or construction may be implemented that were not included in the final incentive.

# B.5.4.3. Baseline Considerations

Defining baseline building physical characteristics and equipment performance is one of the most important (and difficult) tasks in evaluating savings for new construction ECMs.

This is for several reasons. As noted, new construction ECMs do not have a physical baseline to observe, measure, or document. Rather, evaluators must define the baseline "hypothetically" through an *appropriate* interpretation of the applicable energy codes and standards. It is typically complicated to establish an appropriate interpretation due to the overlapping scope of federal, state, and local codes. Conversely, some states do not have a building energy-efficiency standard separate from the federal standards. Typically, evaluators determine baseline building characteristics and equipment performance requirements by locally adopted building energy codes. In some cases, however, applying a more rigorous, above-code baseline may better reflect standard local construction or industry-standard practices. Thus, in addition to a good understanding of the relationship between federal, state, and local standards, evaluators may need to consult with program guidelines (which often specify greater than code stringency or other technical specifications) or statewide evaluation frameworks. Enforcement of the state codes is the responsibility of the local building officials. The EM&V effort of energy-efficiency programs is usually carried out by utility or other program administrators or by a public utilities commission. Whereas the public utilities commission usually has no enforcement responsibility for the codes and standards, they often point to the official state standards as the governing document regardless of the degree of enforcement of those codes at the local level.

In general, the baseline must satisfy the following criteria (IPMVP 2006):

- It must appropriately reflect how a contemporary, nonparticipant building would be built in the program's absence.<sup>27</sup>
- Evaluators must rigorously define it with sufficient detail to prescribe baseline conditions for each individual ECM and for the building components simulated.
- Evaluators must develop it with sufficient clarity and documentation to be repeatable.

The BCAP-OCEAN website (http://energycodesocean.org) can be a useful resource in identifying locally adopted energy codes and standards when starting the evaluation of a wholebuilding or commercial new construction project.

## B.5.4.4. Calculating Savings

To calculate savings, apply simulation outputs (from models 2 through 5 in Table 2) to the formulas described in Section 3. In all cases except as-built physical, simulate the postconstruction energy use and the projected baseline energy use using normalized weather data (TMY).

<sup>&</sup>lt;sup>27</sup> Locally adopted building codes will define gross savings of new construction programs. Only consider standard construction practices of nonparticipant buildings when performing a net-to-gross analysis. One notable exception is when the evaluated program defines its own baseline, according to an above-code standard (for example, ASHRAE Standard 189.1-2011).

As discussed in Section 3, there are four components that comprise calculated energy savings (defined in Table 2 and shown in Figure 2). Determine the final reported (verified) savings values in the context of M&V objectives.

| Savings<br>Component             | Model<br>Subtraction | Description                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Expected<br>Measure<br>Savings   | N/A                  | Energy savings expected by the building designers and/or the DSM program<br>application (also known as the project's planned energy savings).                                                                                                                                                                                                                                                               |
| Rebated<br>Measure<br>Savings    | 5-2                  | Evaluated (or realized) energy savings for incentivized ECMs, often<br>determined by an independent third-party evaluator. Calculate these savings<br>by subtracting the difference in simulated energy use of the as-built design<br>from the measure building reference (the result is also known as the project's<br><i>ex post</i> savings).                                                            |
| Nonrebated<br>Measure<br>Savings | 4-5                  | Energy savings resulting from ECMs implemented in the final building<br>design, but not rebated by the DSM program. Calculate these savings by<br>subtracting the difference in simulated energy use of the measure building<br>reference from the whole-building reference (the result is also known as the<br>spillover savings).                                                                         |
| Total Achieved<br>Savings        | 4-2                  | Evaluated (or realized) energy savings for all implemented ECMs, whether rebated or not. These are often determined using an independent third-party evaluator, and calculated by subtracting the difference in simulated energy use of the as-built design from the whole-building reference. Some DSM programs report this (rather than rebated measure savings) as the project's <i>ex post</i> savings. |

| Table 2. Compariso | n of Savings | Components for Nev | Construction ECMs |
|--------------------|--------------|--------------------|-------------------|
|                    |              |                    |                   |

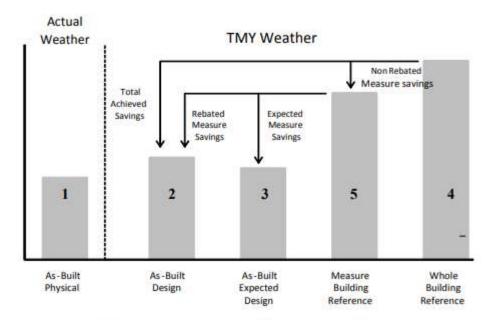



Figure 2. Illustration of savings components for new construction ECMs

## B.5.4.5. Quantify and Locate Modeling Uncertainty

Due to the complex set of physical, thermodynamic, and behavioral processes simulated, it is difficult to fully characterize the uncertainty in modeled outputs without multiple statistical and analytical tools. Additionally, practical limitations on budgets and time allotted for M&V activities frequently result in qualifying uncertainty in final simulated savings by reporting uncertainty in the model's calibration to energy consumption history. Quantify calibration uncertainty using the normalized mean bias error (NMBE) and coefficient of variation of the root mean square error (CVRMSE).<sup>28</sup> Pages 13-16 of ASHRAE Guideline 14-2002 (ASHAE 2002), provides detailed descriptions of these calculations and their applications.

Determine calibration uncertainty by comparing outputs from the calibrated as-built physical model with the facility's consumption history. Table 3 shows calibration uncertainty targets for monthly and hourly consumption history resolutions (ASHRAE 2002).

| Resolution of Energy<br>Consumption History | NMBE Tolerance | CVRSME Tolerance |
|---------------------------------------------|----------------|------------------|
| Monthly                                     | ±5%            | ±15%             |
| Hourly                                      | ±10%           | ±30%             |

Table 3. Acceptable Tolerances for Uncertainty in Calibrated Building Simulations

As newly constructed buildings have a short energy consumption history, it is important to consider how many monthly observations are required to attain a suitably calibrated model. The amount of consumption history required for calibration depends on building type and occupancy. Buildings with little seasonal variations in energy use<sup>29</sup> and short ramp-up periods may need as little as three or four months of consumption history, assuming building occupancy and usage are well-defined and stable. Typically, buildings in this category include grocery stores, restaurants, and data centers.

Conversely, buildings that experience significant seasonal variation, or that are not fully occupied for extended periods, may require a complete year (or more) of consumption history before modelers can determine a reliable calibration. For these buildings, occupancy and usage must be well-defined and stable during all observations used for

<sup>&</sup>lt;sup>28</sup> These two statistical measurements provide an assessment of the variance between the simulated and measured (by the utility meter) energy use and electric demand. This protocol considers modeling uncertainty acceptable when this variance is below the thresholds suggested in Table 3

<sup>&</sup>lt;sup>29</sup> Although energy used by HVAC systems can vary seasonally, such usage generally correlates well with outside weather. Thus, the energy simulation model can sufficiently extrapolate such seasonality (when simulated using the appropriate weather data), reducing the number of billed observations required to calibrate buildings having HVAC use that is dominated by weather.

calibration. Typical buildings of this type include offices, schools, and malls (both strip and enclosed).

Mandating definitive requirements for the minimum number of observations required to sufficiently calibrate a simulation would unduly constrain modelers and could place impractical limitations on EM&V efforts. However, this protocol recommends the following as guidelines:

- Observations should sufficiently characterize a building's energy use, so modelers can extrapolate reliable annual energy-use values.
- Observations should sufficiently describe expected seasonal variations in building operations.
- Building occupancy and operating conditions must be known for the set of observations.
- Building occupancy and operating conditions must remain stable for the duration of observations used for calibration.

While NMBE and CVRSME may prove useful in describing uncertainty in final savings, it is important to minimize the uncertainty in the simulation inputs. These metrics will not completely capture uncertainty in the inputs.

All software packages acceptable for use in Option D require modelers specify a significant number of physical parameters before simulating a building. Often, many of these parameters have default settings in the software package; however, evaluators can base the parameter inputs on experience or standard practices.

Any parameter not directly based on a physical building or its equipment represents a degree of freedom for calibrating the model against a facility's consumption data.<sup>30</sup> By varying these parameters, the modeler can calibrate the same model to meet uncertainty targets in multiple ways, although for very different reasons.

Lack of a unique calibration point can cause misleading results for NMBE and CVRSME. Furthermore, the resultant calibrations respond differently to changes in other parameters, which can lead to significantly divergent savings estimates. Therefore, it is very important modelers minimize calibration uncertainty *and* they accomplish the calibration for the correct reasons. Modelers should not unreasonably alter inputs simply to reduce NMBE or CVRSME.

The following guidelines minimize uncertainty in the calibration process:

 Experienced simulators (or modelers directly supervised by an experienced simulator must perform the modeling.

<sup>&</sup>lt;sup>30</sup> Each parameter must be constrained by a physically realistic range of values.

- Modelers must document each simulation process step, so reviewers can audit the model, its outputs, and its assumptions.
- Simulators and auditors should determine the most influential default model parameters and confirm their appropriateness.
- Simulated equipment (e.g., HVAC coils, chillers, pumps) should not "auto size" in final simulations.<sup>31</sup>
- Simulators should identify the parameters to which the simulation outputs are most sensitive.<sup>32</sup>

In addition to quantifying NMBE and CVRSME errors, modelers should analyze the sensitivity of final savings to variations in key model inputs. Modelers should also report such parameters (including their effects on simulated energy savings and the uncertainty in their values) with calibration uncertainty.

## B.5.5. Sample Design

Use sampling under the following conditions:

- When performing submetering on building equipment
- When performing a detailed survey of an entire building proves impractical.

Evaluators determine the specific targets for sampling certainty and relative precision in the context of the evaluation. For detailed information regarding sample design and for calculating certainty and precision, see the *Uniform Method Project's Chapter 11: Sample Design Cross-Cutting Protocol.* 

## B.5.5.1. Sampling for Submetering

Perform submetering to collect information regarding a building's operational schedules. Monitored systems include lighting, ventilation, large equipment (e.g., data centers), and HVAC zone temperatures. Generally, it is acceptable to assume a coefficient of variation (CV) of 0.5 for most submetering; however, while many of these schedules are a function of the overall building type, significant variation in schedules can occur from space to space within a facility. Therefore, interview site personnel to identify any operational differences (and the magnitude of such differences) within the facility before creating a sample design. Account for variations in operating schedules and usage patterns by using a larger CV or by stratifying unique usage groups. See the Uniform Method Project's

<sup>&</sup>lt;sup>31</sup> When specific data are unavailable, auto-sizing can be helpful in determining appropriate coil capacities, fan speeds, etc. However, only use it for initial equipment sizing. Once equipment sizes have been determined, input them directly. Often, modelers must use auto-sizing to define baseline equipment, as the measures impact building loads. In such cases, calculate an oversize ratio for as-built equipment and apply it to the baseline simulation

<sup>&</sup>lt;sup>32</sup> Further discussion regarding sensitivity analysis of simulation parameters falls outside this chapter's scope. For additional material on this topic, see Spitler, Fisher, & Zietlow 1989.

Metering Cross-Cutting Protocols for additional considerations for commonly monitored equipment.

# B.5.5.1.1. Example: Monitoring the Lighting Schedule in a Two-Story Office Building

A two-story commercial office building receives a whole-building performance rebate for LEED certification. For the certification process, a DOE2.2 model is built, for which evaluators develop lighting loads and schedules. During the on-site visit, evaluators note the same tenant occupies both floors, and the building remains open from 6:30 a.m. to 10:00 p.m. The evaluators also identify two unique lighting usage patterns:

- Enclosed offices are located on the building's perimeter
- Open office space is located in the building's core.

As the evaluators identified two distinct usage patterns, they should design the sampling to capture the variability within the schedules for both space types.

- As the open office space is located in the building's core, lighting fixtures likely operate continuously during the building's open hours. Additionally, lighting is commonly shared by all workspaces in the building's core. Therefore, a CV of 0.5 is justified and may prove conservative in determining how many fixtures to monitor.
- Lighting fixtures located in enclosed office spaces typically experience significantly more usage variation due to exaggerated behavioral and external influences. Also, the enclosed office space fixtures receive additional light from perimeter windows, thereby reducing the need for interior lighting during daytime hours. These impacts can be exaggerated (or diminished), depending on fixture control types, building aspects, weather, and times of year. Such additional variability would necessitate a higher assumed CV and additional monitoring points.

# B.5.5.2. Sampling for Building Surveys

The on-site data collection encompasses a detailed survey of building systems, such as:

- Lighting fixtures
- Plug loads
- HVAC equipment and controls
- Elevator and auxiliary equipment
- Fenestration
- Envelope constructions.

For many buildings, surveyors can perform a complete walk-through and can install monitoring equipment within a single day. However, larger buildings (such as high-rise office buildings, hotel casinos, and hospitals) present logistical and budgetary complexities that make it impractical (and often impossible) to perform a complete facility walk-through. In these cases, it is permissible to perform a walkthrough of a representative sample of building areas and extrapolate the findings to the rest of the building. Evaluators can apply the findings to individual spaces or to entire floors (the exact sample design depends on the facility design, including any considerations, such as access to space).

# B.5.5.2.1. Example: On-Site Audit of a High-Rise Office Building

A 34-story high-rise commercial building located in a major city's downtown region receives a whole-building performance rebate. Various retail businesses rent the first floor, and various tenants use the remaining floors as office space, including a United States Department of Agriculture office. Evaluators collect data during the on-site visit to build a DOE2.2 model; however, the building owner will only provide evaluation personnel access to the building for a single day.

The building is too large to conduct a thorough walk-through in one day. Additionally, it is expected at least one tenant will have areas within its occupied space that evaluators will not be allowed to access. Therefore, evaluators will have to perform sampling for both floors and space types. Evaluators should audit enough floor space to sufficiently characterize internal loads and usage patterns for each tenant and for the building as a whole. The exact number of floors visited will depend on the number of tenants and on the homogeneity between spaces/floors. The evaluators should:

Identify unique operating conditions, such as occupancy schedules, lighting power density (and schedules), and equipment power density (and schedules).

- Identify currently vacant areas (or floors).
- Interview facility staff to:
  - Identify differences in space temperatures or ventilation requirements for each tenant
  - Determine variations in building occupancy (by month or as appropriate) since its opening.
- Audit all central plant equipment.
- Sample air distribution system equipment using sampling criteria described in the Uniform Method Project's *Chapter 11: Sample Design Cross-Cutting Protocol.*

## **B.5.6. Program Evaluation Elements**

These elements differentiate evaluations of new construction programs from those of other programs:

- Evaluators need significantly more resources to define and justify a hypothetical baseline.
- Evaluators have a limited selection of methods for determining site-level savings.
- Buildings rarely operate at a "steady state" at the time of evaluation.

While this is not a comprehensive list, it specifies critical factors that evaluators must consider in developing an evaluation plan—particularly with regard to budget resources for defining and justifying the baselines used to determine energy savings.

Commonly applied codes (such as ASHRAE 90.1) provide multiple compliance pathways, but leave room for local jurisdictions to maintain their own interpretations. Therefore, evaluators should work with local jurisdictions, program implementers, and evaluation managers and oversight agencies to identify the most appropriate baseline for a building. Further, local jurisdictions may adopt an updated building code during implementation of a program, so the evaluator may have to develop baselines from multiple building codes for a given program year.

Given the limited information available to assess new construction ECMs, using calibrated building simulations is often the only option for determining energy savings. Significant planning ensures:

- Evaluators develop detailed M&V plans each project site
- The evaluation allows sufficient time to perform the analyses.

Evaluators often collect additional information using submetering and/or consumption data analysis. As this information is important for model calibration, the M&V plan should allot sufficient time for a thorough analysis of all submetered data and consumption data.

For programs offering incentives, evaluators usually assess energy efficiency measure performance during the first few years of their operation. During this period, building systems and controls typically require troubleshooting,<sup>33</sup> and buildings have low, but growing, occupancy rates.

Evaluators should also keep in mind that owners (or tenants) may use building spaces differently than as originally designed. Thus, the specific codes or standards governing the originally permitted building drawings may not be appropriate for assessing actual energy use or energy savings. This protocol strongly recommends evaluators consider these and other such factors when calibrating models and simulating annual energy savings.

<sup>&</sup>lt;sup>33</sup> Troubleshooting is formally done through a commissioning process; however, not all buildings are professionally commissioned. In many facilities, facility management must dial in building controls.

### B.6. Protocols for Evaluation of Retrocommissioning Projects

#### **B.6.1. Measure Description**

Retrocommissioning (RCx) is a systematic process for optimizing energy performance in existing buildings. It specifically focuses on improving the control of energy-using equipment (e.g., heating, ventilation, and air conditioning [HVAC] equipment and lighting) and typically does not involve equipment replacement. Field results have shown proper RCx can achieve energy savings ranging from 5% to 20%, with a typical payback of two years or less (Thorne 2003).<sup>34</sup>

The method presented in this protocol provides direction regarding: (1) how to account for each measure's specific characteristics and (2) how to choose the most appropriate savings verification approach.

A study conducted on behalf of Lawrence Berkeley National Laboratory analyzed data from 11 utilities operating RCx programs across the United States. The dataset included 122 RCx projects and more than 950 RCx measures (PECI 2009). Table B-12 lists a summary of the most common RCx measures, highlighting the nine measures that represent the majority of the analyzed project savings.

| RCx Measure                                           | Percentage of Total<br>Savings |
|-------------------------------------------------------|--------------------------------|
| Revise control sequence                               | 21%                            |
| Reduce equipment size                                 | 15%                            |
| Optimize airside economizer                           | 12%                            |
| Add/optimize supply air temperature reset             | 8%                             |
| Add variable frequency drive to pump                  | 6%                             |
| Reduce coil leakage                                   | 4%                             |
| Reduce/reset duct static pressure set point           | 4%                             |
| Ad/optimize optimum start/stop                        | 3%                             |
| Add/optimize condenser water supply temperature reset | 2%                             |

Table B-12: Common RCx Measures

As shown in Table B-13 (PECI 2010), RCx measures vary, depending on types of equipment and control mechanisms introduced or optimized. For example, some RCx measures control HVAC equipment according to a predefined schedule, while some measures introduce outdoor air temperature (OAT)-dependent controls.

<sup>&</sup>lt;sup>34</sup> As discussed in the section "Considering Resource Constraints" of the Introduction chapter to this report, small utilities (as defined under U.S. Small Business Administration regulations) may face additional constraints in undertaking this protocol. Therefore, alternative methodologies should be considered for such utilities.

| Control   | Equipment Type                                           |                                                                           |                                                        |  |
|-----------|----------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------|--|
| Mechanism | HVAC Airside                                             | HVAC                                                                      | Lighting                                               |  |
| Scheduled | Matching supply fan<br>schedule to occupancy<br>schedule | Adding/optimizing<br>space setback<br>temperatures                        | Matching lighting<br>schedule to occupancy<br>schedule |  |
| Variable  | Optimizing airside<br>economizer                         | Adding chilled water<br>supply temperature<br>set point reset<br>strategy | Optimizing daylighting<br>control                      |  |

#### Table B-13: Categorization of RCx Measures

The classic RCx process helps identify, implement, and maintain improvements to building systems and operations via the following five phases (BPA 2011a).

- 1. Planning. This phase involves screening buildings to determine whether they provide a good fit for RCx by assessing indicators such as equipment age and condition, building energy performance and size, and type of control system. Ideally, facilities should have an existing building automation system (BAS) in good working order, as well as HVAC equipment that is in relatively good condition. A facility without a BAS can install the system; however, the project would then become an HVAC controls and commissioning project rather than an RCx project. When a facility's HVAC equipment nears the end of its useful life, undertaking RCx may not be appropriate because control measures could become obsolete with replaced equipment.
- 2. Investigation. The investigation phase involves analyzing facility performance by reviewing building documentation; performing diagnostic monitoring and functional tests; interviewing staff; identifying a list of recommended improvements; and estimating savings and costs. Evaluators should clearly differentiate valid RCx measures that meet program eligibility guidelines from retrofit measures and/or operation and maintenance (O&M) activities at this phase.
- 3. **Implementation.** The implementation phase involves prioritizing recommended measures and developing an implementation plan; implementing the measures; and testing to ensure proper operation. Implementation often entails an iterative approach, as the evaluator may need to determine the final control set points through several stages of modification and assessment. These stages ensure building equipment continues to operate properly and maintains the occupants' comfort. Typically, evaluators will review a facility's BAS to assess how effectively RCx measures operate.
- Turnover. The turnover phase involves updating building documentation (e.g., system operation manuals); developing and presenting a final report; and training building operators on proper O&M.

5. **Persistence.** The persistence phase involves monitoring and tracking energy use over time; continually implementing persistence strategies (e.g., refining control measures or enhancing O&M procedures) to sustain savings; and documenting ongoing changes. Depending on the availability of resources and the timeline, program stakeholders may not always actively support this phase.

### **B.6.2.** Application Conditions of Protocol

The RCx program design includes activities intended to overcome a number of market barriers, as listed in Table B-14.

| Market Segment                   | Barrier                                                                                                 | Opportunities                                                        |
|----------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Supply-Side Actors, End<br>Users | No tangible examples of RCx performance in situ                                                         | Undertaking pilot opportunities                                      |
| Supply-Side Actors               | Lack of service provider capacity for<br>undertaking the RCx investigation<br>and implementation phases | Training for service providers                                       |
| End Users                        | Lack of awareness and understanding of the RCx benefits                                                 | Education to<br>increase building<br>owner and operator<br>awareness |
| End Users                        | Cost of undertaking RCx                                                                                 | Incentives                                                           |

Table B-14: RCx Market Barriers

Ideally, energy-efficiency programs overcome these barriers through various activities that address available opportunities. Retrocommissioning programs may include some or all of the following activities:

**Pilot projects.** Program administrators sometimes fund pilot projects to demonstrate the benefits of RCx to end users in their target markets. Evaluators can verify pilot savings using the methods presented later in this protocol and, in theory, these savings will attract participants to the program.

**Training.** Program administrators sometimes fund or develop training for service providers. In some jurisdictions, service providers do not routinely provide RCx services to their customer base. Thus, to develop RCx capacity in the market, program administrators might offer training to service providers on how to provide common practice RCx investigation and implementation services. Service providers may also require training on how to sell these services to their clients.

**Education.** Program administrators sometimes develop educational materials and hold events or workshops for end users. Prior to making a decision to undertake RCx activities in their facilities, building management and building operators need to understand the business case for RCx. Detailed case studies showcasing

project savings are an example of education tools program staff can use to facilitate this decision-making process.

**Incentives.** Program administrators often provide incentives to undertake the RCx investigation, implementation, and persistence phases. Even though the payback for RCx measures is typically low, end users often require incentives to encourage them to move forward with projects.<sup>35</sup> Incentives may also encourage end users to undertake projects sooner—or with a greater scope—than they would have without market intervention.

This protocol provides structured methods for determining energy savings resulting from the implementation of RCx measures. The approaches described here provide direction on how to verify savings consistently from pilot projects, as well as from projects implemented by program participants. It does not address savings achieved through training or through market transformation activities.

## **B.6.3. Savings Calculations**

Specific savings calculations<sup>36</sup> for RCx measures inherently vary, due to the breadth of possible RCx measures, which can differ by type of equipment or control mechanism. This section presents a high-level gross energy savings equation that is applicable to all RCx measures. Section 4, *Measurement and Verification Plan*, includes detailed directions for calculating savings for specific measure categories.

Use the following general equation (EVO 2012) to determine energy savings:

#### Equation 1

Energy Savings = (Baseline Energy – Reporting Period Energy) ± Routine Adjustments ± Nonroutine Adjustments

Where:

Energy Savings = First-year energy consumption savings
 Baseline Savings = Preimplementation consumption
 Reporting Period Savings = Postimplementation consumption
 Routine Adjustments = Adjustments made to account for routinely changing independent variables (variables that drive energy

<sup>&</sup>lt;sup>35</sup> Some programs may impose a penalty rather than an incentive. For example, if participants fail to implement the measures that fell below a certain payback threshold identified during the investigation phase, they may not be eligible for the full investigation phase incentive.

<sup>&</sup>lt;sup>36</sup> As presented in the Introduction, the protocols focus on gross energy savings and do not include other parameter assessments, such as net-to-gross, peak coincidence factors, or cost-effectiveness

consumption). If applicable, normalize savings to typical meteorological year (TMY<sup>37</sup>) weather data, as well as other significant independent variables (e.g., occupancy, production data).

Nonroutine Adjustments = Adjustments made to account for parameters typically not expected to change during the implementation period. Account for these parameters if they change *and* this change influences the reporting period energy use (e.g., changes to a facility's building envelope during implementation of and RCx HVAC measure). Evaluators only need to consider nonroutine adjustments if verifying savings using Option C of the International Performance Measurement and Verification Protocol (IPMVP).<sup>38</sup>

Determining RCx demand savings is not a straightforward extension of verified consumption savings (unlike lighting retrofits, where evaluators can easily apply established load savings profiles to consumption savings data). For RCx projects, load savings profiles vary depending on the type of measures implemented and the distribution of these measures. If applicable, evaluators should produce load savings profiles on a measure-by-measure basis,<sup>39</sup> aggregate these profiles, and then apply site-specific coincidence factors to determine coincident peak demand savings at the project level.

## B.6.4. Measurement and Verification Plan

This section outlines the recommended approaches to determining RCx energy savings and provides directions on how to use the approaches under the following headings:

- Measurement and verification (M&V) method
- Data collection
- Interactive effects
- Specific savings equations
- Regression model direction

<sup>&</sup>lt;sup>37</sup> Evaluators should use the most recent typical meteorological year dataset. As of January 2014, the most comprehensive national typical meteorological year dataset is TMY3. Evaluators should confer with the local jurisdiction to see if they should use a different regional dataset.

<sup>&</sup>lt;sup>38</sup> 5 Option C is the "whole-facility approach" to verifying savings

<sup>&</sup>lt;sup>39</sup> Alternatively, if verifying savings by following Option C or D of the IPMVP, evaluators can measure or compute aggregate project-level load savings profile and negate the requirement to build up the profile on a measure-by measure basis. If using Option C, evaluators should investigate whether data from advanced metering infrastructure (e.g., interval meters) is available to increase the accuracy of billing data analyses.

Deemed spreadsheet tool functionality requirements

## B.6.4.1. Measurement and Verification Method

There is a structured method for determining the most appropriate approach to verifying RCx energy savings. This method balances the need for accurate energy-savings estimates with the need to keep M&V costs in check, relative to project costs and anticipated energy savings. Depending on which measures are implemented, different approaches to estimating the savings are appropriate. Following the IPMVP, the options are:

- Option A—Retrofit Isolation: Key Parameter Measurement
- Option B—Retrofit Isolation: All Parameter Measurement
- Option C—Whole Facility
- Option D—Calibrated Simulation

Measurement is inherent with most RCx projects because RCx measures typically involve modifications made through a facility's BAS. As mentioned, RCx implementation (an iterative process) often leverages metered data to evaluate and optimize changes throughout the process. Therefore, in many cases, a retrofit isolation approach adhering to Option A or Option B of the IPMVP proves most logical. That said, scenarios exist where Option C, Option D, or even a deemed approach may be more appropriate. Figure 7 presents a decision flow chart for determining the approaches to follow.

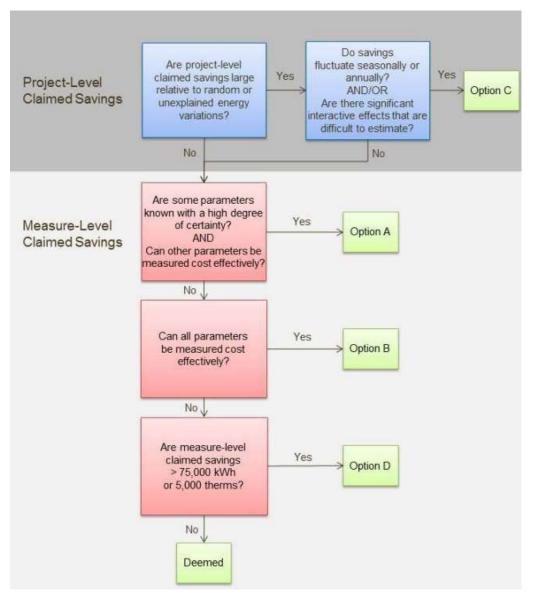



Figure 7: RCx approach-decision flow chart

The decision flow chart accounts for factors such as the magnitude of estimated savings and the measurement's cost-effectiveness. Begin the process by considering projectlevel savings:

 Option C. Use a whole-facility approach—adhering with Option C of the IPMVP if estimated project-level savings are large compared to the random or unexplained energy variations that occur at the whole-facility level<sup>40</sup> and if savings fluctuate over a seasonal or annual cycle (e.g., savings that fluctuate depending on OAT). This

<sup>&</sup>lt;sup>40</sup> Typically savings should exceed 10% of the baseline energy for a particular meter (e.g., electricity meter) to confidently discriminate the savings from the baseline data when the reporting period is shorter than two years (EVO 2012).

approach is likely the most cost-effective approach for verifying savings. The whole-facility approach is relatively inexpensive because evaluators can use utility billing data for the analysis. The downside of the approach is that evaluators cannot perform verification until after collecting a full season or year of reporting period data and monitoring and documenting any changes to the facility's static factors<sup>41</sup> over the course of the measurement period. Even if savings remain consistent month to month, Option C may provide the best approach if project measures cause complex, significant interactive effects. Such interactive effects are, by nature, difficult to estimate accurately. Also, if the effects are significant (large, relative to direct-measure savings), evaluators will be required to use a whole-facility approach to measure impacts accurately. The reduced heating and cooling energy resulting from schedule changes to an air-handling unit, when control modifications have also been undertaken for both the heating and cooling systems, is an example of a complex significant interactive effect warranting Option C.

If Option C is ruled out, consider performing verification on a measure-by-measure basis:

- Option A. If measures involve some parameters known with a high degree of certainty and other parameters can be measured cost-effectively, use a retrofit isolation approach adhering to Option A of the IPMVP. In many cases, evaluators can collect metered data directly from the facility's BAS. If required, the facility can add control points to the BAS, either as part of the implementation process or specifically for M&V purposes. Where the BAS cannot provide the information, use temporary meters to collect data (provided that costs are not prohibitive).
- Option B. If a given measure's parameters are uncertain but can be measured costeffectively, use a retrofit isolation approach, adhering to Option B of the IPMVP. Again, collect metered data (similar to Option A) either through the BAS or by using temporary meters.
- Option D. For measures where it is prohibitive to meter all required parameters, use a calibrated simulation approach adhering to Option D of the IPMVP. Undertake calibrations in two ways: (1) calibrate the simulation to the actual

<sup>&</sup>lt;sup>41</sup> Many factors can affect a facility's energy consumption, even though evaluators do not expect them to change. These factors are known as "static factors" and include the complete collection of facility parameters that are generally expected to remain constant between the baseline and reporting periods. Examples include: building envelope insulation, space use within a facility, and facility square footage

baseline or reporting consumption data and (2) confirm the reporting period inputs via the BAS front-end system, when possible.<sup>42</sup>,<sup>43</sup>

 Deemed. Finally, if a measure is relatively common<sup>44</sup> and its estimated savings are small, evaluators can deem savings rather than simulate them. Use this approach for common measures with savings less than 75,000 kilowatt-hours (kWhs) or 5,000 therms<sup>45</sup> (PECI 2010). Use a spreadsheet tool to calculate savings, adhering to functionality requirements presented later in the protocol.

## B.6.4.2. Data Collection

Depending on the approach followed, these M&V elements will require particular consideration:

- The measurement boundary
- The measurement period and frequency
- The functionality of measurement equipment being used
- The savings uncertainty.

### B.6.4.2.1. Measurement Boundary

For measures evaluators assess using Option A or Option B and that require metering external to the BAS, it will be important to define the measurement boundary. When determining boundaries—the location and number of measurement points required—consider the project's complexity and expected savings:

- While a narrow boundary simplifies data measurement (e.g., a single piece of equipment), variables driving energy use outside the boundary (i.e., interactive effects) still need to be considered.
- A wide boundary will minimize interactive effects and increase accuracy (e.g., systems of equipment like chilled water plants and air-handling units). However, as M&V costs may also increase, it is important to ensure the expected project savings justify the increased M&V costs.

<sup>&</sup>lt;sup>42</sup> In many cases, the simulation should represent the entire facility; however, in some cases, depending on the facility's wiring structure, a similar approach could be applied to building submeters, such as distribution panels that include the affected systems.

<sup>&</sup>lt;sup>43</sup> See the Uniform Method Project's Commercial New Construction Protocol for more information on using Option D.

<sup>&</sup>lt;sup>44</sup> If regulators are involved, going through the effort of deeming savings for a rare measure can be burdensome.

<sup>&</sup>lt;sup>45</sup> Program administrators and evaluators may wish to customize these thresholds for particular programs and/or jurisdictions.

### **B.6.4.2.2.** Measurement Period and Frequency

For all measures assessed with Option A or Option B, consider two important timing metrics:

- The measurement period (the length of the baseline and reporting periods)
- The measurement frequency (how regularly to take measurements during the measurement period).

As a general rule, choose the measurement period to capture a full cycle of each operating mode. For example, if there is a control modification to heating equipment, collect data over the winter and shoulder seasons.

Choose the measurement frequency by assessing the type of load measured:

- Spot measurement: For constant loads, measure power briefly, preferably over two or more intervals. • Short-term measurement: For loads predictably influenced by independent variables (e.g., HVAC equipment influenced by OAT), take shortterm consumption measurements over the fullest range of possible independent variable conditions, given M&V project cost and time limitations.<sup>46</sup> For systems expected to have nonlinear dependence (such as airhandling units with outside air economizers), measurements should incorporate sufficient range to characterize the full breadth of conditions.
- Continuous measurement: For variable loads, measure consumption data continuously, or at appropriate discrete intervals, over the entire measurement period.

See Section 4.4, *Specific Saving Equations*, for direction regarding measurement periods and frequency for specific measure types.

#### B.6.4.2.3. Measurement Equipment

When meters external to the BAS are required, follow these guidelines to select a meter:47

- Size the meter for the range of values expected most of the time.
- Select the meter repeatability and accuracy that fits the budget and intended use of the data.
- Install the meter as recommended by the manufacturer.
- Calibrate the meter before it goes into the field, and maintain calibration as recommended by the manufacturer. If possible, select a meter with a

<sup>&</sup>lt;sup>46</sup> For example, if a chiller plant undergoes control modifications, the measurement frequency should be long enough to capture the full OAT operating range. In a temperate climate zone, evaluators can accomplish this by taking measurements over a four-week period in the shoulder season and another four-week period during the summer season.

<sup>&</sup>lt;sup>47</sup> For more information on selecting measurement equipment, see the Uniform Methods Project's Metering CrossCutting Protocols.

recommended calibration interval that is longer than the anticipated measurement period.

If BAS data is used, evaluators should exercise due diligence by determining when the BAS was last calibrated and by checking the accuracy of the BAS measurement points.

# B.6.4.2.4. Savings Uncertainty

If possible, quantify the accuracy of measured data<sup>48</sup> and, if practical, conduct an error propagation analysis to determine overall impacts on the savings estimate.

### B.6.4.3. Interactive Effects

For projects following Option A, Option B, or deemed approaches, consider and estimate interactive effects if they are significant. For example, if a facility reduces an air-handling unit supply fan schedule, not only will direct fan savings be achieved, but significant cooling and heating energy savings may be realized due to decreases in conditioned ventilation air supplied to the space. Estimate interactive effects using equations that apply the appropriate engineering principles. Ideally, use a spreadsheet tool adhering to the same functionality requirements discussed in Section 4.6 for the deemed spreadsheet tool to conduct these analyses. When interactive effects are large, it may be possible to measure them rather than apply engineering estimates. In the "supply fan" example discussed in the paragraph above, an evaluator can meter the chilled water plant to determine the cooling load reduction.

Interactive effects for projects being verified using Option C or Option D are typically included in facility-level savings estimates.

## B.6.4.4. Specific Savings Equations

If following Option A or Option B, verify savings using equations matching a given measure's characteristics—specifically, whether savings are dependent on independent variables (such as OAT) and the control mechanism for affected equipment.

Figure 8 shows the three categories of savings equations, with further explanations following the flow chart.

<sup>&</sup>lt;sup>48</sup> Metering accuracy is only one element of savings uncertainty. Inaccuracies also result from modeling, sampling, interactive effects, estimated parameters, data loss, and measurements being taken outside of a meter's intended range.

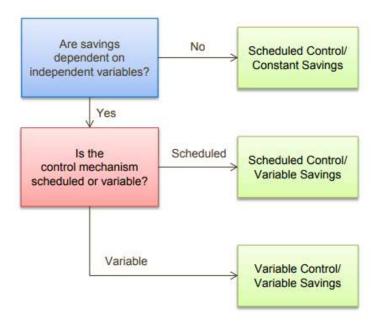



Figure 8: Savings equation categories

# B.6.4.4.1. Scheduled Control/Constant Savings

This savings equation category encompasses scheduled control measures on equipment not influenced by independent variables (such as OAT); therefore, this is the most straightforward equation category.

Lighting schedule optimization is an example of a measure verified using this savings equation category. In this example, lighting is turned off according to a schedule (scheduled control), and constant savings is achieved while it is off (constant savings).<sup>49</sup>

## **Equation 2**

```
Scheduled Control/Savings = Baseline Energy - ReportingPeriod Energy
```

Where:

*Scheduled Control/Savings* = First-year energy consumption savings resulting from a scheduled control measure with constant savings.

Baseline Energy = HRS<sub>baseline</sub> x kW<sub>controlled</sub>

<sup>&</sup>lt;sup>49</sup> While a single piece of equipment (one lighting fixture) may have a constant load, the system (lighting throughout a building) may have some variability. In a lighting system that includes a degree of occupant control (such as switches in private offices) nearly 100% of fixtures may operate midday, but substantially fewer may be on at the beginning or end of the day when the savings due to scheduling would likely occur.

Reporting Period Energy = HRS<sub>reporting</sub> x kW<sub>controlled</sub>

And,

- *HRS*<sub>baseline</sub> = Annual operating hours during the baseline: if this parameter is not known with a high degree of certainty, take short-term measurements for the duration of each existing schedule type
- $HRS_{reporting}$  = Annual operating hours during the reporting period: take short-term measurements for the duration of each new schedule type.
- $kW_{controlled}$  = Electric demand controlled by scheduling measure: if this parameter is not known with a high degree of certainty, take spot measurements during the baseline or reporting period.

### B.6.4.4.2. Scheduled Control/Variable Savings

This savings equation category encompasses scheduled control measures on equipment influenced by independent variables (such as OAT). Space setback temperature optimization provides an example of a measure verified using this savings equation category. In this example, the heating space temperature set point is lowered according to a schedule during unoccupied hours (scheduled control), and the savings achieved will vary, depending on OAT (variable savings).

Following Equation 3, Table B-15 lists the five-step process for determining adjusted baseline and reporting period energy consumption.

#### Equation 3

Scheduled Control/Variable Savings = Baseline Energy – Adjusted Reporting Period Energy

Where:

```
Scheduled Control/Variable Savings = First-year energy consumption savings
resulting from a scheduled control
measure with variable savings.
```

Adjusted Baseline Energy =

 $\sum_{All \ Schedule \ Types} Adj \ Baseline \ Consumption_{Schedule \ Type}$ and determined through the five-step process listed in Table B-16.

Adjusted Reporting Period Energy =

 $\sum_{All \ Schedule \ Types} Adj \ Reporting \ Period \ Consumption_{Schedule \ Type}$ and determined through the five-step process listed in Table B-16. Table B-15: Adjusted Consumption for Scheduled Control/Variable Savings Measures

| Step                                                                                                  | Details                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                              |  |  |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                       | Take short-term measurements at representative load levels for the affected equipment for each schedule type.                                                                            |                                                                                                                                                                                                            |                                                                                                                                                              |  |  |
| Develop baseline/reporting                                                                            | Take coincident measurements of the independent variable(s).                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                              |  |  |
| regression model(s) by<br>measuring equipment<br>operation and independent<br>variables.              | independent variables an                                                                                                                                                                 | o a regression analysis to determine the relationship between<br>dependent variables and equipment load. This relationship should be<br>pressed in terms of an equation (baseline/reporting period model). |                                                                                                                                                              |  |  |
|                                                                                                       | Note: if there are schedules for occupied and unoccupied times during the reporting period, evaluators will need two regression models, one for each set of data.                        |                                                                                                                                                                                                            |                                                                                                                                                              |  |  |
|                                                                                                       | Develop bin data tables presenting the following data (one table schedule type):                                                                                                         |                                                                                                                                                                                                            |                                                                                                                                                              |  |  |
|                                                                                                       | Independent Variable                                                                                                                                                                     | Load                                                                                                                                                                                                       | Annual Hours                                                                                                                                                 |  |  |
| Develop a bin operating<br>profile <sup>a</sup> by normalized<br>independent variable data.           | Create approximately<br>10 bins over the<br>normalized independent<br>variable data range (if<br>the equipment's energy<br>consumption varies<br>depending on weather,<br>use TMY data). | Calculate the<br>normalized load by<br>applying the<br>baseline/reporting<br>period regression<br>model to the<br>midpoint of each<br>bin.                                                                 | Use short-term<br>measured data to<br>estimate hours of<br>operation within each<br>bin or base this on TMY<br>data and the equipment<br>operating schedule. |  |  |
| Calculate the<br>baseline/reporting period<br>consumption at each load bin<br>for each schedule type. | Adjusted Consumption<br>Load,Schedule Type = Load <sub>Schedule Type</sub> x Annual Hrs <sub>Schedule Type</sub>                                                                         |                                                                                                                                                                                                            |                                                                                                                                                              |  |  |
| Sum the consumption savings across bins for each schedule type.                                       | All Load BinsSchedule Type                                                                                                                                                               |                                                                                                                                                                                                            |                                                                                                                                                              |  |  |
| Sum the consumption savings across schedule types.                                                    | All Schedule Types                                                                                                                                                                       | mption <sub>Schedule</sub> Type                                                                                                                                                                            |                                                                                                                                                              |  |  |

<sup>a</sup> Alternatively, if the independent variable is OAT, evaluators can develop an hourly profile over the full operating schedule of the affected equipment.

## B.6.4.4.3. Variable Control/Variable Savings

This savings equation category encompasses variable control measures on equipment influenced by independent variables, such as OAT. Introducing a chilled water supply temperature set point reset strategy serves as an example of a measure verified through this savings equation category. In this example, the chilled water supply temperature set point is determined depending on OAT (variable control), and the savings achieved will vary depending on OAT (variable savings).

Following Equation 4, Table B-16 lists the four-step process for determining the adjusted baseline and reporting period energy consumption.

## **Equation 4**

## Variable Control/Variable Savings = Adjusted Baseline Energy – Adjusted Reporting Period Energy

Where:

| Variable Control/Variable Savings = | First-year | energy    | consumption       | savings |
|-------------------------------------|------------|-----------|-------------------|---------|
|                                     | resulting  | from a va | ariable control i | measure |
|                                     | with varia | ble savin | gs.               |         |

$$\label{eq:Adjusted Baseline Energy} \begin{split} Adjusted \ Baseline \ Energy = \sum_{All \ Load \ Bons} Adj \ Baseline \ Consumption_{Load} \qquad \text{and} \\ & \text{determined through the five-step process listed in} \\ & \text{Table B-16.} \end{split}$$

Adjusted Reporting Period Energy =

 $\sum_{All \ Load \ Bins} Adj \ Reporting \ Period \ Consumption_{Load}$ and determined through the five-step process listed in Table B-16. Table B-16: Adjusted Consumption for Variable Control/Variable Savings Measures

| Step                                                                                              | Details                                                                                                                                                                                                   |                                                                                                                                   |                                                                                                                                                                  |  |  |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Develop baseline/                                                                                 | Take short-term measurements at representative load levels for the affected equipment for each schedule type.                                                                                             |                                                                                                                                   |                                                                                                                                                                  |  |  |
| reporting regression<br>model(s) by measuring<br>equipment operation                              | Take coincident measurements of the independent variable(s).                                                                                                                                              |                                                                                                                                   |                                                                                                                                                                  |  |  |
| and independent variables.                                                                        | Do a regression analysis to determine the relationship between independent variables and equipment load. This relationship should be expressed in terms of an equation (baseline/reporting period model). |                                                                                                                                   |                                                                                                                                                                  |  |  |
|                                                                                                   | Develop bin data tables presenting the following data:                                                                                                                                                    |                                                                                                                                   |                                                                                                                                                                  |  |  |
| Develop a bin                                                                                     | Independent Variable                                                                                                                                                                                      | Load                                                                                                                              | Annual Hours                                                                                                                                                     |  |  |
| Develop a bin<br>operating profile <sup>a</sup> by<br>normalized<br>independent variable<br>data. | Create approximately 10<br>bins over the normalized<br>independent variable<br>data range (e.g., if the<br>equipment's energy<br>consumption varies<br>depending on weather,<br>use TMY data).            | Calculate the normalized<br>load by applying the<br>baseline/reporting period<br>regression model to the<br>midpoint of each bin. | Use short-term<br>measured data to<br>estimate hours of<br>operation within each<br>bin, or base this on<br>TMY data and the<br>equipment operating<br>schedule. |  |  |
| Calculate the<br>baseline/reporting<br>period consumption at<br>each load bin.                    | Adjust Consumption<br>Adj Consumption <sub>Load</sub> = Loa                                                                                                                                               | ad x Annual Hours                                                                                                                 |                                                                                                                                                                  |  |  |
| Sum the consumption savings across bins.                                                          | $\sum_{All \ Load \ Bins} Adj \ Consumptive$                                                                                                                                                              | on <sub>Load</sub>                                                                                                                |                                                                                                                                                                  |  |  |

<sup>a</sup> Alternatively, if the independent variable is OAT, evaluators can develop an hourly profile over the full operating schedule of the affected equipment.

# B.6.4.5. Regression Modeling Direction

Calculating normalized savings for the majority of projects—whether following the IPMVP's Option A, Option B, or Option C— will require the development of a baseline and reporting period regression model.<sup>50</sup> Use one of the following three types of analysis methods to create the model:

- Linear Regression: For one routinely varying significant parameter (e.g., OAT).<sup>51</sup>
- Multivariable Linear Regression: For more than one routinely varying significant parameter (e.g., OAT, occupancy).

<sup>&</sup>lt;sup>50</sup> This could either be a single regression model that uses a dummy variable to differentiate the baseline/reporting period data or two independent models for the baseline and reporting period, respectively.

<sup>&</sup>lt;sup>51</sup> One of the most common linear regression models is the three-parameter change point model. For example, a model that represents cooling electricity consumption will have one regression coefficient that describes nonweather-dependent electricity use, a second regression coefficient that describes the rate of increase of electricity use with increasing temperature, and a third parameter that describes the change point temperature, also known as the balance point temperature, where weather-dependent electricity use begins.

 Advanced Regression: For a multivariable, nonlinear fit requiring a polynomial or exponential model.<sup>52</sup>

Develop all models in accordance with best practices and only use them when they are statistically valid (see Subsection B.6.4.5.2, *Testing Model Validity*). If no significant independent variables arise (as with a lighting schedule measure), evaluators are not required to use a model because calculated savings will be inherently normalized.

# B.6.4.5.1. Recommended Methods for Model Development

Use energy and independent variable data that is representative of a full cycle of operation. For example, if facility staff implement a heating space temperature setback measure, collect energy data across the full range of OAT for each of the operating schedules (occupied and unoccupied) for each season, as shown in Table B-17.

|                     | Shoulder Season                                                                                                                                                                    | Winter Season                                                                                                                                                                    |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Occupied<br>Hours   | Short-term energy measurements<br>during occupied hours.<br>Measurements should be<br>representative of the full range of<br>shoulder season OAT (approximately<br>10 OAT bins).   | Short-term energy measurements<br>during occupied<br>hours. Measurements should be<br>representative of<br>the full range of winter-season OAT<br>(approximately 10 OAT bins).   |
| Unoccupied<br>Hours | Short-term energy measurements<br>during unoccupied hours.<br>Measurements should be<br>representative of the full range of<br>shoulder-season OAT<br>(approximately 10 OAT bins). | Short-term energy measurements<br>during unoccupied hours.<br>Measurements should be<br>representative of the full range of<br>winter-season OAT (approximately<br>10 OAT bins). |

Analyze the data collected to identify outliers. Only remove outliers when there is a tangible explanation to support the erratic data points. Discussion of how to identify outliers is outside the scope of this protocol.

#### B.6.4.5.2. Testing Model Validity

To assess the model's accuracy, begin by reviewing the parameters in Table B-18 (EVO 2012).

<sup>&</sup>lt;sup>52</sup> Evaluators may need to use advanced regression methods if RCx activities impact manufacturing or industrial process equipment.

| Parameter<br>Evaluated                         | Description                                                                                                                | Suggested<br>Acceptable Values                         |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Coefficient of determination (R <sup>2</sup> ) | A measure of the extent that the regression<br>model explains variations in the dependent<br>variable from its mean value. | > 0.75                                                 |
| T-statistic (absolute<br>value)                | An indication of whether regression model coefficients are statistically significant.                                      | > 2a <sup>a</sup>                                      |
| Mean bias error                                | An indication of whether the regression model overstates or understates actual energy consumption.                         | Will depend on the<br>measure, but<br>generally: < ±5% |

# Table B-18: Model Statistical Validity Guide

<sup>a</sup> Determine the t-statistic threshold based on the evaluator's chosen confidence level; a 95% confidence level requires a t-statistic of 1.96. Evaluators should determine an acceptable confidence level depending on project risk (i.e., savings risk), budget, and other considerations.

A model outside the suggested range indicates parameter coefficients that are relatively poorly determined, with the result that normalized consumption will have relatively high statistical prediction error. Ordinarily, evaluators should not use such a model for normalization, unless the analysis includes appropriate statistical treatment of this prediction error. Discussion of how to proceed in such circumstances is outside the scope of this protocol.

When possible, attempt to enhance the regression model by:

- Increasing or shifting the measurement period
- Incorporating more data points
- Including independent variables previously unidentified
- Eliminating statistically insignificant independent variables.

Also, when assessing model validity, consider coefficient of variation of the root mean squared error, fractional savings uncertainty, and residual plots. Refer to ASHRAE Guideline 14-2002 and Bonneville Power Administration's *Regression for M&V: Reference Guide* for direction on how to assess these additional parameters.

#### B.6.4.6. Deemed Spreadsheet Tool Functionality Requirements

When collecting measured energy data is not cost-effective and claimed (*ex ante*) savings estimates for a given measure are sufficiently small (75,000 kWh or 5,000 therms), use a deemed approach to calculate savings. In this scenario, the protocol recommends using a spreadsheet tool to calculate savings, and this tool should meet these general requirements:

**Ensure model transparency.** A third party should be able to review the spreadsheet tool and clearly understand how the evaluator derived all savings

outputs. To this end, clearly explain and reference all inputs and calculation algorithms within the spreadsheet. Do not lock or hide cells or sheets and check to ensure all links work properly.

**Use relevant secondary data.** When using secondary data as inputs to savings algorithms, ensure they are relevant to the project's region or jurisdiction. Substantiate input relevancy within the spreadsheet. For example, if using assumed values for hours of operation for heating equipment, take these secondary data from a regional resource (e.g., a technical resource manual from the most applicable demand-side management authority).

**Verify input elements—either on site or through the BAS front-end system.** Even when using a deemed approach, verify and update some inputs with actual site observations (rather than solely relying on secondary data). For example, confirm a new lighting schedule through the BAS front-end system and note it in the spreadsheet tool.

**Establish default values for unverifiable parameters.** Use default values for parameters that cannot be verified. For example, clearly state assumed values for motor efficiencies and load factors.

The Building Optimization Analysis Tool,20 developed by Portland Energy Conservation Inc., (PECI 2010) provides an example of benchmark for RCx spreadsheet tools. Although the protocol does not require the following level of rigor, ideally, a best-practice spreadsheet tool should:

- Incorporate regional TMY data.
- Incorporate regional building archetype templates.
- Undergo a calibration process by using measured data from previous regional projects to test algorithms.

#### B.6.5. Sample Design

Consult the Uniform Methods Project's Sample Design Cross-Cutting Protocols for general sampling procedures if the RCx program project population is sufficiently large or if the evaluation budget is constrained. Ideally, use stratified sampling to partition RCx projects by measure type, facility type, and/or project size. Stratification ensures evaluators can confidently extrapolate sample findings to the remaining project population. Regulatory or program administrator specifications typically govern the confidence and precision-level targets that influence sample size.

# **B.6.6. Other Evaluation Issues**

When claiming lifetime and net program RCx impacts, evaluators should consider persistence and net-to-gross in addition to first-year gross impact findings.

#### B.6.6.1. Persistence

Persistence of savings encompasses both the retention and the performance degradation of measures. Evaluators should consider persistence on a program-by-program basis because the persistence of RCx projects can vary widely depending on the distribution of measure types implemented and, perhaps more significantly, on how well facility staff maintains the modifications. Consult the Uniform Methods Project's *Assessing Persistence and Other Evaluation Issues Cross-Cutting Protocols* for more information.

# B.6.6.1.1. Estimating Effective Useful Life (EUL) from Savings Persistence in RCx Projects

For cases where unable to determine measure persistence, the TPE has conducted an analysis of persistence for common measure types in RCx projects and extrapolated EULs suitable for cost-benefit analysis. The analysis was based on findings from a field study of persistence in RCx projects, prepared 2018 by Seventhwave on behalf of ComEd.<sup>53</sup>

#### B.6.6.1.1.1. Methodology

The TPE calculated effective useful life (EUL) for a group of measures using savings persistence estimates. The savings persistence estimates were calculated relative to a baseline program year when measures were implemented. As such, they represent both measure life and savings persistence. In particular, savings persistence accounts for changes in equipment life (the amount of time before equipment fails), measure persistence (i.e. equipment failure or business turnover), and true savings persistence as defined by the UMP<sup>54</sup> (i.e. changes in operating hours, process operations, or performance degradation of the equipment relative to the baseline option).

Savings persistence values were obtained for each measure at various dates following measure installation (e.g. every three years). Savings persistence in years not measured was interpolated between years in which saving persistence was known. This creates a step-like function with different slopes for each measured interval. For years that exceed the last measured persistence, the TPE extrapolated persistence using the slope from the prior measured interval. The EUL was capped at 7 years to account for a lack of savings persistence estimates after year 6.

The equation below shows how the EUL for each measure was calculated from the predicted savings persistence values.

<sup>&</sup>lt;sup>53</sup> <u>https://slipstreaminc.org/sites/default/files/documents/publications/retrocommissioning-persistence-studyfinal-reportoct-2018.pdf</u>

<sup>&</sup>lt;sup>54</sup> https://www.energy.gov/sites/prod/files/2013/05/f0/53827-13.pdf

Effective Useful Life = 
$$\sum_{t=0}^{n} Savings Persistence_t$$

#### B.6.6.1.1.1. Resulting EULs

| Measure Type       | EUL Capped<br>(yr 7) <sup>55</sup> |  |
|--------------------|------------------------------------|--|
| Air distribution   | 4.00                               |  |
| Plant optimization | 5.00                               |  |
| Ventilation        | 5.00                               |  |
| Scheduling         | 5.50                               |  |
| Filters            | 5.50                               |  |
| General            | 5.50                               |  |

#### B.6.6.2. Net to Gross

Consult the Uniform Methods Project's *Estimating Net Energy Savings: Common Practices* for a discussion about determining net program impacts at a general level, including direction on how to assess freeridership. Supplementary to that chapter, however, evaluators may consider assessing participant spillover if evidence emerges of participants implementing no-cost measures. This would specifically apply to no-cost measures identified during the investigation phase, but not explicitly included under the scope of program-funded RCx implementation activities.

If no-cost measures exist and there are no savings claims, the attribution evaluation may involve interviews with building operators and their service providers to obtain estimates of the savings magnitude resulting from these measures. Participant spillover would positively influence the program's overall net-to-gross factor.

<sup>&</sup>lt;sup>55</sup> For ease of use, these have been rounded to the nearest half year.

# B.7. Protocols and Guidance for Establishing Quality Assurance / Quality Control for Programs

Continuous improvement in the operation of energy efficiency and demand response programs requires that procedures for quality assurance and quality control be put in place and applied continuously in real time.

- With Quality Assurance (QA), standards to promote consistency and minimize errors are developed and applied during the planning and design of a program.
- Quality Control (QC) activities are conducted continuously in real time to ensure that programs are being implemented and operated according to set quality standards.

# B.7.1.1. QA/QC Protocol 1: Approach to Quality Assurance

Quality Assurance activities occur throughout a program's lifecycle to ensure that program processes are aligned with objectives, that risk is avoided, and that efficiency is being promoted. QA activities are used to ensure that program rules and requirements are documented and current, that participating contractors and trade allies are properly licensed and trained and maintain high quality standards in interactions with customers, and that data are accurate and sufficient for analyzing energy savings analysis.

Examples of QA activities include the following:

- Developing program logic models and process maps that document the goals, processes, and expected outcomes associated with key activities in each program;
- Implementing training protocols that describe training procedures and requirements for key program stakeholders, such as CSPs and trade allies;
- Applying rigorous screening and qualifying protocols to CSPs, trade allies, and field staff that interact directly with customers;
- Documenting data collection protocols, including data and customer information needed to track activities and calculate savings for each program; and
- Summarizing CSPs' gross energy savings calculation methods that are reported at the measure or project level to support consistency and accuracy across programs.

Information on processes used with a program can be organized through preparation of a "program logic model"56. In broadest terms, a logic model shows how resources are used in activities to produce outputs that yield outcomes. The logic model for a program should provide a clear description of the processes used with that program to provide energy efficiency services and / or products to customers participating in the program. Essentially, developing the logic model should show what the processes for a program are supposed to do, with *whom* and *why*. In particular, the program logic model should:

<sup>&</sup>lt;sup>56</sup> McLaughlin, J.A., & Jordan, G.B. (2004). Using logic models. In J.S. Wholey, H.P. Hatry, & K.E Newcomber (Eds.), Handbook of practical program evaluation (2nd ed., pp. 7-32). Hoboken, NJ: John Wiley & Sons.

- Identify the group(s) involved with the program;
- Identify the resources being allocated to the program;
- Describe those activities or action steps that are being used to achieve outcomes;
- Define the outcomes or objectives for a program, where outcomes are those changes or benefits that result from activities; and
- Determine whether the objectives are being achieved.

While a program logic model shows the structure and practices desired and expected for a program, quality assurance procedures are used to identify and identify standards that eliminate variations or defects in program processes that may cause appropriate quality to not be achieved. A framework for assuring that quality requirements are being met is provided by the Plan-Do-Check-Act cycle paradigm that was popularized by Deming and that is the basis for ISO 9001: 2015, the international standard that specifies requirements for a quality management system. As summarized in Table B-19, the PDCA cycle provides a four-step method for continuous quality improvement.

| Step  | Activity                                                                                                                                                                                                                                                                  |  |  |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Plan  | Establish objectives for quality and determine processes or changes in processes that are required to deliver desired quality. Determine specific levels of quality or measurable results to be achieved                                                                  |  |  |  |
| Do    | Develop and test process and / or changes in processes.                                                                                                                                                                                                                   |  |  |  |
| Check | Monitor and evaluate processes or changes to determine whether quality is meeting predetermined objectives. To extent possible, use objective measurements or tests to determine whether quality goals are being met, rather than using subjective evaluation of quality. |  |  |  |
| Act   | Implement actions that are necessary to achieve desired improvements in quality                                                                                                                                                                                           |  |  |  |
|       | If appropriate, repeat, beginning with new objectives being planned.                                                                                                                                                                                                      |  |  |  |

Table B-19: Steps in PDCA Cycle for Quality Assurance

Guidance on using the ISO 9001: 2015 standard and the PDCA cycle to develop and implement an effective quality assurance and management system can be found in a handbook published in 2016 by the International Standards Organization:

ISO 9001: 2015 for Small Enterprises: What to do?

(Available for purchase at https://www.iso.org/publication/PUB100406.html.)

# B.7.1.2. QA/QC Protocol 2: Procedures for Quality Control

Quality control procedures should be applied continuously in real time to ensure that program activities adhere to the standards set through the QA work and conform to performance expectations at the program and portfolio levels. QC activities address operational procedures, data and records, and measure installation. Examples of QC procedures include the following:

• Ongoing tracking of program activities and costs.

- Reviewing all data and records to confirm that the proper data are collected consistently, resources are allocated appropriately, and program performance can be measured accurately.
- Conducting follow-up calls to participants to evaluate their satisfaction with the rendered services and to identify opportunities to improve the effectiveness of energy efficiency programs.

As shown in Table B-20, quality control activities occur during both pre-implementation and post-implementation phases of a program.

Table B-20: Quality Control Activities during Pre-Implementationand Post-Implementation Phases of a Program

#### **Quality Control during Pre-Implementation**

- **Documentation review:** Program documentation should be examined to ensure that it is complete and that it provides all essential information for achieving and verifying savings.
- Site pre-inspection and interviews: Site inspections may be conducted to verify preexisting conditions, quantities of measures, key operating parameters, equipment performance, and baseline assumptions in the measure documentation.
- Measured data collection: Addresses uncertainties regarding performance of measures or to confirm validity of assumptions used in the baseline analysis. May include spot measurements, data trending (via data loggers or building control systems), or other data collection conducted before measures are implemented.

#### Quality Control during Post-Implementation

- Documentation retention: Program-required documentation should be reviewed to ensure completeness and accuracy. All energy savings-related documentation should be retained for future savings validation or evaluation efforts.
- Site post-inspection and interviews: Site inspections and interviews may be conducted to verify that measures were installed and commissioned and operate as intended.
- **Measured data collection:** Data may be collected post-implementation to verify key operating parameters of measures or to meet requirements of an M&V plan.

Evaluation of programs by a TPE can also contribute to quality control of a program. In particular, quality control can be facilitated by having implementation and EM&V contractors coordinate and integrate their activities. Examples of how M&V activities can be coordinated and integrated with implementation activities include the following.

- Pre-installation review: This involves implementation and M&V contractor teams performing pre-installation review of measures and projects prior to a utility reserving incentive funding.
- Project-Specific M&V Plans: This involves implementation and M&V contractor teams coordinating to provide project-specific M&V plans for select projects to ensure the

implementation contractor has a full understanding of the M&V approach for these projects prior to the projects being completed and incentivized.

- Coordinated joint site visits: This involves implementation and M&V contractor teams coordinating to conduct joint site visits for select projects. Joint visits reduce the impact on customers and allow data to be collected concurrently, reducing conflicting information collected during separate site visits.
- Project-Specific M&V Reports: This involves sharing project-specific M&V reports with implementation contractors prior to final program level analysis.

Sharing analysis files, energy models, engineering spreadsheets, etc. maintains transparency and allows all calculations used in determining evaluated verified energy savings to be reviewed by all parties.

The TPE should also conduct quality control for the evaluation work. Examples of areas where quality control should be exercised for evaluation work include the following.

- Quality control assessment of evaluation plans with respect to the following
  - Analytical methods used to estimate savings
  - Baseline determination
  - Researchable questions
  - Sampling approaches and segmentation or stratification (if appropriate)
  - Data collection instruments and topics
  - Mapping inputs and outputs for computation of effects
  - Logical narrative
- Quality control assessment of data procurement:
  - Review of options for real time data collection
  - Use of appropriate data collection procedures for sampling, collection, processing, attrition, bias, etc.
  - How to best use data tracking systems to serve needs of both program implementation and evaluation
- Quality control of evaluation reporting
  - Consistency of reporting with the corresponding plan and with best practices
  - Cogency and clarity of reporting documentation
  - Critical assessment of conclusions and recommendations
  - Thoroughness of documentation of methods and results in reports

# B.8. Protocol and Guidance for Updating the TRM

This protocol addresses the updating of the Technical Reference Manual (TRM). The protocol provides for periodically reviewing and, if appropriate, updating the content of the TRM. For many measures, updating may need to occur only when codes and standards affecting the specific measure change. Areas to focus on for major updating include:

- Making changes to existing measures, data, and calculations when significant changes are justified, typically because of changing baselines or availability of more current, applicable evaluation studies for updating values.
- Including new measures that are determined to be priorities in the TRM

The focus of the updating should be on areas of high impact in the Energy Smart portfolio (e.g., duct sealing) and of potential future high impact measures (e.g., ductless mini-split HVAC systems).

A study of an existing or new measure is warranted when the following guidelines are met.

- Measures should be flagged for further review if they exceed 1% of portfolio savings. In such instances, it should be determined whether:
  - Primary data have been collected in Energy Smart evaluations to support the deemed savings.
  - The data is sufficiently recent to support its continued use.
  - If data collection to support a deemed savings revision is cost-effective or costfeasible, given the implementation and EM&V budgets for Energy Smart programs.
- Measures that are not over the high-impact threshold should be considered for impact or market assessment studies if:
  - Stakeholders (the Council and their Advisors, ENO, implementers, interveners, the EM&V contractor, and/or other appropriate parties) conclude a measure is of strategic importance to future program implementation efforts; or
  - A measure is high-impact within an important market sub-segment (such as lowincome multifamily or municipal government).

Future implementation of Energy Smart programs may include measures that are not in the current version on the TRM. The treatment of these measures in the implementation and evaluation process will differ situationally.

- Many measures in the commercial and industrial segment are custom measures for which deemed savings are inappropriate. These measures will be validated individually based on IPMVP protocols.
- Direct load control (DLC) or load management (LM) programs curtail peak loads through installation of control devices on specific systems (DLC) or through voluntary

self-curtailment (LM). These programs are not appropriate for inclusion in a TRM and should have their performance validated annually.

The TRM should be updated each year through a two-stage process.

- In the first quarter of each calendar year, a technical forum will be held in which stakeholders may suggest measure additions or updates. This will inform the scope of TRM additions and/or updates to be completed that calendar year.
- Based on this scope, the EM&V contractor will develop the updates, and submit these for comment in July. The results of these comments will be discussed in a second technical conference in August, with the TRM updates finalized in September.

Measures that may be appropriate for the TRM but that are not included in the thencurrent version should be brought forward in the first-quarter technical conference when possible. If a measure is brought forward by program implementers or other stakeholders, the EM&V contractor may work with the appropriate stakeholders in finalizing an ad hoc measure whitepaper for use until the measure can be formalized in a TRM update. It is at the discretion of the EM&V contractor to determine if primary data collection is warranted before allowing deemed savings for measures through this whitepaper process.

Updating of the TRM should be accomplished using data and tools that are the "best available" (i.e., accurate, relevant, and current). In particular, TRM updates should be based on EM&V studies that are conducted regularly.

The ongoing annual updating process will provide assessments of the reliability of deemed savings values, deemed calculations, and deemed variables and factors. Such assessments may not necessarily result in changes to the TRM. However, the reviews should assess whether the use of the "best (currently) available" data regarding baseline assumptions remains accurate or needs updating (e.g., because of changing code requirements or changes in market practices).

#### C.1. Appliances

#### C.1.1. ENERGY STAR® Clothes Washers

#### C.1.1.1. Measure Description

This measure involves the installation of a residential ENERGY STAR® clothes washer > 2.5 ft<sup>3</sup> in a new construction or replacement-on-burnout application. This measure applies to all residential applications.

#### C.1.1.2. Baseline and Efficiency Standards<sup>57</sup>

The baseline standard for deriving savings from this measure is the current federal minimum efficiency levels.

The efficiency standard is the ENERGY STAR® requirements for clothes washers.

Efficiency performance for clothes washers are characterized by Integrated Modified Energy Factor (IMEF) and Integrated Water Factor (IWF). The units for IMEF are ft<sup>3</sup>/kWh/cycle. Units with higher IMEF values are more efficient. The units for IWF are gallons/cycle/ft<sup>3</sup>. Units with lower IWF values will use less water and are therefore more efficient.

| Clothes Washer | ENERGY STAR® Efficiency Level |  |  |
|----------------|-------------------------------|--|--|
| Configuration  | Effective 3/7/2015            |  |  |
| Top Loading    | MEF ≥ 2.06                    |  |  |
| Top Loading    | WF ≤ 4.3                      |  |  |
| Front Loading  | MEF ≥ 2.38                    |  |  |
| FIONT LOADIng  | WF ≤ 3.7                      |  |  |

ENERGY STAR<sup>®</sup> Most Efficient criteria for clothes washers can be found at: http://www.energystar.gov/ia/partners/downloads/most\_efficient/2015/Final\_ENERGY\_STAR\_Most\_Efficient\_201 5\_Recognition\_Criteria\_Clothes\_Washers.pdf.

<sup>&</sup>lt;sup>57</sup> Current federal standards for clothes washers can be found on the DOE website at: http://www1.eere.energy.gov/buildings/appliance\_standards/product.aspx/productid/39.

Current ENERGY STAR<sup>®</sup> criteria for clothes washers can be found on the ENERGY STAR<sup>®</sup> website at: http://www.energystar.gov/index.cfm?c=clotheswash.pr\_crit\_clothes\_washers.

# C.1.1.3. Estimated Useful Life (EUL)

The average lifetime of this measure is 14 years, according to the US DOE.<sup>58</sup>

# C.1.1.4. Deemed Savings Values

For retrofit situations, baseline and efficiency case energy consumption is based on the configuration of the replaced unit and new unit (top loading or front loading). For new construction applications, a top loading clothes washer is assumed as the baseline and the efficient equipment is either top loading or front loading.

| Baseline      | Efficient     | Water Heater | Dryer     | kW      | kWh     |
|---------------|---------------|--------------|-----------|---------|---------|
| Configuration | Configuration | Fuel Type    | Fuel Type | Savings | Savings |
|               | Top Loading   | Gas          | Gas       | 0.005   | 23      |
| Tanlanding    |               | Gas          | Electric  | 0.045   | 192     |
| Top Loading   |               | Electric     | Gas       | 0.027   | 114     |
|               |               | Electric     | Electric  | 0.067   | 282     |
|               | Front Loading | Gas          | Gas       | 0.009   | 38      |
| Taplanding    |               | Gas          | Electric  | 0.047   | 198     |
| Top Loading   |               | Electric     | Gas       | 0.045   | 191     |
|               |               | Electric     | Electric  | 0.083   | 351     |
| Front Loading | Front Loading | Gas          | Gas       | 0.002   | 6       |
|               |               | Gas          | Electric  | 0.022   | 93      |
|               |               | Electric     | Gas       | 0.008   | 32      |
|               |               | Electric     | Electric  | 0.028   | 119     |

Table C-2: ENERGY STAR® Clothes Washer – Deemed Savings

# C.1.1.5. Calculation of Deemed Savings

Energy savings for this measure were derived using the ENERGY STAR® Clothes Washer Savings Calculator.<sup>59</sup> Unless otherwise specified, all savings assumptions are extracted from the ENERGY STAR® calculator. The baseline and ENERGY STAR® efficiency levels are set to those matching Table C-1. The ENERGY STAR® calculator determines savings based on whether an electric or gas water heater is used. Calculations are also conducted based on whether the dryer is electric or gas.

For applications using an electric water heater and an electric dryer, the savings are calculated as follows:

<sup>&</sup>lt;sup>58</sup> U.S. DOE "Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment: Residential Clothes Washers" Section 8.2.3 Product Lifetimes. April 2012. <u>http://www1.eere.energy.gov/buildings/appliance\_standards/product.aspx/productid/39</u>.

<sup>&</sup>lt;sup>59</sup> The ENERGY STAR<sup>®</sup> Clothes Washer Savings Calculator can be found on the ENERGY STAR<sup>®</sup> website on the right hand side of the page

at:www.energystar.gov/index.cfm?fuseaction=find\_a\_product.showProductGroup&pgw\_code=CW.

 $kWh_{savings} = (E_{conv,machi} + E_{conv,WH} + E_{conv,dryer}) - (E_{ES,machine} + E_{ES,WH} + E_{ES,dryer})$ 

Where:

 $E_{conv,machi}$  = Conventional machine energy (kWh)

 $E_{conv.WH}$  = Conventional water heating energy (kWh)

 $E_{conv,dryer}$ = Conventional dryer energy (kWh)

*E<sub>ES,machine</sub>* = ENERGY STAR® machine energy (kWh)

 $E_{ES,WH}$  = ENERGY STAR® water heating energy (kWh)

*E<sub>ES,dryer</sub>*=ENERGY STAR® dryer energy (kWh)

#### C.1.1.5.1. Energy Savings

Energy consumption for the above factors can be determined using the following algorithms.

$$\begin{split} E_{conv,machine} &= \frac{MCF \times RUEC_{conv} \times LPY}{RLPY} \\ E_{conv,WH} &= \frac{WHCF \times RUEC_{conv} \times LPY}{RLPY} \\ E_{conv,WH} &= \frac{(CAP \times LPY)}{IMEF_{FS}} - \frac{RUEC_{conv} \times LPY}{RLPY}) \times DUF \\ E_{ES,machine} &= \frac{MCF \times RUEC_{ES} \times LPY}{RLPY} \\ E_{ES,WH} &= \frac{WHCF \times RUEC_{ES} \times LPY}{RLPY} \\ E_{ES,WH} &= \frac{(CAP \times LPY)}{RLPY} - \frac{RUEC_{ES} \times LPY}{RLPY}) \times DUF \end{split}$$

Where:

*MCF* = Machine electricity consumption factor = 20%

*WHCF* = Water heating electricity consumption factor = 80%

 $RUEC_{conv}$  = Rated unit electricity consumption (kWh/year) = 381 (Top Loading); 169 (Front Loading)

 $RUEC_{ES}$  = Rated unit electricity consumption (kWh/year) = 230 (Top Loading); 127 (Front Loading)

CAP = Clothes washer capacity = 3.5 (ft<sup>3</sup>)

*IMEF<sub>FS</sub>* = Federal Standard Integrated Modified Energy Factor (ft<sup>3</sup>/kWh/cycle)

*IMEF<sub>ES</sub>* = ENERGY STAR® Integrated Modified Energy Factor (ft<sup>3</sup>/kWh/cycle)

LPY = Loads per year = 295

RLPY = Reference loads per year = 392

DUF = Dryer use factor = 91%

#### C.1.1.5.2. Demand Savings

Demand savings are calculated using the following equation:

$$kW_{savings} = \frac{kWh_{savings}}{AOH} \times CF$$

AOH = Annual operating hours = LPY × d = 295 hours

CF = Coincidence factor = 0.07<sup>60</sup>

#### C.1.1.6. Incremental Cost

The incremental cost is \$190<sup>61</sup>.

#### C.1.1.7. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure was not implemented in Energy Smart programs. Thus, savings are calculated using ENERGY STAR default values. If this measure is added to Energy Smart programs, the evaluation should include a review of actual efficiency levels and costs of units purchased by New Orleans residents. Deemed parameters should be updated whenever DOE standards or other applicable codes warrant it.

<sup>&</sup>lt;sup>60</sup> Value from Clothes Washer Measure, Mid Atlantic TRM 2014. Metered data from Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 – May 31, 2013) Appliance Rebate Program." March 21, 2014, p. 36.

<sup>&</sup>lt;sup>61</sup> ENERGY STAR Appliance Calculator:

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwihkoHI8f 3OAhVW5mMKHe72Du4QFggeMAA&url=https%3A%2F%2Fwww.energystar.gov%2Fsites%2Fdefault%2Ffiles%2Fas set%2Fdocument%2Fappliance\_calculator.xlsx&usg=AFQjCNFAy5mu5GR3BjLp4MR1LgrOHegCA&sig2=8l5MGUh1\_bJy3lSl9wAWIA

## C.1.2.1. Measure Description

This measure involves the installation of a residential ENERGY STAR® dryers in a new construction or replacement-on-burnout application. This measure applies to all residential applications.

## C.1.2.2. Baseline and Efficiency Standards<sup>62</sup>

The baseline standard for deriving savings from this measure is the current federal minimum efficiency levels. The efficiency standard is the ENERGY STAR® requirements for dryers.

ENERGY STAR® Clothes Dryers are more efficient than standard ones and save energy. They have a higher CEF (Combined Energy Factor) and may incorporate a moisture sensor to reduce excessive drying of clothes and prolonged drying cycles. ENERGY STAR® Heat pump dryers or ventless dryers have higher CEF than conventional ENERGY STAR® dryers.

|                                        | Vented<br>Gas<br>Dryer | Ventless<br>or Vented<br>Electric,<br>Standard<br>≥ 4.4 ft <sup>3</sup> | Ventless or<br>Vented<br>Electric,<br>Compact<br>(120V) < 4.4<br>ft <sup>3</sup> | Vented<br>Electric,<br>Compact<br>(240V) <<br>4.4 ft <sup>3</sup> | Ventless<br>Electric,<br>Compact<br>(240V) <<br>4.4 ft <sup>3</sup> | Heat<br>Pump<br>Clothes<br>Dryer |
|----------------------------------------|------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------|
| ENERGY STAR®<br>Required CEF           | 3.48                   | 3.93                                                                    | 3.80                                                                             | 3.45                                                              | 2.68                                                                | 7.60                             |
| Federal standard CEF                   | 2.84                   | 3.11                                                                    | 3.01                                                                             | 2.73                                                              | 2.13                                                                | 3.11                             |
| Average load (in lbs.)                 | 8.45                   | 8.45                                                                    | 3.0                                                                              | 3.0                                                               | 3.0                                                                 | 8.45                             |
| Default loads per year                 | 283                    | 283                                                                     | 283                                                                              | 283                                                               | 283                                                                 | 283                              |
| Default capacity (in ft <sup>3</sup> ) | 5.0                    | 5.0                                                                     | 3.0                                                                              | 3.0                                                               | 3.0                                                                 | 5.0                              |

Table C-3: ENERGY STAR® Dryer – Baseline and Efficiency Levels<sup>63</sup>

www.energystar.gov/index.cfm?fuseaction=find\_a\_product.showProductGroup&pgw\_code=CW

<sup>&</sup>lt;sup>62</sup> Current federal standards for clothes dryers can be found on the DOE website at: https://www1.eere.energy.gov/buildings/appliance\_standards/product.aspx/productid/36.

Current ENERGY STAR<sup>®</sup> criteria for clothes dryers can be found on the ENERGY STAR<sup>®</sup> website at: https://www.energystar.gov/products/appliances/clothes\_dryers.

ENERGY STAR<sup>®</sup> Most Efficient criteria for clothes washers can be found at: http://www.energystar.gov/ia/partners/downloads/most\_efficient/2015/Final\_ENERGY\_STAR\_Most\_Efficient\_201 5\_Recognition\_Criteria\_Clothes\_Washers.pdf.

<sup>&</sup>lt;sup>63</sup> The ENERGY STAR<sup>®</sup> Clothes Dryer Savings Calculator can be found on the ENERGY STAR<sup>®</sup> website on the right hand side of the page at:

# C.1.2.3. Estimated Useful Life (EUL)

The average lifetime of this measure is 12 years, according to the US DOE.<sup>64</sup>

# C.1.2.4. Deemed Savings Values

For retrofit situations, baseline and efficiency case energy consumption is based on the size of the replaced unit and new unit. For new construction applications.

| Product Type                                                                | Energy<br>Savings<br>(kWh/yr.) | Demand<br>Reduction<br>(kW) |
|-----------------------------------------------------------------------------|--------------------------------|-----------------------------|
| Vented Electric, Standard<br>(4.4 ft <sup>3</sup> or greater capacity)      | 152.42                         | .0226                       |
| Vented Electric, Compact (120V)<br>(less than 4.4 ft <sup>3</sup> capacity) | 55.71                          | .0083                       |
| Vented Electric, Compact (240V) < 4.4 ft <sup>3</sup>                       | 61.66                          | .0092                       |
| Ventless Electric, Compact (240V) < 4.4 ft <sup>3</sup>                     | 77.71                          | .0115                       |
| Heat Pump Clothes Dryer                                                     | 431.56                         | .0641                       |

Table C-4: ENERGY STAR® Clothes Dryer – Deemed Savings

# C.1.2.5. Calculation of Deemed Savings

# C.1.2.5.1. Energy and Demand Savings

Energy savings for this measure were derived using the ENERGY STAR® Dryer Savings Calculator.<sup>65</sup> Unless otherwise specified, all savings assumptions are extracted from the ENERGY STAR® calculator.

The energy and demand savings are obtained through the following formulas:

$$\Delta kWh/yr = Cycles_{wash} \times \mathscr{M}_{dry/wash} \times Load_{avg} \times \left(\frac{1}{CEF_{base}} - \frac{1}{CEF_{ee}}\right)$$

$$\Delta k W_{peak} = \frac{\left(\frac{1}{CEF_{base}} - \frac{1}{CEF_{ee}}\right) \times Load_{avg}}{time_{cycle}} \times CF$$

Where:

<sup>&</sup>lt;sup>64</sup> U.S. DOE "Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment: Residential Clothes Dryer" Section 8.2.3 Product Lifetimes. April 2011. https://www1.eere.energy.gov/buildings/appliance\_standards/product.aspx/productid/36.

<sup>&</sup>lt;sup>65</sup> The ENERGY STAR<sup>®</sup>Clothes Washer Savings Calculator can be found on the ENERGY STAR<sup>®</sup> website on the right hand side of the page

at:<u>www.energystar.gov/index.cfm?fuseaction=find\_a\_product.showProductGroup&pgw\_code=CW</u>.

*Cycles<sub>wash</sub>* = Number of washing machine cycles per year = 283 cycles/year

 $Load_{avg}$  = Weight of average dryer load, in pounds per load = Standard Dryer: 8.45 lbs/load and Compact Dryer: 3.0 lbs/load<sup>66 67</sup>

 $%_{dry/wash}$  = Percentage of homes with a dryer that use the dryer every time clothes are washed = 95%

 $CEF_{base}$  = Combined Energy Factor of baseline dryer (lbs/kWh) = See Table C-3<sup>68</sup>

 $CEF_{ee}$  = Combined Energy Factor of ENERGY STAR® dryer (lbs./kWh) = See Table C-3<sup>69</sup>

 $time_{cycle}$  = Duration of average drying cycle in hours = 1 hour

CF - Coincidence Factor =  $0.042^{70}$ 

# C.1.2.6. Incremental Cost

The incremental cost of high efficiency clothes dryers is detailed in Table C-5.

<sup>&</sup>lt;sup>66</sup> Test Loads for Compact and Standard Dryer in Appendix D2 to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Clothes Dryers. http://www.ecfr.gov/cgi-bin/text-idx?SID=9d051184ada3b0d0b5b553f624e0ab05&node=10:3.0.1.4.18.2.9.6.14&rgn=div9

<sup>&</sup>lt;sup>67</sup> 2011-04 Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment. Residential Clothes Dryers and Room Air Conditioners, Chapter 7. Clothes Dryer Frequency from Table 7.3.3 for Electric Standard.

http://www.regulations.gov/contentStreamer?objectId=0900006480c8ee11&disposition=attachment&contentType=pdf

<sup>&</sup>lt;sup>68</sup> Federal Standard for Clothes Dryers, Effective January 1, 2015. http://www1.eere.energy.gov/buildings/appliance\_standards/product.aspx/productid/36

<sup>&</sup>lt;sup>69</sup> ENERGY STAR<sup>®</sup> Specification for Clothes Dryers Version 1.0, Effective January 1, 2015. http://www.energystar.gov/products/specs/sites/products/files/ENERGY%20STAR%20Final%20Draft%20Version% 201.0%20Clothes%20Dryers%20Specification\_0.pdf

<sup>&</sup>lt;sup>70</sup> 6) Central Maine Power Company. "Residential End-Use Metering Project". 1988. Using 8760 data for electric clothes dryers, calculating the CF according to the PJM peak definition.

| Product Type                                                              | Incremental        |
|---------------------------------------------------------------------------|--------------------|
|                                                                           | Cost               |
| Vented Electric, Standard: (4.4 ft <sup>3</sup> or greater capacity)      | \$40 <sup>71</sup> |
| Vented Electric, Compact (120V): (less than 4.4 ft <sup>3</sup> capacity) | \$40               |
| Vented Electric, Compact: (240V) < 4.4 ft <sup>3</sup>                    | \$40               |
| Ventless Electric, Compact: (240V) < 4.4 ft <sup>3</sup>                  | \$40               |

Table C-5: ENERGY STAR® Clothes Dryer Incremental Costs

# C.1.2.7. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure was not implemented in Energy Smart programs. Thus, savings are calculated using ENERGY STAR default values. If this measure is added to Energy Smart programs, the evaluation should include a review of actual efficiency levels and costs of units purchased by New Orleans residents.

Deemed parameters should be updated whenever DOE standards or other applicable codes warrant it.

<sup>&</sup>lt;sup>71</sup> ENERGY STAR Appliance Calculator:

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwihkoHI8f 3OAhVW5mMKHe72Du4QFggeMAA&url=https%3A%2F%2Fwww.energystar.gov%2Fsites%2Fdefault%2Ffiles%2Fas set%2Fdocument%2Fappliance\_calculator.xlsx&usg=AFQjCNFAy5mu5GR3BjLp4MR1LqrOHegCA&sig2=8l5MGUh1\_bJy3ISl9wAWIA

#### C.1.3. ENERGY STAR® Dishwashers

#### C.1.3.1. Measure Description

This measure involves the installation of an ENERGY STAR® dishwasher in a new construction or replacement-on-burnout situation. This measure applies to all residential applications.

#### C.1.3.2. Baseline and Efficiency Standards

The baseline for this measure is the current federal standard as displayed in the table below.

|                                                    | ENERGY STAR® Criteria                                              |                                                   |               |  |
|----------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------|---------------|--|
|                                                    | Capacity                                                           | Annual Energy<br>Consumption (AEC) kWh/Year       | Gallons/Cycle |  |
| Standard Model Size<br>(Effective Until 1/26/2016) | > 8 place settings<br>+ 6 serving pieces                           | < 295                                             | < 4.25        |  |
| Standard Model Size                                | > 9 place cottings                                                 | AECbase + AECadderconnected                       |               |  |
| (Effective On 1/26/2016) <sup>73</sup>             | <ul><li>&gt; 8 place settings</li><li>+ 6 serving pieces</li></ul> | AECbase: 270<br>AECadderconnected: 0.05 × AECbase | < 3.5         |  |
| Compact Model Size<br>(Effective On 1/26/2016)     | < 8 place settings<br>+ 6 serving pieces                           | < 203                                             | < 3.1         |  |

Table C-6: ENERGY STAR® Criteria for Dishwashers<sup>72</sup>

#### C.1.3.3. Estimated Useful Life (EUL)

The average lifetime of this measure is 15 years, according to the US DOE.<sup>74</sup>

#### C.1.3.4. Deemed Savings Values

Deemed savings are per installed unit based on the water heating fuel type.

<sup>&</sup>lt;sup>72</sup> ENERGY STAR<sup>®</sup> criteria for dishwashers can be found on the ENERGY STAR<sup>®</sup> website at: <u>www.energystar.gov/index.cfm?c=dishwash.pr\_crit\_dishwashers</u>.

<sup>&</sup>lt;sup>73</sup> ENERGY STAR<sup>®</sup> efficiency requirements as of January 26, 2016 are defined on their website at <u>www.energystar.gov/sites/default/files/ENERGY%20STAR%20Residential%20Dishwasher%20Version%206.0%20Fi</u><u>nal%20Program%20Requirements\_0.pdf</u>.

<sup>&</sup>lt;sup>74</sup> U.S. DOE, Technical Support Document: "Energy Efficiency Program for Consumer Products and Commercial Industrial Equipment: Residential Dishwashers, Section 8.2.3 Product Lifetimes." May 2012. http://www.regulations.gov/#!documentDetail;D=EERE-2011-BT-STD-0060-0007.

Download TSD at: <a href="http://www.regulations.gov/#!documentDetail;D=EERE-2011-BT-STD-0060-0007">http://www.regulations.gov/#!documentDetail;D=EERE-2011-BT-STD-0060-0007</a>.

| Table C-7: ENERGY STAR® Dishwashers – Deemed Savings Va | alues |
|---------------------------------------------------------|-------|
|---------------------------------------------------------|-------|

|                     | Water Heater | kW      | kWh     | Therms  |
|---------------------|--------------|---------|---------|---------|
|                     | Fuel Type    | Savings | Savings | Savings |
| Standard Model Size | Gas          | 0.0005  | 5       | 0.3     |
| Standard Model Size | Electric     | 0.0011  | 12      | 0.0     |

#### C.1.3.5. Calculation of Deemed Savings

#### C.1.3.5.1. Energy Savings

Energy savings for this measure were derived using the ENERGY STAR® Dishwasher Savings Calculator.<sup>75</sup> The baseline and ENERGY STAR® efficiency levels are set to those matching Table C-6 and Table C-7.

$$kWh_{Savings} = (E_{conv,machi} + E_{conv,WH}) - (E_{ES,machine} + E_{ES,WH})$$

Where:

 $E_{conv.machi}$  = Conventional machine energy (kWh)

 $E_{conv.WH}$  = Conventional water heating energy (kWh)

*E<sub>ES.machine</sub>* = ENERGY STAR® machine energy (kWh)

 $E_{ES,WH}$  = ENERGY STAR® water heating energy (kWh)

Algorithms to calculate the above parameters are defined as:

$$E_{conv,machine} = MCF \times RUEC_{conv}$$
$$E_{conv,WH} = WHCF \times RUEC_{conv}$$
$$E_{ES,machine} = MCF \times RUEC_{ES}$$
$$E_{ES,WH} = WHCF \times RUEC_{ES}$$

#### C.1.3.5.2. Demand Savings

Demand savings can be derived using the following:

$$kW_{Savings} = \frac{kWh_{Savings}}{AOH} \times CF$$

Where:

*MCF* = Machine electricity consumption factor = 44%

<sup>&</sup>lt;sup>75</sup> The ENERGY STAR<sup>®</sup> Dishwasher Savings Calculator, updated January 20, 2012, can be found on the ENERGY STAR<sup>®</sup> website.

*WHCF* = Water heating electricity consumption factor = 56%

 $RUEC_{conv}$  = Rated unit electricity consumption = 307 (kWh/year)

 $RUEC_{ES}$  = Rated unit electricity consumption = 295 (kWh/year)

CPY = Cycles per year = 215

d = Average wash cycle duration = 2.1 hours<sup>76</sup>

AOH = Annual operating hours = CPY × d = 451.5 hours

CF = Coincidence factor = 0.036<sup>77</sup>

 $\eta_{gas WH}$  = Gas water heater efficiency = 75%

#### C.1.3.6. Incremental cost

The incremental cost of ENERGY STAR© Dishwashers is \$1078.

#### C.1.3.7. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure was not implemented in Energy Smart programs. Thus, savings are calculated using ENERGY STAR default values. If this measure is added to Energy Smart programs, the evaluation should include a review of actual efficiency levels and costs of units purchased by New Orleans residents.

Deemed parameters should be updated whenever DOE standards or other applicable codes warrant it.

<sup>&</sup>lt;sup>76</sup> Average of Consumer Reports Cycle Times for Dishwashers.

http://www.consumerreports.org/cro/dishwashers.htm. Information available for subscribers only.

<sup>&</sup>lt;sup>77</sup> Hendron, R. & Engebrecht, C. 2010, , National Renewable Energy Laboratory (NREL). "Building America Research Benchmark Definition: Updated December" US U.S. DOE. January 2010. p. 14 (peak hour of 4 PM was applied). http://www.nrel.gov/docs/fy10osti/47246.pdf

<sup>&</sup>lt;sup>78</sup> ENERGY STAR Appliance Calculator:

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwihkoHI8f 3OAhVW5mMKHe72Du4QFggeMAA&url=https%3A%2F%2Fwww.energystar.gov%2Fsites%2Fdefault%2Ffiles%2Fas set%2Fdocument%2Fappliance\_calculator.xlsx&usg=AFQjCNFAy5mu5GR3BjLp4MR1LgrOHegCA&sig2=8l5MGUh1\_bJy3lSl9wAWIA

#### C.1.4. ENERGY STAR® Water Coolers

#### C.1.4.1. Measure Description

This measure entails the replacement of an inefficient water cooler unit with an ENERGY STAR-rated, energy-efficient unit.

The categories of coolers considered are: Cook & Cold / Cold Only<sup>79</sup> units; and Hot and Cold units. Within these categories are three configurations: Top-loading; Bottom-loading; or Point-of-Use (POU). Top-loading and Bottom-loading are units in which a 3-gallon or a 5-gallon bottle can easily be installed. POU water coolers are bottle-less units that are installed directly to a water line. This chapter provides deemed savings for top and bottom-loading units; POU models are not eligible at this time.

#### C.1.4.2. Baseline and Efficiency Standards

The previous energy consumption baseline and the current energy-efficient energy consumption baseline for the two types of water coolers is shown in Table C-8.

| Criteria    | Water Cooler<br>Category | kWh Per Day <sup>80</sup> |  |
|-------------|--------------------------|---------------------------|--|
|             | Cook & Cold              | ≤ 0.29 kWh/day            |  |
| Standard    | Cold Only                |                           |  |
|             | Hot and Cold             | ≤ 2.19 kWh/day            |  |
|             | Cook & Cold              |                           |  |
| ENERGY STAR | Cold Only                | ≤ 0.16 kWh/day            |  |
|             | Hot and Cold             | ≤ 0.87 kWh/day            |  |

Table C-8: Energy Consumption Baseline and ENERGY STAR Efficiency Criteria

#### C.1.4.3. Estimated Useful Life (EUL)

According to ENERGY STAR, the average lifetime for an energy-efficient water cooler unit is 10 years.<sup>81</sup>

# C.1.4.4. Deemed Energy Savings and Demand Reductions

Calculated deemed energy savings are shown in Table C-9.

<sup>&</sup>lt;sup>79</sup> Cook & Cold includes room temperature and refrigerated water, while Cold Only has one spout and only provides refrigerated water.

<sup>&</sup>lt;sup>80</sup> The energy consumption baselines are deemed and are based on ENERGY STAR<sup>®</sup> Test Method for Water Coolers (Rev. May-2013).

<sup>&</sup>lt;sup>81</sup> ENERGY STAR Water Cooler Savings Calculator. The current energy consumption baselines are deemed and apply to units that are tested using the "ON Mode with No Water Draw" Test)

Table C-9: Deemed kWh Savings and kW Reductions for Water Cooler Replacement

| Water Cooler<br>Category | Annual kWh Savings | Peak kW Savings |
|--------------------------|--------------------|-----------------|
| Cook & Cold              | 47.45 kWh          | 0.0053 kW       |
| Cold Only                | 47.45 KVV1         | 0.0053 KVV      |
| Hot and Cold             | 481.8 kWh          | 0.054 kW        |

#### C.1.4.5. Calculation of Deemed Savings – Water Coolers

#### C.1.4.5.1. Energy Savings

Energy savings are based on the reduction of energy consumption resulting from replacing an inefficient water cooler unit with an energy-efficient unit and are calculated as follows:

 $kWh_{Savings} = (kWh_{base} - kWh_{efficient}) \times 365$ 

Where:

 $kWh_{base}$  = Baseline daily kWh consumption of energy-inefficient unit (Table C-8)

 $kWh_{efficient}$  = Daily kWh consumption of energy-efficient ENERGY STAR® model (Table C-8)

365 = The number of days in a year water cooler is operating

For example, if an inefficient Cold Only water cooler were to be replaced with a Cold Only ENERGY STAR® labeled efficient unit having an energy consumption rate of 0.16 kWh/day, then the annual energy savings would be:

 $kWh_{Savings} = (0.29 - 0.16) \times 365 = 47.45 \, kWh$ 

#### C.1.4.5.2. Demand Savings

 $kW_{savings} = kWh_{savings} \times Energy$  to Demand Factor (ETDF)

Where:

 $ETDF = 0.0001119 \frac{kW}{kWh/year}$ <sup>82</sup>

Continuing the example calculation shown in the previous subsection, the peak demand reduction is:

$$kW_{savings} = 47.45 \ \frac{kWh}{year} \times 0.0001119 \ \frac{kW}{\frac{kWh}{year}} = 0.0053 \ kW$$

<sup>&</sup>lt;sup>82</sup> Quantec in collaboration with Summit Blue Consulting, Nexant, Inc., A-TEC Energy Corporation, and Britt/Makela Group, prepared for the Iowa utility Association, February 2008. http://plainsjustice.org/files/EEP-08-1/Quantec/QuantecReportVol1.pdf

# C.1.4.6. Incremental Cost

The TPE conducted a market study of currently available ENERGY STAR and non-ENERGY STAR water coolers to determine incremental pricing. Prices were collected from New Orleans retail websites. The range of models in the "Cook & Cold" category was very limited (particularly for ENERGY STAR-qualifying models).

| Туре        | Efficiency Level | Average Cost       |
|-------------|------------------|--------------------|
| Hot & Cold  | Standard         | \$182.36<br>(n=22) |
|             | Energy Star      | \$188.81<br>(n=28) |
| Cook & Cold | Standard         | \$123.18<br>(n=6)  |
|             | Energy Star      | \$127.52<br>(n=2)  |

| Table | C-10:   | Water | Cooler | Cost | Summary  | / |
|-------|---------|-------|--------|------|----------|---|
|       | • • • • |       |        |      | <u> </u> |   |

The incremental cost of an ENERGY STAR Cook & Cold or a Cold Only unit is \$4.34.

The incremental cost of an ENERGY STAR Hot and Cold unit is \$6.45.

Due to low measure incremental costs, the TPE recommends incentivizing the measure through mid-stream channels.

# C.1.4.1. Future Research

At the time of authorship of this chapter, this measure was not implemented in the Energy Smart program. Future EM&V should be conducted to update this measure to align with any new federal standards, as well as to establish a net-to-gross ratio. If program administrators obtain additional cost data for Cook & Cold systems, this should be provided so that the incremental cost for this measure category can be updated with a more robust sample size.

#### C.1.5. ENEGRY STAR® Air Purifiers

#### C.1.5.1. Measure Description

This measure involves the installation of an ENERGY STAR® certified room air purifier. An air purifier, also known as an air cleaner, is defined as a portable electric appliance that removes dust and fine particles from indoor air.

#### C.1.5.2. Baseline and Efficiency Standards

The baseline equipment is assumed to be a conventional unit<sup>83</sup>.

The efficient equipment is defined as an air purifier meeting the efficiency specifications of ENERGY STAR®<sup>84</sup> as provided below:

- Must produce a minimum 50 Clean Air Delivery Rate (CADR) for Dust<sup>85</sup>.
- Minimum Performance Requirement: = 2.0 CADR/Watt (Dust)
- Standby Power Requirement: = Measured standby power shall not exceed 2 Watts.
- UL Safety Requirement: Models that emit ozone as a byproduct of air cleaning must meet UL Standard 867 (ozone production must not exceed 50ppb).

#### C.1.5.3. Estimated Useful Life (EUL)

The average lifetime of this measure is 9 years, according to ENERGY STAR®.

#### C.1.5.4. Deemed Savings

Table C-11 summarizes the deemed kWh and kW based on clean air delivery rate.

| Clean Air<br>Delivery<br>Rate (CADR) | CADR used<br>in calculation<br>(midpoint) | Baseline Unit Energy<br>Consumption<br>(kWh/year) | ENERGY STAR Unit<br>Energy Consumption<br>(kWh/year) | kWh<br>Savings | kW<br>Savings |
|--------------------------------------|-------------------------------------------|---------------------------------------------------|------------------------------------------------------|----------------|---------------|
| CADR 50-100                          | 75                                        | 441                                               | 148                                                  | 293            | 0.065         |
| CADR 101-150                         | 125                                       | 733                                               | 245                                                  | 488            | 0.108         |
| CADR 151-200                         | 175                                       | 1025                                              | 342                                                  | 683            | 0.152         |
| CADR 201-250                         | 225                                       | 1317                                              | 440                                                  | 877            | 0.195         |
| CADR Over 250                        | 300                                       | 1755                                              | 586                                                  | 1169           | 0.260         |

#### Table C-11. ENERGY STAR® Air Purifiers Deemed Savings

#### C.1.5.5. Incremental Cost

The incremental cost for this measure is \$0<sup>86</sup>.

<sup>&</sup>lt;sup>83</sup> As defined as the average of non-ENERGY STAR products found in EPA research, 2011, ENERGY STAR Qualified Room Air Cleaner Calculator.

<sup>&</sup>lt;sup>84</sup> ENERGY STAR<sup>®</sup> Air Cleaner Specification v1.2, July 10, 2011,

https://www.energystar.gov/products/appliances/air\_purifiers\_cleaners/key\_product\_criteria

<sup>&</sup>lt;sup>85</sup> Measured according to the latest ANSI/AHAM AC-1 (AC-1) Standard

<sup>&</sup>lt;sup>86</sup> ENERGY STAR® Appliances Calculator.

#### C.1.6. ENERGY STAR® Ceiling Fans

#### C.1.6.1. Measure Description

ENERGY STAR® ceiling fans require a more efficient CFM/Watt rating at the low, medium, and high settings than standard ceiling fans as well ENERGY STAR® qualified lighting for those with light kits included. Both of these features save energy compared to standard ceiling fans.

# C.1.6.2. Estimated Useful Life (EUL)

The measure life for ceiling fans is 20 years.<sup>87</sup>

#### C.1.6.3. Deemed Savings

Deemed savings are calculated for fan-only ceiling fans.

Table C-12: ENERGY STAR® Ceiling Fan – Deemed Savings

| Fan Type                          | Energy Savings (kWh) | Demand Reduction (kW) |
|-----------------------------------|----------------------|-----------------------|
| ENERGY STAR <sup>®</sup> Lighting | 68.9                 | .0087                 |
| Fan Only                          | 16.0                 | 0.00132               |

#### C.1.6.4. Calculation of Deemed Savings

#### C.1.6.4.1. Energy Savings - Fan

The energy savings are obtained through the following formula:

$$\Delta kWh = \left[ \left( \%_{low} \times (Low_{base} - Low_{ee}) \right) + \left( \%_{med} \times (Med_{base} - Med_{ee}) \right) + \left( \%_{high} \times (High_{base} - High_{ee}) \right) \right] \\ \times \frac{1 \, kW}{1000 \, W} \times HOU_{fan} \times 365 \frac{days}{yr}$$

Where:

 $\%_{low}$  = percentage of low setting use = 40%<sup>88</sup>

 $\%_{med}$  = percentage of medium setting use = 40%<sup>88</sup>

 $%_{high}$  = percentage of high setting use = 20%<sup>88</sup>

 $Low_{base}$  = Wattage of low setting, baseline (W) = 15W<sup>88</sup>

 $Med_{base}$  = Wattage of medium setting, baseline (W) = 34W<sup>88</sup>

 $High_{base}$  = Wattage of high setting, baseline (W) = 67W<sup>88</sup>

<sup>&</sup>lt;sup>87</sup> Residential and C&I Lighting and HVAC Report Prepared for SPWG, 2007. Pg. C-2.

<sup>&</sup>lt;sup>88</sup> ENERGY STAR<sup>®</sup> Lighting Fixture and Ceiling Fan Calculator. Updated September, 2013

Lowee = Wattage of low setting, ENERGY STAR® (W) = 4.8W<sup>89,90</sup>

 $Med_{ee}$  = Wattage of medium setting, ENERGY STAR® (W) = 18.2W<sup>89,90</sup>

 $High_{ee}$  = Wattage of high setting, ENERGY STAR® (W) = 45.9W<sup>89,90</sup>

 $HOU_{fan}$  = fan daily hours of use (hours/day) = 3 hours/day<sup>88</sup>

#### C.1.6.4.2. Energy Savings – Lighting

The energy savings from lighting apply the deemed savings assumptions specified in the Residential Lighting chapter of this TRM. The assumed configuration is (3) 14W CFLs, applying a 43W baseline. Other inputs may be applied by program implementers if model-specific information is available.

#### C.1.6.4.3. Demand Savings – Lighting

Demand savings are calculated in accordance with protocols specified in the Residential Lighting chapter.

# C.1.6.4.4. Demand Savings - Fans

Demand savings result from the lower connected load of the ENERGY STAR® fan and ENERGY STAR® lighting. Peak demand savings are estimated using a Coincidence Factor (CF).

$$\Delta kW = \left[ \left( \%_{low} \times (Low_{base} - Low_{ee}) \right) + \left( \%_{med} \times (Med_{base} - Med_{ee}) \right) + \left( \%_{high} \times (High_{base} - High_{ee}) \right) \right] \\ \times \frac{1 \, kW}{1000 \, W} \times CF$$

Where:

CF = Demand Factor= 0.091<sup>91</sup>

#### C.1.6.5. Incremental Cost

The incremental cost of a three-lamp ENERGY STAR Ceiling Fan is \$46<sup>92</sup>.

<sup>&</sup>lt;sup>89</sup> ENERGY STAR<sup>®</sup> Ceiling Requirements Version 3.0

<sup>&</sup>lt;sup>90</sup> ENERGY STAR<sup>®</sup> Certified Ceiling Fan List, Accessed April 3, 2014.

<sup>&</sup>lt;sup>91</sup> EmPOWER Maryland 2012 Final Evaluation Report: Residential Lighting Program, Prepared by Navigant Consulting and the Cadmus Group, Inc., March 2013, Table 50.

<sup>&</sup>lt;sup>92</sup> ENERGY STAR<sup>®</sup> Lighting Fixture and Ceiling Fan Calculator. Updated September, 2013

# C.1.6.6. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure was not implemented in Energy Smart programs. As a result, savings are calculated using ENERGY STAR default values. If this measure is added to Energy Smart programs, the evaluation should include a review of the models actually incented through the program. The key parameters to be examined include:

- Content of the lighting included with the fan;
- Rated wattage of the fans at low, medium, and high speeds.

Deemed parameters should be updated whenever DOE standards or other applicable codes warrant it.

## C.1.7. Advanced Power Strips

## C.1.7.1. Measure Description

This measure involves the installation of a multi-plug Advanced Power Strip (APS, also known as "Smart Strips") that has the ability to automatically disconnect specific loads depending on the power draw of a specified or "master" load.

There are two categories of smart strips:

- 1) **Tier 1:** Tier 1 advanced power strips have a master controls socket arrangement and will shut off items plugged into the controlled power-saver sockets when the sense that the appliance plugged into the master socket has been turned off. The power-saving functions of the control sockets is not used when the master appliance is turned on.
- 2) Tier 2: Tier 2 advanced power strips manage both active and standby consumption. Tier 2 smart strips manage standby power consumption by turning off devices from a control event; this could be a TV or other item powering off, which then powers off the controlled outlets to save energy. Active power consumption is managed by monitoring a user's engagement or presence in a room either by infrared remote signals or motion sensing. After a period of inactivity, the Tier 2 unit will shut off controlled outlets.

# C.1.7.2. Expected Useful Life

For Tier 1 advanced power strips, the EUL is 10 years<sup>93</sup>.

For Tier 2 advanced power strips, there has not been a study performed to validate EUL. Until better data is available, they should default to using the current EUL of Tier 1 devices.

# C.1.7.3. Baseline & Efficiency Standard

The baseline case is the absence of an APS, where peripherals are plugged in to a traditional surge protector or wall outlet.

The efficiency standard case is the presence of an APS, with all peripherals plugged into the APS.

<sup>&</sup>lt;sup>93</sup> New York State Energy Research and Development Authority (NYSERDA) 2011, Advanced Power Strip Research Report, p. 30. August.

## C.1.7.1. Deemed Savings Values

| Tier | Size   | Usage         | kW<br>Savings | kWh<br>Savings |
|------|--------|---------------|---------------|----------------|
|      |        | Unspecified   | .0056         | 48.9           |
|      | 5-plug | Entertainment | .0077         | 62.1           |
| 1    |        | Computer      | .0037         | 35.8           |
|      |        | Unspecified   | .0067         | 57.7           |
|      | 7-plug | Entertainment | .0092         | 74.5           |
|      |        | Computer      | .0045         | 42.9           |
|      |        | Unspecified   | .0194         | 204.2          |
| 2    | 5-plug | Entertainment | .0316         | 307.4          |
|      |        | Computer      | .0172         | 100.9          |

Table C-13: Deemed Savings for Residential APS

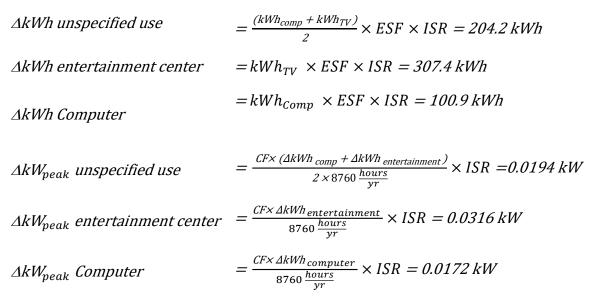
# C.1.7.2. Estimated Useful Life (EUL)

The measure life is 10 years according to the NYSERDA Advanced Power Strip Research Report from August 2011.<sup>94</sup>

# C.1.7.3. Calculation of Deemed Savings

Energy and demand savings for a 5-plug APS in use in a home office or for a home entertainment system are calculated using the following algorithm, where kWh saved are calculated and summed for all peripheral devices:

#### Tier 1:


 $\frac{(kW_{comp idle} \times HOU_{comp idle}) + (kW_{TVidle} \times HOU_{TV idle})}{2} \times 365 \frac{days}{yr} \times ISR = 48.9 \text{ kWh (5-plug); 57.7 kWh (7-plug)}$   $\Delta kWh/yr. entertainment center = kW_{TV idle} \times HOU_{TV idle} \times 365 \frac{days}{yr} \times ISR = 62.1 \text{ kWh (5-plug); 74.5}$  kWh (7-plug)

 $\Delta kWh/yr. computer = kW_{Comp idle} \times HOU_{Comp idle} \times 365 \frac{days}{yr} \times ISR = 35.8 \, kWh \, (5-plug); \, 42.9 \, (7-plug)$ 

 $\Delta kW_{peak} \text{ unspecified use} = \frac{CF \times (kW_{comp \ idle} + kW_{TV \ idle})}{2} \times ISR = 0.0056 \ kW \ (5-plug); \ 0.0067 \ kW \ (7-plug)$  $\Delta kW_{peak} \text{ entertainment center} = CF \times kW_{TV \ idle} \times ISR = 0.0077 \ kW \ (5-plug); \ 0.0092 \ kW \ (7-plug)$  $\Delta kW_{peak} \text{ Computer} = CF \times kW_{Comp \ idle} \times ISR = 0.0037 \ kW \ (5-plug); \ 0.0045 \ kW \ (7-plug)$ 

<sup>&</sup>lt;sup>94</sup> New York State Energy Research and Development Authority (NYSERDA) 2011, Advanced Power Strip Research Report, p. 30. August.

#### Tier 2 Smart Strip:



| Table | C-14: APS | Assumptions |
|-------|-----------|-------------|
|-------|-----------|-------------|

| Parameter                                                                                          | Unit      | Value                                                                     | Source     |
|----------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------|------------|
| kWcomp idle, Idle kW of computer system                                                            | kW        | .0049 (5-plug)<br>.00588 (7-plug)                                         | 95, 96, 97 |
| HOUcomp idle, Daily hours of computer idle time                                                    | Hours/day | 20                                                                        | 95         |
| kWTV idle, Idle kW of TV system                                                                    | kW        | . 0085 (5-plug)<br>.00102 (7-plug)                                        | 95, 97     |
| HOUTV idle, Daily hours of TV idle time                                                            | Hours/day | 20                                                                        | 95         |
| kWhTV, Annual kWh of TV system                                                                     | kWh       | 602.8                                                                     | 97         |
| kWhcomp, Annual kWh of computer system                                                             | kWh       | 197.9                                                                     | 97         |
| ISR, In-Service-Rate                                                                               | %         | 1.0                                                                       |            |
| CF, Coincidence Factor                                                                             | %         | Entertainment Center = .90<br>Computer System= .763<br>Unspecified = .832 | 98         |
| ESF, Energy Savings Factor. Percent of baseline energy consumption saved by installing the measure | %         | Entertainment Center = .51                                                | 99         |

<sup>&</sup>lt;sup>95</sup> "Electricity Savings Opportunities for Home Electronics and Other Plug-In Devices in Minnesota Homes", Energy Center of Wisconsin, May 2010.

<sup>&</sup>lt;sup>96</sup> "Smart Plug Strips", ECOS, July 2009.

<sup>&</sup>lt;sup>97</sup> "Advanced Power Strip Research Report", NYSERDA, August 2011"

<sup>&</sup>lt;sup>98</sup>C F Values of Standby Losses for Entertainment Center and Home Office in Efficiency Vermont TRM, 2013, pg. 16. Developed through negotiations between Efficiency Vermont and the Vermont Department of Public Service

<sup>&</sup>lt;sup>99</sup> "Tier 2 Advanced Power Strip Evaluation for Energy Saving Incentive," California Plug Load Research Center, 2014. <u>http://www.efi.org/docs/studies/calplug\_tier2.pdf</u>

# C.1.7.4. Incremental Cost

The incremental cost for APS systems is as follows:

Tier (1) – 5-plug: \$16<sup>100</sup> Tier (1) – 7-plug: \$26<sup>101</sup> Tier (2): \$65<sup>102</sup>

#### C.1.7.1. Net-to-Gross Ratio

The NTGR for this measure is 80%<sup>103</sup> for direct install applications.

#### C.1.7.2. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure had exceedingly low participation in Energy Smart programs (a total of 336 kWh in PY6). As a result, savings are calculated using values cited from evaluation reports completed on behalf of the New York State Energy Research & Development Authority (NYSERDA) and Wisconsin Focus on Energy. If participation reached 1% of residential Energy Smart program savings, the evaluation should include fieldwork to support in-service rates and to document an inventory of the equipment actually installed into the APS by New Orleans residents.

<sup>&</sup>lt;sup>100</sup> Price survey performed in NYSERDA Measure Characterization for Advanced Power Strips, p4

<sup>&</sup>lt;sup>101</sup> Ibid

<sup>&</sup>lt;sup>102</sup> California Technology Forum, June 2015:

https://static1.squarespace.com/static/53c96e16e4b003bdba4f4fee/t/556e25a3e4b06957271187a1/1433281955 286/2015-01-15+Tier+2+Advance+Power+Strip+Cal+TF+Workpaper+Presentation\_January.pdf

<sup>&</sup>lt;sup>103</sup> Based on primary data collection from 37 PY6-9 program participants.

# C.1.8. ENERGY STAR® Dehumidifiers

# C.1.8.1. Measure Description

This measure is portable and whole-house humidifiers which meet the minimum qualifying efficiency standard set forth by the current ENERGY STAR® Version 5.0 (effective 10/31/2019<sup>104</sup>) and ENERGY STAR® Most Efficient 2019 Criteria (effective 01/01/2019) that are purchased and installed in a residential setting in place of a unit that meets the minimum federal standard efficiency.

# C.1.8.2. Baseline and Efficiency Standards

# C.1.8.2.1. Definition of Efficient Equipment

To qualify for this measure, the new dehumidifier must meet the ENERGY STAR ® standards as defined in Table C-15.

| Equipment<br>Specification | Capacity<br>(pints/day)                | Federal<br>Standard<br>Criteria (L/kWh) |
|----------------------------|----------------------------------------|-----------------------------------------|
| Portable<br>Dehumidifier   | Up to 25                               | ≥ 1.57                                  |
|                            | ≤ 25.01 to ≤ 50                        | ≥ 1.80                                  |
|                            | ≥ 50.01                                | ≥ 3.30                                  |
| Equipment<br>Specification | Product Case<br>Volume<br>(cubic feet) | Federal<br>Standard<br>Criteria (L/kWh) |
| Whole-home<br>Dehumidifier | Up to 8                                | ≥ 2.09                                  |
|                            | ≥ 8.01                                 | ≥ 3.30                                  |

| Table C-15: ENERGY STAR® Dehumidifier Standard |
|------------------------------------------------|
|------------------------------------------------|

Qualifying units shall be equipped with an adjustable humidistat control or shall require a remote humidistat control to operate.

# C.1.8.2.2. Definition of Baseline Equipment

The baseline condition for this measure is a new dehumidifier that meets the federal efficiency standards. The Federal Standard for Dehumidifiers as of June 13, 2019 are defined in Table C-16 below.

| Equipment<br>Specification | Capacity<br>(pints/day)                | Federal<br>Standard<br>Criteria<br>(L/kWh) |
|----------------------------|----------------------------------------|--------------------------------------------|
| Portable<br>Dehumidifier   | Up to 25                               | ≥ 1.30                                     |
|                            | ≤ 25.01 to ≤ 50                        | ≥ 1.60                                     |
|                            | ≥ 50.01                                | ≥ 2.80                                     |
| Equipment<br>Specification | Product Case<br>Volume<br>(cubic feet) | Federal<br>Standard<br>Criteria<br>(L/kWh) |
| Whole-home                 | Up to 8                                | ≥ 1.77                                     |
| Dehumidifier               | ≥ 8.01                                 | ≥ 2.41                                     |

 Table C-16: Federal Minimum Standards for Dehumidifiers<sup>105</sup>

# C.1.8.3. Estimated Useful Life (EUL)

The assumed lifetime of a portable dehumidifier is 11 years while a whole house dehumidifier is 19 years.<sup>106</sup>

# C.1.8.4. Energy and Demand Savings

Energy savings and demand reductions for residential dehumidifiers are based on the energy consumption. The following subsections outline deemed calculations for energy savings and demand reductions, respectively.

#### C.1.8.4.1. Annual Energy Savings

$$\Delta kWh = \left[\frac{(Avg\ Cap\ *\ 0.473)}{24} \times Hours\right] \times \left[\left(\frac{1}{L/kWh_{Base}}\right) - \left(\frac{1}{L/kWh_{Eff}}\right)\right]$$

Where:

Avg Cap = Average capacity of the unit (pints/day)

= Actual, if unknown assume capacity in each capacity range as provided in table below, or if capacity range unknown assume average.

<sup>105</sup> 

https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Dehumidifiers%20Version%205.0%20Program%20Requirements.pdf

<sup>&</sup>lt;sup>106</sup>https://www.federalregister.gov/documents/2016/06/13/2016-12881/energy-conservation-program-energy-conservation-standards-for-dehumidifiers#h-71

| 24    | = Constant to convert Liters/day to Liters/hour                    |
|-------|--------------------------------------------------------------------|
| Hours | = Run hours per year                                               |
|       | = 1632 <sup>107</sup>                                              |
| L/kWh | = Liters of water per kWh consumed, as provided in tables<br>above |

Estimated annual kWh use for each capacity class are presented below in Table C-17.

|                   | Portable Dehumidifiers     |                     |                |                                                    |                     | Annual Use     | 9                                   |
|-------------------|----------------------------|---------------------|----------------|----------------------------------------------------|---------------------|----------------|-------------------------------------|
| Capacity<br>Range | Capacity<br>Used           | Federal<br>Standard | ENERGY<br>STAR | ENERGY<br>STAR<br>Most<br>Efficient <sup>108</sup> | Federal<br>Standard | ENERGY<br>STAR | ENERGY<br>STAR<br>Most<br>Efficient |
| (pints/day)       | (pints/day)                | (≥L/kWh)            | (≥L/kWh)       | (≥L/kWh)                                           | (kWh)               | (kWh)          | (kWh)                               |
| Up to 25          | 25                         | 1.3                 | 1.57           | 2.2                                                | 619                 | 512            | 366                                 |
| ≥ 25.01 to ≤ 50   | 41.1                       | 1.6                 | 1.8            | 2.2                                                | 827                 | 735            | 691                                 |
| ≥ 50.01           | 76.6                       | 2.8                 | 3.3            | N/A                                                | 880                 | 747            | N/A                                 |
|                   | Whole House                |                     |                |                                                    |                     |                | ENERGY<br>STAR<br>Most<br>Efficient |
| (cubic feet)      | (pints/day) <sup>109</sup> | (≥L/kWh)            | (≥L/kWh)       | (≥L/kWh)                                           | (kWh)               | (kWh)          | (kWh)                               |
| Up to 8           | Up to 59.2                 | 1.77                | 2.09           | 2.3                                                | 1,076               | 911            | 828                                 |
| > 8               | > 59.2                     | 2.41                | 3.3            | N/A                                                | 790                 | 577            | N/A                                 |

Table C-17: Annual Energy Savings by Capacity Range

Deemed annual kWh savings for each capacity class are presented below in Table C-18.

<sup>&</sup>lt;sup>107</sup> ENERGY STAR Dehumidifier Calculator; 24-hour operation over 68 days of the year.

<sup>&</sup>lt;sup>108</sup> ENERGY STAR 2019 Most Efficient Criteria exclude the following products from eligibility; dehumidifiers with capacity of 75 pints/day or higher, portable dehumidifiers with capacity of 50.01 pints/day or higher, and whole home dehumidifiers with case volume greater than 8.0 cubic feet.

<sup>&</sup>lt;sup>109</sup> The capacity and relative weighting of the whole-home dehumidifiers was sourced from the average capacity of portable dehumidifiers as there were no whole-home dehumidifiers on the ENERGY STAR Qualified Products List, as accessed in May 2019. See "Dehumidifier Calcs\_05062019.xls.

| System<br>Type          | Capacity<br>Range | Capacity<br>Used | ENERGY<br>STAR<br>Savings<br>(kWh) | ENERGY STAR<br>Most Efficient<br>Savings(kWh) |
|-------------------------|-------------------|------------------|------------------------------------|-----------------------------------------------|
|                         | Up to 25          | 25               | 106                                | 253                                           |
| Portable<br>(Pints/Day) | >25 to ≤ 50       | 41.1             | 92                                 | 225                                           |
| (This Day)              | > 50              | 76.6             | 133                                | N/A                                           |
| Whole House             | Up to 8           | 59.2             | 165                                | 248                                           |
| (Cubic Feet)            | > 8               | 59.2             | 213                                | N/A                                           |

Table C-18: Annual Energy Savings by Capacity Range

## C.1.8.4.2. Demand Savings

 $\Delta kW = (\Delta kWh/Hours) * CF$ 

Where:

| Hours | = Annual operating hours                     |
|-------|----------------------------------------------|
|       | =1632 hours <sup>110</sup>                   |
| CF    | = Summer Peak Coincidence Factor for measure |
|       | = 0.37 <sup>111</sup>                        |

Demand results for each capacity range are presented below in Table C-19.

|              |                | Peak kW Savings |                                     |  |  |
|--------------|----------------|-----------------|-------------------------------------|--|--|
| System Type  | Capacity Range | ENERGY<br>STAR  | ENERGY<br>STAR<br>Most<br>Efficient |  |  |
| Portable     | Up to 25       | 0.024           | 0.057                               |  |  |
| (Pints/Day)  | >25 to ≤50     | 0.021           | 0.051                               |  |  |
|              | > 50           | 0.03            | N/A                                 |  |  |
| Whole House  | Up to 8        | 0.037           | 0.056                               |  |  |
| (Cubic Feet) | > 8            | 0.048           | N/A                                 |  |  |

Table C-19: Demand Reductions by Capacity Range

 $<sup>^{\</sup>rm 110}$  Based on 68 days of 24 hour operation; ENERGY STAR Dehumidifier Calculator

<sup>&</sup>lt;sup>111</sup>Assume usage is evenly distributed day vs. night, weekend vs. weekday and is used between April through the end of September (4392 possible hours). 1632 operating hours from ENERGY STAR Dehumidifier Calculator. Coincidence peak during summer peak is therefore 1632/4392 = 37.2%

## C.1.8.5. Demand Measure Cost

The incremental cost for an ENERGY STAR® unit is assumed to be \$10.29<sup>112</sup> and for an ENERGY STAR® Most Efficient unit is \$75<sup>113</sup>.

#### C.1.8.6. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure was not implemented in Energy Smart programs. Thus, savings are calculated using ENERGY STAR default values. If this measure is added to Energy Smart programs, the evaluation should include a review of actual efficiency levels and costs of units purchased by New Orleans residents. If there is notable participation from this measure, primary research may be conducted to develop a New Orleans-specific estimate of days per year of operation to override the ENERGY STAR estimate of 68 days per year.

Deemed parameters should be updated whenever DOE standards or other applicable codes warrant it.

<sup>&</sup>lt;sup>112</sup> Based on incremental costs sourced from the 2016 ENERGY STAR Appliance Calculator and weighted by capacity based on ENERGY STAR qualified products, accessed on May 2019.

<sup>&</sup>lt;sup>113</sup> DOE Energy Conservation Standards for Residential Dehumidifiers, Appliance and Equipment Standard, 10 CFR Part 430, July 23, 2012, page 73. The sourced table is an analysis on the incremental manufacturer product costs on dehumidifiers with varying incentive levels. Assuming the markup costs between the baseline units and the most efficient units are equal. The incremental cost reproduced is a straight average of all the dehumidifiers, both stand alone and whole house, with an efficiency level meeting or exceeding ENERGY STAR's Most Efficient criteria. Opted to combine the incremental cost into one value because the stand alone and whole house incremental costs were near identical.

#### C.1.9. ENERGY STAR® Pool Pumps

#### C.1.9.1. Measure Description

This measure involves the replacement of a single-speed pool pump with an ENERGY STAR® certified variable speed or multi-speed pool pump. This measure applies to all residential applications; however, pools that serve multiple tenants in a common area are not eligible for this measure.

Multi-speed pool pumps are an alternative to variable speed pumps. The multi-speed pump uses an induction motor that is basically two motors in one, with full-speed and half-speed options. Multi-speed pumps may enable significant energy savings. However, if the half-speed motor is unable to complete the required water circulation task, the larger motor will operate exclusively. Having only two speed-choices limits the ability of the pump motor to fine-tune the flow rates required for maximum energy savings.<sup>114</sup> Therefore, multi-speed pumps must have a minimum size of 1 horsepower (HP) to be eligible for this measure.

## C.1.9.2. Baseline and Efficiency Standards

The baseline condition is a 0.5-3 horsepower (HP) standard efficiency single-speed pool pump.

The high efficiency condition is a 0.5-3 HP ENERGY STAR® certified variable speed or multi-speed pool pump.

## C.1.9.3. Estimated Useful Life (EUL)

According to DEER 2014, the estimated useful life for this measure is 10 years.<sup>115</sup>

#### C.1.9.4. Deemed Savings Values

Deemed savings are per installed unit based on the pump horsepower.

<sup>&</sup>lt;sup>114</sup> Hunt, A. & Easley, S., 2012, *"Measure Guideline: Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings."* Building America Retrofit Alliance (BARA), U.S. U.S. DOE. May/. <u>http://www.nrel.gov/docs/fy12osti/54242.pdf.</u>

<sup>&</sup>lt;sup>115</sup> Database for Energy Efficient Resources (2014). <u>http://www.deeresources.com/</u>.

| Pump HP | kW Savings | kWh Savings |
|---------|------------|-------------|
| 0.5     | 0.24       | 1,713       |
| 0.75    | 0.28       | 1,860       |
| 1       | 0.36       | 2,063       |
| 1.5     | 0.47       | 2,465       |
| 2       | 0.52       | 2,718       |
| 2.5     | 0.57       | 2,838       |
| 3       | 0.72       | 3,364       |

Table C-20: Variable Speed Pool Pumps – Deemed Savings Values

Table C-21: Multi-Speed Pool Pumps – Deemed Savings Values

| Pump HP | kW Savings | kWh Savings |
|---------|------------|-------------|
| 1       | 0.30       | 1,629       |
| 1.5     | 0.40       | 1,945       |
| 2       | 0.41       | 1,994       |
| 2.5     | 0.46       | 2,086       |
| 3       | 0.54       | 2,292       |

## C.1.9.5. Calculation of Deemed Savings

## C.1.9.5.1. Energy Savings

Energy savings for this measure were derived using the ENERGY STAR® Pool Pump Savings Calculator.<sup>116</sup>

$$kWh_{Savings} = kWh_{conv} - kWh_{ES}$$

Where:

*kWh<sub>conv</sub>* = Conventional single-speed pool pump energy (kWh)

 $kWh_{ES}$  = ENERGY STAR® variable speed pool pump energy (kWh)

Algorithms to calculate the above parameters are defined as:

$$kWh_{conv} = \frac{PFR_{conv} \times 60 \times hours_{conv} \times days}{EF_{conv} \times 1000}$$
$$hours_{conv} = \frac{V_{pool} \times PT}{PFR_{conv} \times 60}$$
$$kWh_{ES} = kWh_{HS} + kWh_{LS}$$

<sup>&</sup>lt;sup>116</sup> The ENERGY STAR<sup>®</sup> Pool Pump Savings Calculator, updated February 2013, can be found on the ENERGY STAR<sup>®</sup> website at: <u>https://www.energystar.gov/products/certified-products/detail/pool-pumps</u>.

$$kWh_{HS} = \frac{PFR_{HS} \times 60 \times hours_{HS} \times days}{EF_{HS} \times 1000}$$
$$kWh_{LS} = \frac{PFR_{LS} \times 60 \times hours_{LS} \times days}{EF_{LS} \times 1000}$$
$$PFR_{LS} = \frac{V_{pool}}{t_{turnover} \times 60}$$

Where:

 $kWh_{HS}$  = ENERGY STAR® variable speed pool pump energy at high speed (kWh)

 $kWh_{LS}$  = ENERGY STAR® variable speed pool pump energy at low speed (kWh)

 $hours_{conv}$  = Conventional single-speed pump daily operating hours (Table C-22)

 $hours_{HS,VS}$  = ENERGY STAR® variable speed pump high speed daily operating hours = 2 hours

 $hours_{LS,VS}$  = ENERGY STAR® variable speed pump low speed daily operating hours = 10 hours

 $hours_{HS,MS}$  = ENERGY STAR® multi-speed pump high speed daily operating hours = 2 hours

*hours*<sub>LS,VS</sub> = ENERGY STAR® multi-speed pump low speed daily operating hours (Table C-23)

days = Operating days per year = 7 months x 30.4 days/month = 212.8 days (default)

 $PFR_{conv}$  = Conventional single-speed pump flow rate (gal/min) (Table C-22)

 $PFR_{HS,VS}$  = ENERGY STAR® variable speed pump high speed flow rate = 50 gal/min (default)

 $PFR_{LS,VS}$  = ENERGY STAR® variable speed pump low speed flow rate (gal/min) = 30.6 (default)

 $PFR_{HS,MS}$  = ENERGY STAR® multi-speed pump high speed flow rate (gal/min) (Table C-23)

 $PFR_{LS,MS}$  = ENERGY STAR® multi-speed pump low speed flow rate (gal/min) (Table C-23)

 $EF_{conv}$  = Conventional single-speed pump energy factor (gal/W·hr) (Table C-22)

 $EF_{HS,VS}$  = ENERGY STAR® variable speed pump high speed energy factor = 3.75 gal/W·hr (default)

 $EF_{LS,VS}$  = ENERGY STAR® variable speed pump low speed energy factor = 7.26 gal/W·hr (default)

 $EF_{HS,MS}$  = ENERGY STAR® multi-speed pump high speed energy factor (gal/W·hr) (Table C-23)

 $EF_{LS,MS}$  = ENERGY STAR® multi-speed pump low speed energy factor (gal/W·hr) (Table C-23)

 $V_{pool}$  = Pool volume = 22,000 gal (default)

PT = Pool turnovers per day = 1.5 (default)

 $t_{turnover,VS}$  = Variable speed pump time to complete 1 turnover = 12 hours (default)

 $t_{turnover,MS}$  = Multi-speed pump time to complete 1 turnover (Table C-23)

60 = Constant to convert between minutes and hours

1000 = Constant to convert W to kW

Table C-22: Conventional Pool Pumps Assumptions

| Pump<br>HP | hoursconv | PFR <sub>conv</sub><br>(gal/min) | EF <sub>conv</sub><br>(gal/W·h) |
|------------|-----------|----------------------------------|---------------------------------|
| 0.5        | 11.0      | 50.0                             | 2.71                            |
| 0.75       | 10.4      | 53.0                             | 2.57                            |
| 1          | 9.2       | 60.1                             | 2.40                            |
| 1.5        | 8.6       | 64.4                             | 2.09                            |
| 2          | 8.5       | 65.4                             | 1.95                            |
| 2.5        | 8.1       | 68.4                             | 1.88                            |
| 3          | 7.5       | 73.1                             | 1.65                            |

Table C-23: ENERGY STAR® Multi-Speed Pool Pumps Assumptions

| Pump<br>HP | t,turnover,MS | hours <sub>MS,LS</sub> | PFRнs,мs<br>(gal/min) | EFнs,мs<br>(gal/W∙h) | PFR <sub>LS,MS</sub><br>(gal/min) | EF <sub>LS,MS</sub><br>(gal/W∙h) |
|------------|---------------|------------------------|-----------------------|----------------------|-----------------------------------|----------------------------------|
| 1          | 11.8          | 9.8                    | 56.0                  | 2.40                 | 31.0                              | 5.41                             |
| 1.5        | 11.5          | 9.5                    | 61.0                  | 2.27                 | 31.9                              | 5.43                             |
| 2          | 11.0          | 9.0                    | 66.4                  | 1.95                 | 33.3                              | 5.22                             |
| 2.5        | 10.8          | 8.8                    | 66.0                  | 2.02                 | 34.0                              | 4.80                             |
| 3          | 9.9           | 7.9                    | 74.0                  | 1.62                 | 37.0                              | 4.76                             |

#### C.1.9.5.2. Demand Savings

Demand savings can be derived using the following:

$$kW_{Savings} = \left[\frac{kWh_{conv}}{hours_{conv}} - \left(\frac{kWh_{HS} + kWh_{LS}}{hours_{HS} + hours_{LS}}\right)\right] \times \frac{CF}{days}$$

Where:

CF = Coincidence factor<sup>117</sup> = 0.31

#### C.1.9.6. Incremental Cost

The incremental cost for ENERGY STAR Pool Pumps is<sup>118</sup>:

- \$549 for Variable Speed
- \$235 for Multi-Speed

#### C.1.9.7. Future Studies

This measure has low-to-moderate participation in Energy Smart programs. In PY6, pool pump savings totaled 19,157 kWh. If measure savings reach a minimum of 500,000 kWh in a program year, the TPE recommends a metering study to validate usage assumptions.

Deemed parameters should be updated whenever DOE standard s or other applicable codes warrant it.

<sup>&</sup>lt;sup>117</sup> Southern California Edison (SCE) Design & Engineering Services, 2008., *"Pool Pump Demand Response Potential, DR 07.01 Report."* June 2008. Derived from Table 16 assuming a peak period of 2-6 PM.

<sup>&</sup>lt;sup>118</sup> ENERGY STAR Pool Pump Calculator

#### C.1.10. ENERGY STAR® Refrigerators

#### C.1.10.1. Measure Description

This measure involves replace-on-burnout or early retirement of an existing refrigerator and installation of a new, full-size (7.75 ft<sup>3</sup> or greater) ENERGY STAR® refrigerator. This measure applies to all residential or small commercial applications.

To qualify for early retirement, the ENERGY STAR® unit must replace an existing, fullsize, working unit that is at least six years old. For early retirement, the maximum lifetime age of an eligible piece of equipment is capped at the point at which it is expected that 75 percent of the equipment has failed. Where the age of the unit exceeds the 75 percent failure age, ROB savings should be applied. This cap prevents early retirement savings from being applied to projects where the age of the equipment greatly exceeds the estimated useful life of the measure.

#### C.1.10.2. Baseline and Efficiency Standards<sup>119</sup>

For ROB, the baseline for refrigerators is the DOE minimum efficiency standards for refrigerators, effective September 15, 2014.

For an individual refrigerator early retirement program, the baseline for refrigerators is assumed to be the annual unit energy consumption of the refrigerator being replaced, as reported by the Association of Home Appliance Manufacturers (AHAM) refrigerator database120, adjusted for age according to the formula in the Measure Savings Calculations section. AHAM energy use data includes the average manufacturer-reported annual kilowatt hour usage, by year of production. This data dates back to the 1970s.

Alternatively, the baseline annual kilowatt hour usage of the refrigerator being replaced may be estimated by metering for a period of at least three hours using the measurement protocol specified in the US DOE report, "*Incorporating Refrigerator Replacement into the Weatherization Assistance Program*."<sup>121</sup>

To determine annual kWh of the refrigerator being replaced, use the formula:

<sup>&</sup>lt;sup>119</sup> Current federal standards for refrigerators can be found on the DOE website at: <u>http://www1.eere.energy.gov/buildings/appliance\_standards/product.aspx/productid/43</u>. Current ENERGY STAR<sup>®</sup> criteria for refrigerators can be found on the ENERGY STAR<sup>®</sup> website at: <u>www.energystar.gov/index.cfm?c=refrig.pr\_crit\_refrigerators</u>

<sup>&</sup>lt;sup>120</sup> AHAM Refrigerator Database. <u>http://rfdirectory.aham.org/AdvancedSearch.aspx</u>

<sup>&</sup>lt;sup>121</sup> Moore, A. 2001, D&R International, Ltd. *"Incorporating Refrigerator Replacement into the Weatherization Assistance Program: Information Tool Kit."* U.S. DOE. November 19.

http://www.waptac.org/data/files/website\_docs/training/standardized\_curricula/curricula\_resources/refrigerator\_ \_\_info\_toolkit.pdf

$$kWh/yr = \frac{WH \times 8,760}{h \times 1,000}$$

Where:

WH = the watt-hours metered during a time period

*h* = measurement time period (hours)

8,760 = hours in a year

1,000 watt-hours = 1 kWh

For the early retirement application, all new refrigerators must replace refrigerators currently in use, and all replaced refrigerators must be dismantled in an environmentally-safe manner in accordance with applicable federal, state, and local regulations. The installer will provide documentation of proper disposal of refrigerators.

Newly-installed refrigerators must meet current ENERGY STAR® efficiency levels. All newly-installed refrigerators must be connected to an adequately-sized electrical receptacle and be grounded in accordance to the National Electric Code (NEC).

Minimum efficiency requirements for ENERGY STAR® refrigerators are set at 10% more efficient than required by the minimum federal government standard. The standard varies depending on the size and configuration of the refrigerator. See Table C-24.

## Configuration Codes (Table C-24):

BF: Bottom Freezer

- SD: Refrigerator Only Single Door
- SR: Refrigerator/Freezer Single Door
- SS: Side-by-Side
- TF: Top Freezer
- TTD: Through the Door (Ice Maker)
- A: Automatic Defrost
- M: Manual Defrost
- P: Partial Automatic Defrost

## AV<sup>122</sup> = Adjusted Volume

Table C-24: Formulas to Calculate the ENERGY STAR® Refrigerator Criteria<sup>123</sup>

| Product Category                                                                                                            | Federal<br>Standard<br>as of Sept<br>15, 2014<br>Standard<br>(kWh/year) | Maximum<br>ENERGY<br>STAR®<br>Energy<br>Usage<br>(kWh/year) <sup>124</sup> | lce<br>(Y/N) | Defrost | Average<br>Adjusted<br>Volume <sup>125</sup> | kWh   | kW      |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------|---------|----------------------------------------------|-------|---------|
| Refrigerator-only—<br>manual defrost                                                                                        | 6.79 × AV +<br>193.6                                                    | 6.111 × AV +<br>174.24                                                     | Y, N         | М       | 20.8                                         | 33.48 | 0.00772 |
| Refrigerator-<br>freezers—manual or<br>partial automatic<br>defrost                                                         | 7.99 × AV +<br>225.0                                                    | 7.191 × AV +<br>202.5                                                      | Y, N         | M, P    | 24.51                                        | 42.08 | 0.00970 |
| Refrigerator-only—<br>automatic defrost                                                                                     | 7.07 × AV +<br>201.6                                                    | 6.363 × AV +<br>181.44                                                     | Y, N         | А       | 15.75                                        | 31.30 | 0.00721 |
| Built-in refrigerator-<br>only—automatic<br>defrost                                                                         | 8.02 × AV +<br>228.5                                                    | 7.218 × AV +<br>205.65                                                     | Y, N         | А       | 16.97                                        | 36.46 | 0.00840 |
| Refrigerator-<br>freezers—automatic<br>defrost with bottom-<br>mounted freezer<br>without an automatic<br>icemaker          | 8.85 × AV +<br>317.0                                                    | 7.965 × AV +<br>285.3                                                      | N            | A       | 18.36                                        | 47.95 | 0.01105 |
| Built-in refrigerator-<br>freezers—automatic<br>defrost with bottom-<br>mounted freezer<br>without an automatic<br>icemaker | 9.40 × AV +<br>336.9                                                    | 8.46 × AV +<br>378.81                                                      | N            | A       | 17.57                                        | 58.43 | 0.01347 |
| Refrigerator-<br>freezers—automatic<br>defrost with bottom-                                                                 | 8.85 × AV +<br>401.0                                                    | 7.965 × AV +<br>360.9                                                      | N            | А       | 24.6                                         | 61.87 | 0.01426 |

<sup>&</sup>lt;sup>122</sup> Adjusted Volume (AV) can be found for ENERGY STAR<sup>®</sup> certified refrigerators on their website under the "advanced view" option. <u>https://data.energystar.gov/Active-Specifications/ENERGY-STAR-Certified-Residential-Refrigerators/p5st-her9</u>. Scroll to the right until you reach the column named "Adjusted Volume".

<sup>123</sup> Available for download at

http://www1.eere.energy.gov/buildings/appliance\_standards/product.aspx/productid/43.

<sup>124</sup> Ten percent more efficient than baseline, as specified in the ENERGY STAR<sup>®</sup> appliance calculator.

<sup>&</sup>lt;sup>125</sup> This is the average volume of Energy Star qualified units for each configuration, based on the dataset located at: https://data.energystar.gov/Active-Specifications/ENERGY-STAR-Certified-Residential-Refrigerators/p5sther9/data

| Product Category                                                                                                                                    | Federal<br>Standard<br>as of Sept<br>15, 2014<br>Standard<br>(kWh/year) | Maximum<br>ENERGY<br>STAR®<br>Energy<br>Usage<br>(kWh/year) <sup>124</sup> | lce<br>(Y/N) | Defrost | Average<br>Adjusted<br>Volume <sup>125</sup> | kWh   | kW      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------|---------|----------------------------------------------|-------|---------|
| mounted freezer with<br>an automatic<br>icemaker without TTD<br>ice service                                                                         | (                                                                       | (                                                                          |              |         |                                              |       |         |
| Built-in refrigerator-<br>freezers—automatic<br>defrost with bottom-<br>mounted freezer with<br>an automatic<br>icemaker without TTD<br>ice service | 9.40 × AV +<br>420.9                                                    | 8.46 × AV +<br>378.81                                                      | N            | A       | 21.67                                        | 43.03 | 0.00992 |
| Refrigerator-<br>freezers—automatic<br>defrost with bottom-<br>mounted freezer with<br>an automatic<br>icemaker with TTD ice<br>service             | 9.25 × AV +<br>475.4                                                    | 8.325× AV +<br>427.86                                                      | Y            | A       | 32.34                                        | 77.45 | 0.01785 |
| Built-in refrigerator-<br>freezers—automatic<br>defrost with bottom-<br>mounted freezer with<br>an automatic<br>icemaker with TTD ice<br>service    | 9.83 × AV +<br>499.9                                                    | 8.847 × AV +<br>449.91                                                     | Y            | A       | 21.67                                        | 71.29 | 0.01643 |
| Refrigerator-<br>freezers—automatic<br>defrost with side-<br>mounted freezer<br>without an automatic<br>icemaker                                    | 8.51 × AV +<br>297.8                                                    | 7.659 × AV +<br>268.02                                                     | N            | A       | 30.44                                        | 55.68 | 0.01283 |
| Built-in refrigerator-<br>freezers—automatic<br>defrost with side-<br>mounted freezer<br>without an automatic<br>icemaker                           | 10.22 × AV +<br>357.4                                                   | 9.198 × AV +<br>321.66                                                     | N            | A       | 33.71                                        | 36.76 | 0.00847 |
| Refrigerator-<br>freezers—automatic<br>defrost with side-<br>mounted freezer with<br>an automatic                                                   | 8.51 × AV +<br>381.8                                                    | 7.659 × AV +<br>343.62                                                     | Ν            | A       | 30.44                                        | 39.03 | 0.00900 |

| Product Category                                                                                                                                  | Federal<br>Standard<br>as of Sept<br>15, 2014<br>Standard<br>(kWh/year) | Maximum<br>ENERGY<br>STAR®<br>Energy<br>Usage<br>(kWh/year) <sup>124</sup> | lce<br>(Y/N) | Defrost | Average<br>Adjusted<br>Volume <sup>125</sup> | kWh   | kW      |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------|---------|----------------------------------------------|-------|---------|
| icemaker without TTD<br>ice service                                                                                                               |                                                                         |                                                                            |              |         |                                              |       |         |
| Built-in refrigerator-<br>freezers—automatic<br>defrost with side-<br>mounted freezer with<br>an automatic<br>icemaker without TTD<br>ice service | 10.22 × AV +<br>441.4                                                   | 9.198 × AV +<br>397.26                                                     | Ν            | A       | 34.06                                        | 78.95 | 0.01820 |
| Refrigerator-<br>freezers—automatic<br>defrost with side-<br>mounted freezer with<br>an automatic<br>icemaker with TTD ice<br>service             | 8.54 × AV +<br>432.8                                                    | 7.686 × AV +<br>389.52                                                     | Y            | A       | 33.06                                        | 71.51 | 0.01648 |
| Built-in refrigerator-<br>freezers—automatic<br>defrost with side-<br>mounted freezer with<br>an automatic<br>icemaker with TTD ice<br>service    | 10.25 × AV +<br>502.6                                                   | 9.225 × AV +<br>452.34                                                     | Y            | A       | 33.6                                         | 84.70 | 0.01952 |
| Refrigerator<br>freezers—automatic<br>defrost with top-<br>mounted freezer<br>without an<br>automatic icemaker                                    | 8.07 × AV +<br>233.7                                                    | 7.263 × AV +<br>210.33                                                     | N            | A       | 17.8                                         | 37.73 | 0.00870 |
| Built-in refrigerator-<br>freezers—automatic<br>defrost with top-<br>mounted freezer<br>without an<br>automatic icemaker                          | 9.15 × AV +<br>264.9                                                    | 8.235 × AV +<br>238.41                                                     | N            | A       | 17.8                                         | 27.41 | 0.00632 |
| Refrigerator-<br>freezers—automatic<br>defrost with top-<br>mounted freezer<br>with an automatic<br>ice maker without<br>TTD ice service          | 8.07 × AV +<br>317.7                                                    | 7.263 × AV +<br>285.93                                                     | N            | A       | 21.22                                        | 62.26 | 0.01435 |

| Product Category                                                                                                                                     | Federal<br>Standard<br>as of Sept<br>15, 2014<br>Standard<br>(kWh/year) | Maximum<br>ENERGY<br>STAR®<br>Energy<br>Usage<br>(kWh/year) <sup>124</sup> | lce<br>(Y/N) | Defrost | Average<br>Adjusted<br>Volume <sup>125</sup> | kWh    | kW      |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------|---------|----------------------------------------------|--------|---------|
| Built-in refrigerator-<br>freezers—automatic<br>defrost with top-<br>mounted freezer<br>without an<br>automatic ice maker<br>with TTD ice<br>service | 9.15 × AV +<br>348.9                                                    | 8.235 × AV +<br>238.41                                                     | Ν            | A       | 21.22                                        | 129.91 | 0.02994 |
| Refrigerator-<br>freezers—automatic<br>defrost with top-<br>mounted freezer<br>with TTD ice<br>service                                               | 8.40 × AV +<br>385.4                                                    | 7.56 × AV +<br>346.86                                                      | Y            | A       | 21.22                                        | 56.36  | 0.01299 |

## C.1.10.3. Estimated Useful Life (EUL)

According to the Department of Energy Technical Support Document,<sup>126</sup> the Estimated Useful Life of High Efficiency Refrigerators is 17 years.

## C.1.10.4. Measure Savings Calculations

Deemed peak demand and annual energy savings should be calculated as shown below. Note that these savings calculations are different depending on whether the measure is replace-on-burnout or early retirement.

#### C.1.10.4.1. Energy Savings

#### C.1.10.4.1.1. Replace-on-Burnout

 $kWh_{savings} = kWh_{baseline} - kWh_{ES}$ 

Where:

 $kWh_{baseline}$  = Federal standard baseline average energy usage (Table C-24)

 $kWh_{ES}$  = ENERGY STAR® average energy usage (Table C-24)

<sup>&</sup>lt;sup>126</sup> U.S. DOE 2011, Technical Support Document: "Residential Refrigerators, Refrigerator-Freezers, and Freezers, 8.2.3 Product Lifetimes." September 15.

http://www1.eere.energy.gov/buildings/appliance\_standards/product.aspx/productid/43.

Download TSD at: <u>http://www.regulations.gov/#!documentDetail;D=EERE-2008-BT-STD-0012-0128</u>.

#### C.1.10.4.1.2. Early Retirement

Annual kWh and kW savings must be calculated separately for two time periods:

The estimated remaining life of the equipment that is being removed, designated the remaining useful life (RUL), and

The remaining time in the EUL period (17 - RUL)

For the RUL (Table C-25):

$$kWh_{savings} = kWh_{pre} - kWh_{ES}$$

kWh<sub>pre</sub> refers to manufacturer data or a measured consumption that is adjusted using applicable degradation factors.

$$kWh_{pre} = kWh_{manf} \times (1 + PDF)^n x SLF$$

For the remaining time in the EUL period:

Calculate annual savings as you would for a replace-on-burnout project using the equation below. Lifetime kWh savings for Early Retirement Projects is calculated as follows:

$$Lifetime \ kWh_{savings} = (kwh_{savings,ER} \times RUL) + [kWh_{savings,ROB} \times (EUL - RUL)]$$

Where:

 $kWh_{NAECA}$  = NAECA baseline average energy usage (Table C-24)

kWhpre = Adjusted manufacturer energy usage

 $kWh_{ES}$  = ENERGY STAR® average energy usage (Table C-24)

 $kWh_{manf}$  = annual unit energy consumption from the Association of Home Appliance Manufacturers (AHAM) refrigerator database<sup>127</sup>

PDF = Performance Degradation Factor 0.0125/year. Refrigerator energy use is expected to increase at a rate of 1.25% per year as performance degrades over time<sup>128</sup>

n = age of replaced refrigerator (years)

<sup>&</sup>lt;sup>127</sup> AHAM Refrigerator Database. <u>http://rfdirectory.aham.org/AdvancedSearch.aspx.</u>

 <sup>&</sup>lt;sup>128</sup> 2009 Second Refrigerator Recycling Program NV Energy – Northern Nevada Program Year 2009; M&V, ADM,
 Feb 2010, referencing Cadmus data on a California program, February 2010.

SLF = Site/Lab Factor = 0.81 to account for the difference between DOE laboratory testing and actual conditions<sup>129</sup>

*RUL* = Remaining Useful Life (Table C-25)

*EUL* = Estimated Useful Life = 17 years

#### C.1.10.4.2. Demand Savings

Since refrigerators operate 24/7, average kW reduction is equal to annual kWh divided by 8,760 hours per year. As shown below, this average kW reduction is multiplied by temperature and load shape adjustment factors to derive peak period kW reduction.

$$kW_{savings} = \frac{kWh_{savings}}{8,760 hrs} \times TAF \times LSAF$$

Where:

*TAF* = Temperature Adjustment Factor<sup>130</sup> = 1.188

*LSAF* = Load Shape Adjustment Factor<sup>131</sup> = 1.074

C.1.10.4.3. Derivation of RULs

ENERGY STAR® Refrigerators have an estimated useful life of 17 years. This estimate is consistent with the age at which 50 percent of the refrigerators installed in a given year will no longer be in service, as described by the survival function in Figure C-2.

<sup>&</sup>lt;sup>129</sup> Peterson, J, et. al., 2007, "Gross Savings Estimation for Appliance Recycling Programs: The Lab Versus In Situ Measurement Imbroglio and Related Issues" International Energy Program Evaluation Conference (IEPEC). Cadmus, et. al. "Residential Retrofit High Impact Measure Evaluation Report." February 8, 2010.

 <sup>&</sup>lt;sup>130</sup> Proctor Engineering Group, Michael Blasnik & Associates, and Conservation Services Group, 2004,
 *"Measurement & Verification of Residential Refrigerator Energy Use: Final Report – 2003-2004 Metering Study"*. July 29. Factor to adjust for varying temperature based on site conditions, p. 47.

 <sup>&</sup>lt;sup>131</sup> Proctor Engineering Group, Michael Blasnik & Associates, and Conservation Services Group, 2004,
 "Measurement & Verification of Residential Refrigerator Energy Use: Final Report – 2003-2004 Metering Study".
 July 29. Used load shape adjustment for "hot days" during the 4PM hour, pp. 45-48.

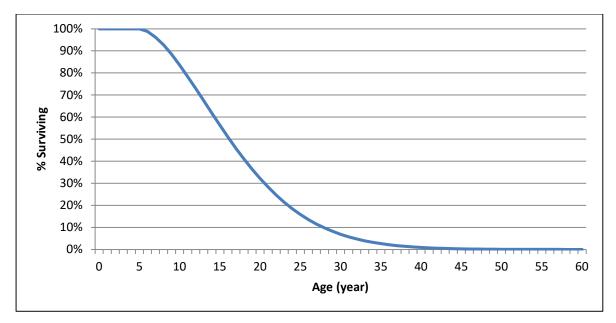



Figure 9: Survival Function for ENERGY STAR® Refrigerators<sup>132</sup>

The method for estimating the RUL of a replaced system uses the age of the existing system to re-estimate the projected unit lifetime based on the survival function shown in Figure C-2. The age of the refrigerator being replaced is found on the horizontal axis, and the corresponding percentage of surviving refrigerators is determined from the chart. The surviving percentage value is then divided in half, creating a new estimated useful lifetime applicable to the current unit age. The age (year) that corresponds to this new percentage is read from the chart. RUL is estimated as the difference between that age and the current age of the system being replaced.

| Age of Replaced<br>Refrigerator<br>(years) | RUL<br>(years) | Age of Replaced<br>Refrigerator<br>(years) | RUL<br>(years) |
|--------------------------------------------|----------------|--------------------------------------------|----------------|
| 6                                          | 10.3           | 15                                         | 6.0            |
| 7                                          | 9.6            | 16                                         | 5.8            |
| 8                                          | 8.9            | 17                                         | 5.5            |
| 9                                          | 8.3            | 18                                         | 5.3            |
| 10                                         | 7.8            | 19                                         | 5.1            |
| 11                                         | 7.4            | 20                                         | 4.9            |

Table C-25: Remaining Useful Life (RUL) of Replaced Refrigerator<sup>133</sup>

<sup>132</sup> U.S. DOE, Technical Support Document, 2011, "Residential Refrigerators, Refrigerator-Freezers, and Freezers, 8.2.3 Product Lifetimes." September 15.

http://www1.eere.energy.gov/buildings/appliance\_standards/product.aspx/productid/43.

Download TSD at: <u>http://www.regulations.gov/#!documentDetail;D=EERE-2008-BT-STD-0012-0128</u>.

<sup>133</sup> Use of the early retirement baseline is capped at 22 years, representing the age at which 75 percent of existing equipment is expected to have failed. Equipment older than 22 years should use the ROB baseline.

| 12 | 7.0 | 21   | 4.8 |
|----|-----|------|-----|
| 13 | 6.6 | 22   | 4.6 |
| 14 | 6.3 | 23 + | 0.0 |

C.1.10.5. Incremental Cost

The incremental cost for efficient refrigerators is \$40<sup>134</sup> for ENERGY STAR units and \$140<sup>135</sup> for CEE Tier II units.

For early retirement, incremental cost is calculated using:

- Full installed cost of the refrigerator: program-actual purchase price should be used. If not available, use \$451 for ENERGY STAR and \$551 for CEE Tier 2 units<sup>136</sup>.
- 2) Present value of replacement cost of a baseline refrigerator after the RUL of the initial replaced unit is exhausted. This unit costs \$411<sup>137</sup> at the time of purchase, and should be discounted by the number of years of RUL. If RUL is unknown, use 4 years. Default discount rate is 10%<sup>138</sup>. This results in a deferred replacement cost of \$281.
- 3) Overall incremental cost of early retirement is then calculated as:
  - a. ENERGY STAR: \$451 \$281 = \$70
  - b. CEE Tier II: \$170

## C.1.10.6. Net-to-Gross Ratio

The NTGR for this measure is 44%<sup>139</sup>.

## C.1.10.7. Future Studies

At the time of authorship of the New Orleans TRM Version 1.0, this measure was not implemented in Energy Smart programs. Thus, savings are calculated using ENERGY STAR default values. If this measure is added to Energy Smart programs, the evaluation

<sup>&</sup>lt;sup>134</sup> From ENERGY STAR appliance calculator

<sup>&</sup>lt;sup>135</sup> Based on weighted average of units participating in Efficiency Vermont program and retail cost data provided in Department of Energy, "TECHNICAL REPORT: Analysis of Amended Energy Conservation Standards for Residential Refrigerator-Freezers", October 2005; http://www1.eere.energy.gov/buildings/appliance\_standards/pdfs/refrigerator\_report\_1.pdf

<sup>&</sup>lt;sup>136</sup> Based on weighted average of units participating in Efficiency Vermont program and retail cost data provided in Department of Energy, "TECHNICAL REPORT: Analysis of Amended Energy Conservation Standards for Residential Refrigerator-Freezers", October 2005; http://www1.eere.energy.gov/buildings/appliance\_standards/pdfs/refrigerator\_report\_1.pdf

<sup>&</sup>lt;sup>137</sup> Calculated by subtracting \$40 incremental cost for ENERGY STAR refrigerators off of full purchase price of \$451.

<sup>&</sup>lt;sup>138</sup> "Participant Discount Rate" recommended in CA Standard Practice Manual.

<sup>&</sup>lt;sup>139</sup> Based on primary data collection from 44 PY6-9 program participants.

should include a review of actual efficiency levels and costs of units purchased by New Orleans residents.

Deemed parameters should be updated whenever DOE standards or other applicable codes warrant it.

#### C.1.11. ENERGY STAR® Freezers

#### C.1.11.1. Measure Description

This measure is for the purchase a freezer meeting the efficiency specifications of ENERGY STAR® is installed in place of a model meeting the federal standard (NAECA). An ENERGY STAR® freezer must be at least 10 percent more efficient than the minimum federal government standard.

#### C.1.11.2. Baseline and Efficiency Standards

The baseline equipment is assumed to be a model that meets the federal minimum standard for energy efficiency. The efficient equipment is defined as a freezer meeting the efficiency specifications of ENERGY STAR®, as defined below:

| Equipment         | Volume                           | Criteria                                                    |
|-------------------|----------------------------------|-------------------------------------------------------------|
| Full Size Freezer | 7.75 cubic feet or greater       | At least 10% more energy efficient than the minimum federal |
|                   |                                  | government standard (NAECA).                                |
|                   | Less than 7.75 cubic feet and 36 | At least 20% more energy efficient                          |
| Compact Freezer   | inches or less in height         | than the minimum federal                                    |
|                   | inches of less in neight         | government standard (NAECA).                                |

#### Table C-26. ENERGY STAR® Specifications

The standard varies depending on the size and configuration of the freezer (chest freezer or upright freezer, automatic or manual defrost) and is defined in the table below.

Energy usage specifications are defined in the table below (note, AV is the freezer Adjusted Volume and is calculated as 1.73\*Total Volume):

|                                                                     |                                           | Assumptions after September 2014                                          |                                                                      |  |
|---------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|--|
| Product Category                                                    | Volume<br>(cubic feet)                    | Federal Baseline<br>Maximum Energy<br>Usage in<br>kWh/year <sup>140</sup> | ENERGY STAR<br>Maximum Energy<br>Usage in<br>kWh/year <sup>141</sup> |  |
| Upright Freezers with Manual<br>Defrost                             | 7.75 or greater                           | 5.57*AV + 193.7                                                           | 5.01*AV + 174.3                                                      |  |
| Upright Freezers with<br>Automatic Defrost                          | 7.75 or greater                           | 8.62*AV + 228.3                                                           | 7.76*AV + 205.5                                                      |  |
| Chest Freezers and all other<br>Freezers except Compact<br>Freezers | 7.75 or greater                           | 7.29*AV + 107.8                                                           | 6.56*AV + 97.0                                                       |  |
| Compact Upright Freezers with Manual Defrost                        | < 7.75 and 36 inches or less<br>in height | 8.65*AV + 225.7                                                           | 7.79*AV + 203.1                                                      |  |

<sup>&</sup>lt;sup>140</sup> See Department of Energy Federal Standards.

<sup>&</sup>lt;sup>141</sup> See Version 5.0 ENERGY STAR specification.

| Compact Upright Freezers with Automatic Defrost | < 7.75 and 36 inches or less<br>in height | 10.17*AV + 351.9 | 9.15*AV + 316.7 |
|-------------------------------------------------|-------------------------------------------|------------------|-----------------|
| Compact Chest Freezers                          | <7.75 and 36 inches or less<br>in height  | 9.25*AV + 136.8  | 8.33*AV + 123.1 |

#### C.1.11.3. Estimated Useful Life (EUL)

The average lifetime of this measure is 22 years<sup>142</sup>.

#### C.1.11.4. Calculation of Deemed Savings

#### C.1.11.4.1. Energy Savings

$$kWh_{savings} = kWh_{base} - kWh_{efficient}$$

Where:

- $kWh_{base}$  = Baseline kWh consumption per year as calculated in algorithm provided in table above.
- $kWh_{efficient}$  = ENERGY STAR® kWh consumption per year as calculated in algorithm provided in table above.

#### C.1.11.4.2. Demand Savings

Demand savings should be calculated using the following formula:

 $kW_{savings} = kWh_{savings} \times Energy Demand Factor$ 

Where:

Energy Denamd Factor =  $0.0001614^{143}$ 

<sup>&</sup>lt;sup>142</sup> <u>Based on 2011 DOE Rulemaking Technical Support Document</u>, as recommended in Navigant 'ComEd Effective Useful Life Research Report', May 2018.

<sup>&</sup>lt;sup>143</sup> Consistent with the conversion factors in the Mid-Atlantic, Illinois, and Wisconsin TRMs. Derived from: (Temperature Adjustment Factor × Load Shape Adjustment Factor)/8760 hours. The temperature adjustment factor is 1.23 and is based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 (p. 47) and assuming 78% of refrigerators are in cooled space (based on BGE Energy Use Survey, Report of Findings, December 2005; Mathew

## C.1.11.5. Deemed Savings

| Freezer Category                                                 | Average<br>Unit Adj.<br>Volume (ft³) | Conventional<br>Usage<br>(kWh/yr) | ENERGY<br>STAR<br>Usage<br>(kWh/yr) | kWh<br>Savings | kW<br>Reduction |
|------------------------------------------------------------------|--------------------------------------|-----------------------------------|-------------------------------------|----------------|-----------------|
| Upright Freezers with Manual<br>Defrost                          | 27.9                                 | 349.1                             | 314.1                               | 35.0           | 0.0057          |
| Upright Freezers with Automatic<br>Defrost                       | 27.9                                 | 468.8                             | 422.0                               | 46.8           | 0.0076          |
| Chest Freezers and all other<br>Freezers except Compact Freezers | 27.9                                 | 310.4                             | 280.0                               | 30.3           | 0.0049          |
| Compact Upright Freezers with<br>Manual Defrost                  | 10.4                                 | 315.7                             | 284.1                               | 31.5           | 0.0051          |
| Compact Upright Freezers with<br>Automatic Defrost               | 10.4                                 | 457.7                             | 411.3                               | 46.4           | 0.0075          |
| Compact Chest Freezers                                           | 10.4                                 | 233.0                             | 209.7                               | 23.3           | 0.0038          |

Table C-28. Deemed Energy Savings and Demand Reductions

## C.1.11.6. Incremental Cost

The incremental cost for this measure is \$42<sup>144</sup>.

<sup>&</sup>lt;sup>144</sup> Based on review of data from the Northeast Regional ENERGY STAR Consumer Products Initiative; "2009 ENERGY STAR Appliances Practices Report", submitted by Lockheed Martin, December 2009. Adjusted for inflation using <u>https://www.usinflationcalculator.com</u>.

#### C.1.12. Refrigerator and Freezer Recycling

#### C.1.12.1. Measure Description

This measure involves early retirement and recycling of an inefficient but operational existing, full-size (7.75 ft<sup>3</sup> or greater) refrigerator/freezer in a residential application. Savings represent the entire estimated energy consumption of the existing unit and are applicable over the estimated remaining life of the existing unit. A part use factor is applied to account for those secondary units that are not in use throughout the entire year.

#### C.1.12.2. Baseline and Efficiency Standards

Without program intervention, the recycled refrigerator or freezer would have remained operable on the electrical grid. As a result, the baseline condition for early retirement programs is the status quo (continued operation) and the basis for estimating energy savings is the annual energy consumption of the refrigerator or freezer being retired.

## C.1.12.3. Estimated Useful Life (EUL)

It is difficult to determine the number of years that a recycled refrigerator would have continued to operate absent the program and, therefore, the longevity of the savings generated by recycling old-but-operable refrigerators through the program. According to the Department of Energy Technical Support Document,145 the Estimated Useful Life of High Efficiency Refrigerators is 17 years. The estimated EUL for a freezer is 12 years.<sup>146</sup> Section C.1.12.3.1of the New Orleans TRM details a survival analysis and the derivation of refrigerator and freezer RULs. Below, Table C-29 has been taken from said section and presents RULs by refrigerator or and freezer age.

 <sup>&</sup>lt;sup>145</sup> U.S. DOE 2011, Technical Support Document: "Residential Refrigerators, Refrigerator-Freezers, and Freezers,
 8.2.3 Product Lifetimes." September 15.

http://www1.eere.energy.gov/buildings/appliance\_standards/product.aspx/productid/43.

Download TSD at: <u>http://www.regulations.gov/#!documentDetail;D=EERE-2008-BT-STD-0012-0128</u>.

<sup>&</sup>lt;sup>146</sup> ENERGY STAR<sup>®</sup> https://www.energystar.gov/sites/default/files/asset/document/appliance\_calculator.xlsx

| Age of<br>Replaced<br>Refrigerator<br>(years) | Refrigerator<br>RUL (years) | Freezer<br>RUL<br>(years) |
|-----------------------------------------------|-----------------------------|---------------------------|
| 6                                             | 10.3                        | 7.3                       |
| 7                                             | 9.6                         | 6.8                       |
| 8                                             | 8.9                         | 6.3                       |
| 9                                             | 8.3                         | 5.9                       |
| 10                                            | 7.8                         | 5.5                       |
| 11                                            | 7.4                         | 5.2                       |
| 12                                            | 7                           | 4.9                       |
| 13                                            | 6.6                         | 4.7                       |
| 14                                            | 6.3                         | 4.4                       |
| 15                                            | 6                           | 4.2                       |
| 16                                            | 5.8                         | 4.1                       |
| 17                                            | 5.5                         | 3.9                       |
| 18                                            | 5.3                         | 0                         |
| 19                                            | 5.1                         | 0                         |
| 20                                            | 4.9                         | 0                         |
| 21                                            | 4.8                         | 0                         |
| 22                                            | 4.6                         | 0                         |
| 23 +                                          | 0                           | 0                         |

Table C-29: Remaining Useful Life (RUL) of Replaced Refrigerator<sup>147</sup>

If refrigerator or freezer age is unknown, use a measure life of 6 years<sup>148</sup> for refrigerators, 4 years for freezers.

#### C.1.12.3.1. Derivation of RULs

The Department of Energy Technical Support Document,<sup>149</sup> estimates that high efficiency refrigerator useful life is 17 years. This estimate is consistent with the age at which 50 percent of the refrigerators installed in a given year will no longer be in service, as described by the survival function in Figure C-2.

<sup>&</sup>lt;sup>147</sup> Use of the early retirement baseline is capped at 22 years, representing the age at which 75 percent of existing equipment is expected to have failed. Equipment older than 22 years should use the ROB baseline.

<sup>&</sup>lt;sup>148</sup> Rounded value from RUL table. Average all EULs, 6.34, rounded to 6.0.

<sup>&</sup>lt;sup>149</sup> U.S. DOE 2011, Technical Support Document: "Residential Refrigerators, Refrigerator-Freezers, and Freezers, 8.2.3 Product Lifetimes." September 15.

http://www1.eere.energy.gov/buildings/appliance\_standards/product.aspx/productid/43.

Download TSD at: <u>http://www.regulations.gov/#!documentDetail;D=EERE-2008-BT-STD-0012-0128</u>.



Figure C-2: Survival Function for ENERGY STAR® Refrigerators<sup>150</sup>

The method for estimating the RUL of a replaced system uses the age of the existing system to re-estimate the projected unit lifetime based on the survival function shown in Figure C-2. The age of the refrigerator being replaced is found on the horizontal axis, and the corresponding percentage of surviving refrigerators is determined from the chart. The surviving percentage value is then divided in half, creating a new estimated useful lifetime applicable to the current unit age. The age (year) that corresponds to this new percentage is read from the chart. RUL is estimated as the difference between that age and the current age of the system being replaced. To scale freezer RULs the TPE multiplied refrigerator RULs by the ratio of freezer/refrigerator EULs (12/17 = 0.706).

## C.1.12.4. Energy and Demand Savings

Energy savings and demand reductions for retired refrigerators and freezers are based upon a linear regression model using equations and coefficients listed below.

## C.1.12.4.1. Energy Savings

#### C.1.12.4.1.1. Refrigerators

Table C-30 displays the model coefficients and default inputs in the absence of program data. The coefficients presented are a combination of estimates from NREL, Illinois TRM

<sup>&</sup>lt;sup>150</sup> U.S. DOE, Technical Support Document, 2011, "Residential Refrigerators, Refrigerator-Freezers, and Freezers, 8.2.3 Product Lifetimes." September 15.

http://www1.eere.energy.gov/buildings/appliance\_standards/product.aspx/productid/43.

Download TSD at: http://www.regulations.gov/#!documentDetail;D=EERE-2008-BT-STD-0012-0128.

V7.0, Texas TRM V6.0, and MidAtlantic TRM V8.0. Certain characteristics are 0-1 dummy indicators (such as whether a unit has side-by-side configuration). For these inputs, the Default Input is reflective of the average prevalence of that configuration the NREL UMP. For example, a default input of .323 for side-by-side indicates that 32.3% of units recycled could be expected to be side-by-side, based on prior research cited by the TPE.

| Independent Variable          | Estimated<br>Coefficient <sup>3</sup> | Default<br>Input <sup>151</sup> | kWh<br>Impact |
|-------------------------------|---------------------------------------|---------------------------------|---------------|
| Intercept                     | 0.750                                 | 1                               | 273.75        |
| Age (years)                   | 0.032                                 | 17.10                           | 199.73        |
| Pre-1990                      | 1.140                                 | .081                            | 33.70         |
| Size (square feet)            | 0.067                                 | 19.00                           | 464.65        |
| Single Door                   | -1.085                                | .039                            | -15.44        |
| Side-by-Side                  | 0.957                                 | .323                            | 112.83        |
| Primary Usage                 | 0.477                                 | .696                            | 121.18        |
| Unconditioned x CDD           | 0.007                                 | .259*3,470                      | 6.29          |
| Unconditioned x HDD           | -0.016                                | .259*1,058                      | -4.38         |
| Total Unit Energy Consumption |                                       |                                 | 1,192         |
| Part-Use Adjustme             | nt                                    |                                 | 93.2%         |
| Default kWh Savings           |                                       |                                 | 1,111         |

Table C-30: Savings Coefficients for Refrigerator Savings

Savings<sub>*kWh*</sub> =  $[0.75 + (Age \times 0.032) + (Pre - 1990 \times 1.140) + (Size \times 0.067)$ 

+ (Single Door  $\times$  -1.085) + (Side - by - Side  $\times$  0.957)

+ (Primary Usage  $\times$  0.477) + (Unconditioned CDD  $\times$  0.007)

+ (Unconditioned HDD  $\times$  -0.016)]  $\times$  365.25  $\times$  0.932

Where:

| Age           | = Age of retired unit                                  |
|---------------|--------------------------------------------------------|
| Pre-1990      | = Pre-1990 dummy (=1 if manufactured pre-1990, else 0) |
| Size          | = Capacity (cubic feet) of retired unit                |
| Single Door   | = Single door dummy (=1 if one door, else 0)           |
| Side-by-Side  | = Side-by-side dummy (= 1 if side-by-side, else 0)     |
| Primary Usage | = Primary usage type (in absence of the program) dummy |
|               | (= 1 if Primary, else 0)                               |

 <sup>&</sup>lt;sup>151</sup> Unit inputs based on averages from Public Service Company of New Mexico 2016 EM&V Report, ADM
 Associates Inc. Weather inputs based on TMY3 estimates for CDD and HDD for New Orleans).
 <u>https://www.pnm.com/documents/396023/3157050/2016+Independent+Measurement+and+Verification+Report</u>
 %2C%20Part+1%2C%20ADM+Associates%2C%20Inc.pdf/011b6c03-4358-4396-acf8-73cd8a24009e

| Unconditioned x CDD | = Weather interaction for units located in unconditioned spaces (=1*CDD). New Orleans CDD base 65 = 3,470 <sup>152</sup> |
|---------------------|--------------------------------------------------------------------------------------------------------------------------|
| Unconditioned x HDD | = Weather interaction for units located in unconditioned spaces (=1*HDD) New Orleans HDD base 65 = 1,058 <sup>3</sup>    |
| Part Use            | = To account for those units that are not running throughout the entire year.                                            |

For example: A resident decides to recycle a 20 square foot single door, non-side-by-side refrigerator. They originally purchased the unit in 1995 and has since been replaced, so this unit is now located in an unconditioned garage as extra food and beverage storage.

Savings<sub>*kWh*</sub> = 
$$[0.75 + (24 \times 0.032) + (0 \times 1.140) + (20 \times 0.067) + (1 \times -1.085) + (0 \times 0.957) + (0 \times 0.477) + (1 \times 0.007) + (1 \times -0.016)] \times 365.25 \times 0.932$$

= 600.49 kWh

C.1.12.4.1.2. Freezers

Table C-31: Savings Coefficients for Freezer Savings

| Independent<br>Variable | Estimated<br>Coefficient <sup>153</sup> | Default<br>Input | kWh<br>Impact |
|-------------------------|-----------------------------------------|------------------|---------------|
| Intercept               | -0.296                                  | 1                | -108.04       |
| Appliance Age (years)   | 0.039                                   | 17.1             | 243.42        |
| Pre-1990                | 0.486                                   | 0.081            | 14.37         |
| Size (square feet)      | 0.104                                   | 15.9             | 603.56        |
| Freezer Chest           | 0.122                                   | 0.119            | 5.30          |
| Unconditioned x CDD     | -0.002                                  | .741*3470        | -5.14         |
| Unconditioned x HDD     | 0.024                                   | .741*1,058       | 18.82         |
| Total Unit Ene          | 772                                     |                  |               |
| Part-Use Adju           | 85.5%                                   |                  |               |
| Default kWh S           | 660                                     |                  |               |

 $\begin{aligned} \text{Savings}_{kWh} &= [-0.296 + (Age \times 0.039) + (Pre - 1990 \times 0.486) + (Size \times 0.104) \\ &+ (Freezer \ Chest \times \ 0.122) + (Unconditioned \ CDD \ \times -0.002) \\ &+ (Unconditioned \ HDD \times 0.024)] \times 365.25 \times 0.855 \end{aligned}$ 

Where:

Freezer Chest

= Chest freezer dummy (= 1 if chest freezer, else 0)

<sup>&</sup>lt;sup>152</sup> Calculated using New Orleans TMY3 data.

<sup>&</sup>lt;sup>153</sup> The coefficients presented are a combination of estimates from NREL, Illinois TRM V7.0, Texas TRM V6.0, and MidAtlantic TRM V8.0.

## C.1.12.4.2. Demand Savings

$$\text{Savings}_{kW} = \left(\frac{\Delta kWh}{8,760}\right) \times CF$$

Where:

CF

- = Coincident factor defined as summer kW/average kW
  - = 1.082 for Refrigerators
  - = 1.065 for Freezers

The coincident factor aggregates two adjustments:

- 1. The duty cycle of the equipment during the peak period; and
- 2. The declining efficiency of the compressor when subject to higher outside air temperatures.

The resulting aggregate effect is a coincidence factor > 1.0 for refrigerators and freezers.

Based on the default inputs specified in Table C-30 and Table C-31, the recommended default kW values are:

- Refrigerators: 1,111 / 8,760 \* 1.082 = .0137
- Freezers: 660 / 8,760 \* 1.065 = .080

## C.1.12.5. Incremental Cost

The incremental cost for this measure is the actual cost associated with the removal and recycling of the secondary refrigerator. If unknown, use \$170 per unit<sup>154</sup>.

## C.1.12.6. Future Studies

This chapter is based on regression coefficients averaged from NREL, the Illinois TRM 7.0, the Texas TRM 6.0 and the Mid-Atlantic TRM 8.0 and citation of unit data from a refrigerator recycling evaluation completed on behalf of Public Service Company of New Mexico. It is recommended that program administrators collect the data needed to support energy savings estimates based on actual units recycled. Administrators should collect:

- a. Unit age;
- b. Size (cubic feet);

<sup>&</sup>lt;sup>154</sup> Illinois TRM v7.0 Vol. 3, page 37. The \$170 default assumption is based on \$120 cost of pickup and recycling per unit and \$50 proxy for customer transaction costs and value customer places on their lost amenity. \$120 is cost of pickup and recycling based on similar Efficiency Vermont program. \$50 is bounty, based on Ameren and ComEd program offerings as of 7/27/15.

- c. Configuration (Refrigerators: side-by-side, single-door, top-freezer, bottom-freezer. Freezers: upright, chest);
- d. Location of use (conditioned versus unconditioned space); and
- e. Unit make and model number.

A net-to-gross study will be required, which will address the extent to which the units would have been disposed of by program participants in the absence of the program; free-ridership for refrigerator recycling addresses the question of "would the unit be plugged in in the absence of a program intervention", and as a result the savings are program attributable if a participation would have otherwise kept it in use, gave it to a friend or relative, donated it to charity, or sold the unit.

If refrigerator/freezer cycling constitutes 5% or more of portfolio-level residential savings, the TPE would recommend an *in-situ* metering study to develop a New Orleans-specific unit energy consumption regression model.

#### C.2. Domestic Hot Water

#### C.2.1. Water Heater Replacement

#### C.2.1.1. Measure Description

This measure involves:

- The replacement of electric water heaters by ENERGY STAR<sup>®</sup> heat pump water heaters (HPWH);
- The replacement of either electric or gas water heaters by ENERGY STAR certified solar water heaters.

Systems greater than 55 gallons in capacity have an efficiency requirement that necessitates installation of a heat pump water heater or tank-less system.

Water heating deemed savings values are measured on an annual per-unit basis. Deemed savings variables include tank volume, estimated water usage, and rated uniform energy factor. Fuel substitution is not eligible for deemed savings. This measure applies to all residential applications.

#### C.2.1.2. Baseline and Efficiency Standards

The current baseline for electric and gas water heaters is the US DOE energy efficiency standard (10 CFR Part 430), which is consistent with the International Energy Conservation Code (IECC) 2009. Residential water heaters manufactured on or after April 16, 2015 must comply with the amended standards found in the Code of Federal Regulations, 10 CFR 430.32(d)<sup>155</sup>. An abbreviated account of the regulations that apply to qualifying water heater units are found in Table C-8.

<sup>&</sup>lt;sup>155</sup> <u>https://www.govinfo.gov/content/pkg/CFR-2018-title10-vol3/pdf/CFR-2018-title10-vol3-part430.pdf</u> (pg. 480)

| Rated Storage Volume    | Draw Pattern          | Uniform Energy Factor<br>(UEF) |
|-------------------------|-----------------------|--------------------------------|
|                         | Very Small            | 0.8808 - (0.0008 × Vr)         |
| > 20 gol and $< 55$ gol | Low                   | 0.9254 – (0.0003 × Vr)         |
| ≥ 20 gai anu ≤ 55 gai   | Medium                | 0.9307 – (0.0002 × Vr)         |
|                         | High                  | 0.9349 – (0.0001 × Vr)         |
| > 55 gal and ≤ 120 gal  | Very Small            | 1.9236 – (0.0011 × Vr)         |
|                         | Low                   | 2.0440 – (0.0011 × Vr)         |
|                         | Medium                | 2.1171 – (0.0011 × Vr)         |
|                         | High                  | 2.2418 – (0.0011 × Vr)         |
|                         | Very Small            | 0.91                           |
|                         | Low                   | 0.91                           |
| < 2 gai                 | Medium                | 0.91                           |
|                         | High                  | 0.92                           |
|                         | ≥ 20 gal and ≤ 55 gal |                                |

| Table C-32: Title 10: 430.32 ( | (d) Water Heater Standards |
|--------------------------------|----------------------------|
|                                |                            |

The new code requires that a "draw pattern" is to be determined to better calculate the energy factor associated with a water heater. The draw pattern is based on the first hour rating (FHR) of an installed water heater and is defined as the number of gallons of hot water the heater can supply per hour. The following three tables (Table C-33, Table C-34, and Table C-35) provide the FHR ranges and corresponding draw patterns for different equipment types.

Table C-33: Tank Water Heater Draw Pattern

| New FHR Greater Than<br>or Equal to: | New FHR Less Than: | Draw pattern |
|--------------------------------------|--------------------|--------------|
| 0 gallons                            | 18 gallons         | Very Small   |
| 18 gallons                           | 51 gallons         | Low          |
| 51 gallons                           | 75 gallons         | Medium       |
| 75 gallons                           | No Upper Limit     | High         |

Table C-34: Instantaneous Water Heater Draw Pattern

| New Max GPM Greater<br>Than or Equal to: | New Max GPM Rating<br>Less Than: | Draw pattern |
|------------------------------------------|----------------------------------|--------------|
| 0 gallons/minute                         | 1.7 gallons/minute               | Very Small   |
| 1.7 gallons/minute                       | 2.8 gallons/minute               | Low          |
| 2.8 gallons/minute                       | 4 gallons/minute                 | Medium       |
| 4 gallons/minute                         | No Upper Limit                   | High         |

<sup>&</sup>lt;sup>156</sup> Vr is the Rated Storage Volume (in gallons), as determined pursuant to 10 CFR 429.17

| Draw Volume | Draw Pattern |
|-------------|--------------|
| 10 gallons  | Very Small   |
| 38 gallons  | Low          |
| 55 gallons  | Medium       |
| 84 gallons  | High         |

Table C-35: Heat Pump Water Heater Draw Pattern

Current baseline Uniform Energy Factors (efficiencies) for various tank size electric storage water heaters are calculated and shown in Table C-36. The estimated annual hot water usage for electric storage water heaters of various sizes are shown in Table C-37.

Table C-36: Calculated Electric Storage Water Heater Baseline Uniform Energy Factors

| Uniform Energy Factors by<br>Tank Size |            | Capacity (Gallons)    |        |        |                        |        |  |
|----------------------------------------|------------|-----------------------|--------|--------|------------------------|--------|--|
|                                        |            | 30                    | 40     | 50     | 65                     | 80     |  |
|                                        |            | ≥ 20 gal and ≤ 55 gal |        |        | > 55 gal and ≤ 120 gal |        |  |
|                                        | Very Small | 0.8568                | 0.8488 | 0.8408 | 1.8521                 | 1.8356 |  |
| Electric Storage Water                 | Low        | 0.9164                | 0.9134 | 0.9104 | 1.9725                 | 1.956  |  |
| Heater                                 | Medium     | 0.9247                | 0.9227 | 0.9207 | 2.0456                 | 2.0291 |  |
|                                        | High       | 0.9319                | 0.9309 | 0.9299 | 2.1703                 | 2.1538 |  |

Table C-37: Estimated Annual Hot Water Use (gal)

| Tank Size (gal) of Replaced<br>Water Heater | 30     | 40     | 50     | 65     | 80     |
|---------------------------------------------|--------|--------|--------|--------|--------|
| Estimated Annual<br>Hot Water Usage         | 12,761 | 16,696 | 18,973 | 22,767 | 27,320 |

## C.2.1.3. Estimated Useful Life (EUL)

The average lifetime of this measure is dependent on the type of water heating. According to DEER 2014, the following measure lifetimes should be applied:

- 13 years for electric storage tank water heaters
- 10 years for Heat Pump Water Heaters
- 20 years for tank-less electric water heaters
- 15 years for solar water heaters

# C.2.1.4. Deemed Energy Savings and Demand Reductions

Calculated deemed energy savings are shown in Table C-38. Water heater replacements that have tank sizes that fall between the range of 30-gallon to 50-gallon in volume generally produce adequate energy savings.

| Water Heater<br>System Type | HVAC System<br>Type | Draw Pattern |       | Cap   | acity (Galle | ons)  |       |
|-----------------------------|---------------------|--------------|-------|-------|--------------|-------|-------|
|                             |                     |              | 30    | 40    | 50           | 65    | 80    |
|                             |                     | Very Small   | 1,351 | 1,790 | 2,059        | 709   | 867   |
|                             | Gas Furnace         | Low          | 1,236 | 1,624 | 1,854        | 620   | 757   |
|                             | Gas Furnace         | Medium       | 1,221 | 1,602 | 1,826        | 570   | 697   |
|                             |                     | High         | 1,208 | 1,583 | 1,801        | 494   | 605   |
|                             |                     | Very Small   | 1,220 | 1,618 | 1,864        | 475   | 586   |
|                             | Heat Pump           | Low          | 1,105 | 1,452 | 1,658        | 386   | 477   |
|                             |                     | Medium       | 1,090 | 1,430 | 1,631        | 336   | 417   |
| Heat Pump                   |                     | High         | 1,077 | 1,411 | 1,606        | 260   | 324   |
| Water Heater                |                     | Very Small   | 1,130 | 1,501 | 1,731        | 315   | 394   |
|                             | Electric Resistance | Low          | 1,015 | 1,335 | 1,525        | 226   | 285   |
|                             | Electric Resistance | Medium       | 1,000 | 1,313 | 1,497        | 177   | 225   |
|                             |                     | High         | 987   | 1,294 | 1,473        | 100   | 132   |
|                             |                     | Very Small   | 1,260 | 1,670 | 1,923        | 546   | 671   |
|                             | Unconditioned       | Low          | 1,144 | 1,504 | 1,718        | 457   | 562   |
|                             | Unconditioned       | Medium       | 1,130 | 1,483 | 1,690        | 408   | 502   |
|                             | Ē                   | High         | 1,117 | 1,464 | 1,666        | 331   | 409   |
|                             |                     | Very Small   | 1,611 | 2,130 | 2,446        | 1,173 | 1,423 |
| Solar with                  |                     | Low          | 1,496 | 1,964 | 2,240        | 1,083 | 1,314 |
| Electric Backup             | N/A                 | Medium       | 1,481 | 1,942 | 2,212        | 1,034 | 1,254 |
|                             |                     | High         | 1,468 | 1,923 | 2,188        | 958   | 1,161 |

## Table C-38: Deemed kWh Savings for Water Heater Replacement

Calculated deemed demand reductions are shown in Table C-39.

| Water Heater<br>System Type | HVAC System<br>Type | Draw Pattern |        | Cap    | acity (Galle | ons)   |        |
|-----------------------------|---------------------|--------------|--------|--------|--------------|--------|--------|
|                             |                     |              | 30     | 40     | 50           | 65     | 80     |
|                             |                     | Very Small   | 0.1185 | 0.1570 | 0.1806       | 0.0622 | 0.0760 |
|                             | Gas Furnace         | Low          | 0.1084 | 0.1424 | 0.1626       | 0.0543 | 0.0664 |
|                             | Gas Fullace         | Medium       | 0.1071 | 0.1405 | 0.1601       | 0.0500 | 0.0612 |
|                             |                     | High         | 0.1060 | 0.1388 | 0.1580       | 0.0433 | 0.0530 |
|                             |                     | Very Small   | 0.1070 | 0.1419 | 0.1635       | 0.0417 | 0.0514 |
|                             | Heat Dump           | Low          | 0.0969 | 0.1274 | 0.1455       | 0.0338 | 0.0418 |
|                             | Heat Pump           | Medium       | 0.0956 | 0.1254 | 0.1430       | 0.0295 | 0.0365 |
| Heat Pump                   |                     | High         | 0.0944 | 0.1238 | 0.1409       | 0.0228 | 0.0284 |
| Water Heater                |                     | Very Small   | 0.0991 | 0.1316 | 0.1518       | 0.0276 | 0.0345 |
|                             | Electric Resistance | Low          | 0.0890 | 0.1171 | 0.1338       | 0.0198 | 0.0250 |
|                             |                     | Medium       | 0.0877 | 0.1152 | 0.1313       | 0.0155 | 0.0197 |
|                             |                     | High         | 0.0866 | 0.1135 | 0.1292       | 0.0088 | 0.0116 |
|                             |                     | Very Small   | 0.1105 | 0.1465 | 0.1687       | 0.0479 | 0.0589 |
|                             | Unconditioned       | Low          | 0.1004 | 0.1319 | 0.1507       | 0.0401 | 0.0493 |
|                             | Unconuntioned       | Medium       | 0.0991 | 0.1300 | 0.1482       | 0.0357 | 0.0440 |
|                             |                     | High         | 0.0979 | 0.1284 | 0.1461       | 0.0291 | 0.0359 |
|                             |                     | Very Small   | 0.1413 | 0.1868 | 0.2145       | 0.1029 | 0.1248 |
| Solar with                  | N/A                 | Low          | 0.1312 | 0.1722 | 0.1965       | 0.0950 | 0.1152 |
| Electric Backup             | IN / A              | Medium       | 0.1299 | 0.1703 | 0.1940       | 0.0907 | 0.1100 |
|                             |                     | High         | 0.1288 | 0.1687 | 0.1919       | 0.0840 | 0.1018 |

Table C-39: Deemed kW Savings for Water Heater Replacement

# C.2.1.5. Calculation of Deemed Savings – Heat Pump Water Heater (HPWH)

#### C.2.1.5.1. Energy Savings – HPWH

The residential heat pump water heater (HPWH) measure involves the installation of an integrated ENERGY STAR® HPWH. The HPWHs available through the ENERGY STAR product finder<sup>157</sup> have an average UEF of 3.22.

The variables affecting deemed savings are: storage tank volume, HPWH Energy Factor (EF), HPWH installation location (in conditioned or unconditioned space), and weather zone. This measure takes into account an air-conditioning energy savings ("Cooling Bonus") and an additional space heating energy requirement ("Heating Penalty") associated with the HPWH when it is installed inside conditioned space.

<sup>&</sup>lt;sup>157</sup> www.energystar.gov/productfinder/product/certified-water-heaters/ accessed on 7/10/2019.

kWh<sub>Savings</sub>

$$= \frac{\rho \times C_p \times V \times \left(T_{SetPoint} - T_{Supply}\right) \times \left(\frac{1}{EF_{pre}} - \left(\frac{1}{(EF_{post} \times (1 + PA\%) \times Adj)}\right)}{3,412 Btu/kWh}\right)$$

Where:

 $\rho$  = Water density = 8.33 lb/gal

 $C_p$  = Specific heat of water = 1 BTU/lb. °F

V = Estimated annual hot water use (gal) from Table C-37

 $T_{SetPoin}$  = Water heater set point (value = 123.61°F, based on on-site testing of New Orleans homes)

 $T_{Supply}$  = Average New Orleans area supply water temperature, 74.8°F

*EF*<sub>pre</sub> = Baseline Uniform Energy Factor from Table C-36

EF<sub>post</sub> = Uniform Energy Factor of new HPWH. ENERGY STAR® average is 3.22<sup>158</sup>

PA% = Performance Adjustment to adjust the HPWH EF relative to ambient air temperature per DOE guidance<sup>159</sup> = 0.00008 ×  $T_{amb}^3$  + 0.0011 ×  $T_{amb}^2$  - 0.4833 ×  $T_{amb}$  + 0.0857. Assumed conditioned space, 73.4 degrees<sup>160</sup>, PA% = 2.17%. For unconditioned space, 68.78 degrees<sup>161</sup>, PA% = -1.92%

 $T_{amb}$  = Ambient temperature dependent on location of HPWH (Conditioned or Unconditioned Space) and Weather Zone from Table C-40

Adj =HPWH-specific adjustment factor to account for Cooling Bonus and Heating Penalty on an annual basis, as well as backup electrical resistance heating which is estimated at 0.92 EF. Adjustment factors are listed in Table C-41.

3,412 Btu/kWh = conversion factor to convert BTU to kWh

The average ambient air temperatures listed in Table C-40 are applicable to the installation locations for the HPWH. Unconditioned space is considered to be an unheated garage-like environment. This data is based on local ambient temperatures for each weather zone calculated from TMY3 weather data. The conditioned space temperatures

<sup>&</sup>lt;sup>158</sup> Based on an inventory of ENERGY STAR<sup>®</sup>-listed models in 2019.

<sup>&</sup>lt;sup>159</sup> Kelso, J. 2003. Incorporating Water Heater Replacement into The Weatherization Assistance Program, May. D&R International, Ltd. Information Tool Kit.

<sup>&</sup>lt;sup>160</sup> "Average daily outside temperature at which a building maintains a comfortable indoor temperature without heating or cooling"; <u>www.weatherdatadepot.com/faq#.USPZwKWvN8E</u>

<sup>&</sup>lt;sup>161</sup> From NREL TMY3 database

assume thermostat settings of 78°F (cooling season) and 70°F (heating season), and a "balance point temperature"<sup>162</sup> of 65°F. Unconditioned space ambient temperatures are adjusted from the local temperatures by seasonal factors<sup>163</sup> to account for a garage-like setting.

|            | Conditioned Space | Unconditioned Space |
|------------|-------------------|---------------------|
| Tambient   | 73.4°F            | 68.9°F              |
| PA% Factor | 2.17%             | - 1.91%             |

| Water Heater Location | Furnace Type     | Adjustment Factor |
|-----------------------|------------------|-------------------|
| Conditioned Space     | Gas              | 0.917             |
|                       | Heat Pump        | 1.201             |
|                       | Elec. Resistance | 1.395             |
| Unconditioned Space   | N/A              | 1.07              |

Table C-41: HPWH Adjustment<sup>164</sup>

As an example, the following deemed electricity savings are applicable for the replacement of a 50-gallon electric storage tank water heater having a medium draw pattern, with a 50-gallon heat pump water heater using an ENERGY STAR® model with an EF of 3.22 in conditioned space for a household using a gas furnace in New Orleans:

kWh<sub>Savings</sub>

$$=\frac{8.33 \times 1 \times 18,973 \times (123.61 - 74.8) \times \left(\frac{1}{0.9207} - \left(\frac{1}{3.22 \times (1 + 0.0217355)} \times 0.917\right)\right)}{3,412 Btu/kWh}$$

= 1,825.758 kWh

C.2.1.5.2. Demand Savings – HPWH

 $kW_{savings} = kWh_{savings} \times Ratio_{Annual kWh}^{Peak kW}$ 

<sup>&</sup>lt;sup>162</sup> "Average daily outside temperature at which a building maintains a comfortable indoor temperature without heating or cooling"; <a href="https://www.weatherdatadepot.com/faq#.USPZwKWvN8E">www.weatherdatadepot.com/faq#.USPZwKWvN8E</a>

<sup>&</sup>lt;sup>163</sup> ASHRAE: Standard 152-2004 Table 6.1b and 6.2b

<sup>&</sup>lt;sup>164</sup> In order to facilitate an algorithmic approach: a spreadsheet model was created which modeled savings accounting for Cooling Bonus and Heating Penalty on an annual basis, as well as backup electrical resistance heating; HPWH Adjustment factors were derived to equate the results of this more extensive model to a simpler algorithm.

Where:

 $Ratio_{Annual \ kWh}^{Peak \ kW} = 0.0000877$ 

Demand savings were calculated using the US DOE's "*Building America Performance Analysis Procedures for Existing Homes*" combined domestic hot water use profile.<sup>165</sup> Based on this profile, the ratio of Peak kW to Annual kWh for domestic hot water usage was estimated to be 0.0000877 kW per annual kWh savings

For the HPWH example shown in equation above, peak demand savings is 1,826 kWh × 0.0000877 = 0.160 kW.

# C.2.1.6. Calculation of Deemed Savings – Solar Water Heating with Electric Backup

#### C.2.1.6.1. Energy Savings – Solar Water Heating Systems with Electric Backup

The residential solar water heater measure involves the installation of an ENERGY STAR® certified solar water heater rated by the Solar Rating and Certification Corporation (SRCC). Solar water heaters available through the ENERGY STAR® product finder<sup>166</sup> have an average Solar Energy Factor (SEF) of 8.7 for electric backup.

The variables affecting deemed savings are: SEF, LF, and weather zone.

The SRCC determines SEF based on standardized 1,500 Btu/ft<sup>2</sup>-day solar radiation profile across the U.S. As solar insolation varies widely depending on geographic location, in order to derive more accurate estimates for a given locale, Localization Factors (LF) are used to adjust the SEF. The LF for the New Orleans weather zone have been calculated. The LF is based on the daily total insolation (1,598 in New Orleans), averaged annually, per a Satellite Solar Radiation model developed by the State University of New York (SUNY).

$$kWh_{Savings} = \frac{\rho \times C_p \times V \times \left(T_{SetPoint} - T_{Supply}\right) \times \left(\frac{1}{EF_{pre}} - \frac{1}{SEF \ x \ LF}\right)}{3412 \ Btu/kWh}$$

Where:

 $\rho$  = Water density = 8.33 lb./gal

 $C_p$  = Specific heat of water = 1 BTU/lb·°F

<sup>&</sup>lt;sup>165</sup> U.S. DOE "Building America Performance Analysis Procedures for Existing Homes" combined domestic hot water use profile.

<sup>&</sup>lt;sup>166</sup> www.energystar.gov/productfinder/product/certified-water-heaters/results

*V* = Estimated annual hot water use (gal) from Table C-37  $T_{SetPoint}$  = Water heater set point (default value = 122.24°F)  $T_{Supply}$  = Average New Orleans area supply water temperature, 74.8°F  $EF_{pre}$  = Baseline Energy Factor SEF = Solar Energy Factor of new water heater, default of 8.7 LF = Localization Factor for SEF of new water heater in New Orleans, 1.068

As an example, the following deemed electricity savings are applicable for replacement of a 50-gallon (High Draw) electric storage tank water heater with a 50-gallon solar water heater with electric backup using a model with an EF of 8.7 for a household in New Orleans:

$$kWh_{savings} = \frac{8.33 \times 1 \times 18,973 \times (123.61 - 74.8) \times \left(\frac{1}{0.9209} - \frac{1}{(8.7 \times 1.068)}\right)}{3,412 Btu/kWh}$$
$$= 2,212.30 \ kWh/yr$$

$$kW_{savings} = kWh_{savings} \times Ratio \frac{Peak \ kW}{Annual \ kWh}$$

Where:

$$Ratio \frac{Peak \ kW}{Annual \ kWh} = 0.0000877$$

For the above example, peak demand savings is 2,188.00 kWh x 0.0000877 = 0.194 kW.

#### C.2.1.7. Incremental Cost

Incremental costs are as follows.

Table C-42: Incremental Costs

|                                    | Size Category |          |                        |          |          |
|------------------------------------|---------------|----------|------------------------|----------|----------|
| Replacement Type                   | 30            | 40       | 50                     | 65       | 80       |
| Storage Tank - HPWH <sup>167</sup> | \$582.99      | \$493.74 | \$404.37               | \$100.00 | \$138.38 |
| Solar with Gas Back-up             |               |          | \$8,401 <sup>168</sup> |          |          |

<sup>&</sup>lt;sup>167</sup> CA DEER Workpaper SWWH014 – HPWH Res. (2019)

<sup>&</sup>lt;sup>168</sup> California Solar Thermal Program: 2012 reported project costs.

## C.2.1.8. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure has been implemented in Energy Smart programs. However, participation for this measure is currently too low to create reliable averages of measure characteristics. As a result, savings are calculated using ENERGY STAR default values.

If participation reached 1% of residential Energy Smart program savings, the evaluation should include a review of actual efficiency levels and costs of units purchased by New Orleans residents and the TPE recommends a metering study to support usage assumptions. Further, the TPE recommends a review of sizing changes from baseline to post-retrofit and an assessment of whether there needs to be consideration of snapback effects in HPWH retrofits.

If the measure is under consideration for increased emphasis in Energy Smart, the TPE recommends a market assessment to provide guidance as to the needs of New Orleans residents and plumbing contractors and to address savings potential.

Deemed parameters should be updated whenever DOE standards or other applicable codes warrant.

#### C.2.2.1. Measure Description

This measure involves water heater jackets (WHJ) installed on water heaters located in an unconditioned space. These estimates apply to all weather regions. This measure applies to all residential applications.

#### C.2.2.2. Baseline and Efficiency Standards

Baseline is assumed to be the post-1991, storage-type water heater.

WHJ must be installed on storage water heaters having a capacity of 30 gallons or greater. The manufacturer's instructions on the WHJ and the water heater itself should be followed. If electric, thermostat and heating element access panels must be left uncovered. If gas, follow WHJ installation instructions regarding combustion air and flue access.

Table C-43: Water Heater Jackets – Baseline and Efficiency Standards

| Baseline                  | Efficiency Standard         |
|---------------------------|-----------------------------|
| Un-insulated water heater | Minimum insulation of R-6.7 |

# C.2.2.3. Estimated Useful Life (EUL)

The average lifetime of this measure is 13 years, according to NEAT v.8.6.

# C.2.2.4. Deemed Savings Values

Deemed savings are per installed jacket based on the jacket thickness, the type of water heating and the tank size.

Table C-44: Water Heater Jackets – Electric Heating Deemed Savings Values

|                             | Electric Water Heating |     |     |            |       |       |
|-----------------------------|------------------------|-----|-----|------------|-------|-------|
| Approximate Tank Size (gal) | kWh Savings            |     |     | kW Savings |       |       |
| Approximate rank Size (gai) | 40                     | 52  | 80  | 40         | 52    | 80    |
| 2" WHJ savings kWh          | 68                     | 76  | 101 | 0.005      | 0.006 | 0.008 |
| 3" WHJ savings kWh          | 94                     | 104 | 139 | 0.007      | 0.008 | 0.011 |

# C.2.2.5. Calculation of Deemed Savings

Energy consumption for baseline units, with and without insulation jackets, was calculated using industry-standard energy-use calculation methodologies for residential domestic water heating. Variables in the calculations include the following:

- Water heater fuel type (electric or gas/propane)
- Baseline EF
- Estimated U-value of baseline unit
- Ambient temperature

- Tank volume
- Tank surface area
- Tank temperature
- Estimated hot water consumption

To estimate peak energy consumption, a load profile for residential water heating was developed from individual load profiles for the following end-uses:

- Clothes washer
- Dishwasher
- Faucet
- Shower
- Sink-filling
- Bath
- Miscellaneous

This end-use load shape data was calibrated using metered end-used data obtained from several utility end-use metering studies.

#### C.2.2.6. Incremental Cost

The incremental cost of a Water Heater Jacket is equal to the full installed cost. If the cost is unknown, use \$35<sup>169</sup>.

# C.2.2.7. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure was not implemented in Energy Smart programs. As a result, savings are calculated using default values based on NEAT v.8.6 estimates.

In the PY7 or PY8 evaluation of the Home Performance with Energy Star program, it is recommended that the percent of unjacketed water heaters is documented in order to inform whether water heater jackets warrant inclusion as a direct install measure.

<sup>&</sup>lt;sup>169</sup> Based on review of available products for 40 and 50-gallon water heaters.

#### C.2.3. Water Heater Pipe Insulation

#### C.2.3.1. Measure Description

This measure requires water heater pipe insulation. Water heaters plumbed with heat traps are not eligible to receive incentives for this measure. New construction and water heater retrofits are not eligible for this measure, because they must meet current code requirements. This measure applies to all residential applications.

#### C.2.3.2. Baseline and Efficiency Standards

Baseline is assumed to be the typical gas or electric water heater with no heat.

All hot and cold vertical lengths of pipe should be insulated, plus the initial length of horizontal hot and cold water pipe, up to three feet from the transition, or until wall penetration, whichever is less.

Table C-45: Water Heater Pipe Insulation – Baseline and Efficiency Standards

| Baseline                   | Efficiency Standard                  |
|----------------------------|--------------------------------------|
| Un-insulated hot water pip | Minimum insulation thickness of 1/2" |

#### C.2.3.3. Estimated Useful Life (EUL)

The average lifetime of this measure is dependent on the type of water heater it is applied to. According to DEER 2014, the following measure lifetimes should be applied:

- 13 years for electric storage water heating
- 11 years for gas storage water heating
- 10 years for heat pump water heaters

#### C.2.3.4. Deemed Savings Values

The deemed savings per linear foot are detailed below.

Table C-46: Pipe Wrap – Deemed Savings Per Linear Foot

| R-value | Pipe<br>Diameter | kWh   | kW    |
|---------|------------------|-------|-------|
| 2       | 1/2"             | 25.32 | .0029 |
| 5       | 3⁄4″             | 37.99 | .0043 |

#### C.2.3.5. Calculation of Deemed Savings

C.2.3.5.1. Energy Savings

Annual Energy Savings

$$= (U_{pre} - U_{post}) \times A \times (T_{Pipe} - T_{ambient}) \times \left(\frac{1}{RE}\right) \times \frac{Hours_{Total}}{Conversion Factor}$$

Where:

 $U_{pre}$ = 1/(2.03<sup>170</sup>) = 0.49 BTU/h sq. ft. degree F

 $U_{post} = 1/(2.03 + R_{Insulation})$ 

 $R_{Insulation}$  = R-value of installed insulation

A = Surface area in square feet ( $\pi DL$ ) with L (length) and D pipe diameter in feet

 $T_{Pipe}(^{\circ}F) =$  Average temperature of the pipe. Default value = 90 °F (average temperature of pipe between water heater and the wall)

 $T_{ambient}(^{\circ}F) = 68.78^{\circ}F$  (New Orleans)

RE = Recovery Efficiency (or in the case of HPWH, EF); if unknown, use 0.98 as a default for electric resistance water heaters, 0.79 for natural gas water heaters, or 2.2 for heat pump water heaters<sup>171</sup>

 $Hours_{Total} = 8,760 \text{ hr per year}^{172,173}$ 

*Conversion Factor* = 3,412 Btu/kWh for electric water heating or 100,000 Btu/Therm for gas water heating.

#### C.2.3.5.2. Demand Savings

Peak demand savings for hot water heaters installed in conditioned space can be calculated using the following formula for electric:

$$kW_{savings} = (U_{pre} - U_{post}) \times A \times (T_{Pipe} - T_{ambientMAX}) \times \left(\frac{1}{RE}\right) \times \frac{1}{3,412 Btu/kWh}$$

Where:

 $U_{pre} = 1/(2.03) = 0.49$  BTU/h sq ft degree F

 $U_{post} = 1/(2.03 + R_{Insulation})$ 

http://www3.dps.ny.gov/W/PSCWeb.nsf/96f0fec0b45a3c6485257688006a701a/06f2fee55575bd8a852576e4006f 9af7/\$FILE/TechManualNYRevised10-15-10.pdf

<sup>&</sup>lt;sup>170</sup> 2.03 is the R-value representing the film coefficients between water and the inside of the pipe and between the surface and air. Mark's Standard Handbook for Mechanical Engineers, 8th edition.

<sup>&</sup>lt;sup>171</sup> Default values based on median recovery efficiency of residential water heaters by fuel type in the AHRI database, at <u>https://www.ahridirectory.org/ahridirectory/pages/rwh/defaultSearch.aspx</u>

<sup>&</sup>lt;sup>172</sup> Ontario Energy's Measures and Assumptions for Demand Side Management (DSM) Planning <u>www.ontarioenergyboard.ca/OEB/ Documents/EB-2008-</u> <u>0346/Navigant Appendix C substantiation sheet 20090429.pdf</u>

<sup>&</sup>lt;sup>173</sup> New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs Residential, Multi-Family, and Commercial/Industrial Measures

 $R_{Insulation}$  = R-value of installed insulation

A = Surface area in square feet ( $\pi DL$ ) with L (length) and D pipe diameter in feet

 $T_{Pipe}(^{\circ}F) =$  Average temperature of the pipe. Default value = 90 °F (average temperature of pipe between water heater and the wall)

 $T_{ambientMAX}(^{\circ}F) = For$  water heaters installed in unconditioned basements, use an average ambient temperature of 75°F; for water heaters inside the thermal envelope, use an average ambient temperature of 78 °F

RE = Recovery efficiency (or in the case of HPWH, EF); if unknown, use 0.98 as a default for electric resistance or 2.2 for heat pump water heaters.

#### C.2.3.6. Incremental Cost

The incremental cost of a Water Heater Pipe Insulation is equal to the full installed cost. If the cost is unknown, use \$3 per linear foot of insulation<sup>174</sup>.

## C.2.3.7. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure was not implemented in Energy Smart programs. As a result, savings are calculated using default values based on NEAT v.8.6 estimates.

In the PY7 or PY8 evaluation of the Home Performance with Energy Star program, it is recommended that the percent of uninsulated hot water lines is documented in order to inform whether pipe insulation warrant inclusion as a direct install measure

<sup>&</sup>lt;sup>174</sup> California DEER 2014

## C.2.4.1. Measure Description

This measure involves retrofitting aerators on kitchen and bathroom water faucets. The savings values are per faucet aerator installed. It is not a requirement that all faucets in a home be treated for the deemed savings to be applicable. This measure applies to all residential applications.

## C.2.4.2. Baseline and Efficiency Standards

The 2.2 gallons per minute (GPM) baseline faucet flow rate<sup>175</sup> is based upon the Energy Policy Act of 1992 (EPAct 92) and subsequent EPAct actions which limited faucet flows to 2.2 GPM. The US EPA WaterSense® specification for faucet aerators is 1.5 GPM.<sup>176</sup>

Table C-47: Faucet Aerators – Baseline and Efficiency Standards

| Baseline | Efficiency Standard |  |
|----------|---------------------|--|
| 2.2 GPM  | 1.5 GPM maximum     |  |

The deemed savings values are for residential, retrofit-only installation of kitchen and bathroom faucet aerators.

# C.2.4.3. Additional Requirement for Contractor-Installed Aerators

Aerators that have been defaced so as to make the flow rating illegible are not eligible for replacement. For direct install programs, all aerators removed shall be collected by the contractor and held for possible inspection by the utility until all inspections for invoiced installations have been completed.

#### C.2.4.4. Estimated Useful Life (EUL)

The average lifetime of this measure is 10 years, according to DEER 2014.

# C.2.4.5. Deemed Savings

Table C-47 summarizes the deemed kWh and kW for 1.5 GPM and 1.0 GPM faucet aerators, based on the algorithms in the subsections to follow.

<sup>&</sup>lt;sup>175</sup> Maximum flow rate federal standard for lavatories and aerators set in Federal Energy Policy Act of 1992 and codified at 2.2 GPM at 60 psi in 10CFR430.32

<sup>&</sup>lt;sup>176</sup> "High-Efficiency Lavatory Faucet Specification." WaterSense. EPA. October 1, 2007. http://www.epa.gov/watersense/partners/faucets\_final.html

| Efficient GPM Rating | Water Heater Type   | kWh   | kW     |
|----------------------|---------------------|-------|--------|
|                      | Electric Resistance | 26.80 | 0.0028 |
| 1.5 GPM              | Heat Pump           | 11.94 | 0.0012 |
| 1.0.0014             | Electric Resistance | 44.66 | 0.0046 |
| 1.0 GPM              | Heat Pump           | 19.90 | 0.0021 |

Table C-48: Faucet Aerators – Deemed Savings

# C.2.4.6. Effect of Weather Zones on Water Usage and Water Main Temperature

Average water main temperatures for the New Orleans is 74.8°F. The water main temperature data was approximated using the following formula.<sup>177</sup>

 $T \text{ of water main} = T_{avg \text{ ambient}} + R \times \Delta T_{amb}$ 

Where:

 $T_{avg \ ambient}$  = the average annual ambient dry bulb temperature, 68.8°F in New Orleans

R = 0.05

 $\Delta T_{amb}$  = the average of maximum and minimum ambient air-dry bulb temperature for the month (Tmax + Tmin)/2 where Tmax = maximum ambient dry bulb temperature for the month, and Tmin = minimum ambient dry bulb temperature for the month

Baseline and efficiency-standard water usages per capita were derived from an analysis of metered studies of residential water efficiency retrofit projects conducted for Seattle, WA.; the East Bay Municipal Utility District (CA); and Tampa, FL.<sup>178, 179, 180</sup>

<sup>&</sup>lt;sup>177</sup> Burch, J & Christensen, C. 2007. "Towards Development of an Algorithm for Mains Water Temperature." Proceedings of the 2007 ASES Annual Conference, Cleveland, OH.

<sup>&</sup>lt;sup>178</sup> Seattle Home Water Conservation Study, 2000. "The Impacts of High Efficiency Plumbing Fixture Retrofits in Single-Family Homes." December.

http://www.allianceforwaterefficiency.org/mainsearch.aspx?searchtext=Seattle%20Home%20Water%20Conservat ion%20Study

<sup>&</sup>lt;sup>179</sup> Residential Indoor Water Conservation Study, 2003 "Evaluation of High Efficiency Indoor Plumbing Fixture Retrofits in Single-Family Homes in the East Bay Municipal Utility District Service Area." July. www.allianceforwaterefficiency.org/WorkArea/DownloadAsset.aspx?id=868

<sup>180</sup>\_Tampa Water Department Residential Water Conservation Study, 2004, "The Impacts of High Efficiency Plumbing Fixture Retrofits in Single-Family Homes." January 8.

https://www.cuwcc.org/Portals/0/Document%20Library/Resources/Water%20Efficient%20Product%20Informatio n/End%20Use%20Studies%20-%20Multiple%20Technologies/Tampa-Residential-Water-Conservation-Final-Report.pdf

#### C.2.4.7. Estimated Hot Water Usage Reduction

 $Water \ consumption = \frac{\frac{Faucet \ Use \ per \ Person}{Day} \times Occupants \ per \ Home \times \frac{365 \ Days}{Year}}{Faucets \ per \ Home}$ 

Applying the formula to the values from Table C-50 returns the following baseline and post water consumption.

Baseline (2.2 GPM): 9.7 x 2.37 x 365 / 3.86 = 2,174

Post (1.5 GPM): 8.2 x 2.37 x 365 / 3.86 = 1,838

Post (1.0 GPM): 7.2 x 2.37 x 365 / 3.86 = 1,614

Gallons of water saved per year can be found by subtracting the post consumption in gallons per year per aerator from the baseline consumption.

- Gallons of water saved per year (1.5 GPM): 2,174 1,838 = 336
- Gallons of water saved per year (1.0 GPM): 2,174 1,614 = 560

| Assumption Type                                           | Seattle<br>Study <sup>181</sup> | Tampa<br>Study <sup>182</sup> | East<br>Bay<br>Study | Average | Value used<br>for New<br>Orleans |
|-----------------------------------------------------------|---------------------------------|-------------------------------|----------------------|---------|----------------------------------|
| Faucet use gallons/person/day (baseline)                  | 9.2                             | 9.4                           | 10.5                 | 9.7     | 9.7                              |
| Faucet use gallons/person/day (1.5 GPM)                   | 8.0                             | 6.2                           | 10.5                 | 8.2     | 8.2                              |
| Faucet use gallons/person/day (1.0<br>GPM) <sup>183</sup> |                                 |                               |                      |         | 7.2                              |
| Occupants per home                                        | 2.54                            | 2.92                          | 2.56                 | 2.67    | 2.37 <sup>184</sup>              |
| Faucets per home <sup>185</sup>                           |                                 |                               |                      |         | 3.86                             |
| Gal./yr./faucet (baseline)                                |                                 |                               |                      |         | 2,174                            |
| Gal./yr./faucet (1.5 GPM)                                 |                                 |                               |                      |         | 1,838                            |
| Gal./yr./faucet (1.0 GPM)                                 |                                 |                               |                      |         | 1,614                            |
| Percent hot water                                         | 76.10% <sup>4</sup>             | Not listed                    | 57.60%5              | 66.90%  | 66.9%                            |
| Water gallons saved/yr./faucet (1.5 GPM)                  |                                 |                               |                      |         | 336                              |
| Water gallons saved/yr./faucet (1.0 GPM)                  |                                 |                               |                      |         | 560                              |

Table C-49: Estimated Aerator Hot Water Usage Reduction

<sup>&</sup>lt;sup>181</sup> Average of pre-retrofit percent faucet hot water 72.7% on page 35, and post-retrofit percent faucet hot water 79.5% on page 53.

<sup>&</sup>lt;sup>182</sup> Average of pre-retrofit percent faucet hot water 65.2% on page 31 and post-retrofit faucet hot water percentage 50.0% on page 54.

<sup>&</sup>lt;sup>183</sup> This value is a linear extrapolation of gallons per person per day from the baseline (2.2 GPM) and the 1.5 GPM case.

<sup>&</sup>lt;sup>184</sup> 2010-2014, US Census Bureau. http://www.census.gov/quickfacts/table/PST045215/2255000

<sup>&</sup>lt;sup>185</sup> Faucets per home assumed to be equal to one plus the number half bathrooms and full bathrooms per home, taken from 2009 RECS, Table HC2.10.

Based on the average percentage hot water shown in Table C-49, the average mixed water temperature across all weather zones was determined. The hot water temperature was found to be 122.695°F in a sample of 144 homes in New Orleans tested by the TPE. The mixed water temperature used in the energy savings calculation can be seen in Table C-50.

| Table C-50: Mixed Water | Temperature Calculation |
|-------------------------|-------------------------|
|-------------------------|-------------------------|

| Average Water Main<br>Temperature (°F) | Average Water<br>Heater Setpoint<br>Temperature (°F) | Percent<br>Hot Water | Mixed Water<br>Temperature (°F) |
|----------------------------------------|------------------------------------------------------|----------------------|---------------------------------|
| 74.8                                   | 122.695                                              | 66.9%                | 106.8                           |

#### C.2.4.8. Calculation of Deemed Savings

C.2.4.8.1. Energy Savings

Annual Energy Savings = 
$$\frac{\rho \times C_P \times V \times (T_{Mixed} - T_{Supply}) \times (\frac{1}{RE})}{Conversion Factor}$$

Where:

 $\rho$  = Water density = 8.33 lb/gal

 $C_P$  = Specific heat of water = 1 BTU/lb·°F

V = Gallons of water saved per year per faucet from Table C-50

 $T_{Mixed}$  = Mixed water temperature, 106.8°F, from Table C-50

 $T_{Supply}$  = Average New Orleans area supply water temperature, 74.8°F

RE = Recovery Efficiency (or in the case of HPWH, EF); if unknown, use 0.98 as a default for electric resistance water heaters, 2.2 for heat pump water heaters, or 0.79 for natural gas water heaters<sup>186</sup>.

*Conversion Factor* = 3,412 Btu/kWh for electric water heating or 100,000 Btu/Therm for gas water heating

C.2.4.8.2. Demand Savings

Demand savings for homes with electric water heating were calculated using the following formula:

 $kW_{savings} = kWh_{savings} \times Ratio_{Annual kW}^{Peak kW}$ 

Where:

 $Ratio_{Annual \,kWh}^{Peak \,kW} = 0.000104$ 

<sup>&</sup>lt;sup>186</sup> Default values based on median recovery efficiency of residential water heaters by fuel type in the AHRI database, at <u>https://www.ahridirectory.org/ahridirectory/pages/rwh/defaultSearch.aspx</u>

This value is taken from the DOE domestic hot water use study.<sup>187</sup> The DOE domestic hot water use study provided values for the share of daily water use per hour in a profile for shower bath, and sink hot water use. An average was calculated using peak hours of 3 PM to 6 PM to generate an average hourly share of daily water use during peak hours. That value was divided by 365 to generate a ratio of peak share to annual use.

# C.2.4.8.3. Example Calculation of Deemed Savings Values

Deemed savings values are per faucet aerator installed.

Table C-51: Example -Replacing 2.2 GPM with 1.5 GPM Faucet Aerator

| Faucet Aerator, New Orleans Weather Zone |                                   |                      |  |
|------------------------------------------|-----------------------------------|----------------------|--|
| Water Usage Reduction (gal)              | 336                               |                      |  |
| T <sub>Supply</sub>                      | 74.8°F                            |                      |  |
| T <sub>Mixed</sub>                       | 106.8°F                           |                      |  |
| Water heater RE                          | 0.98 (Electric) / 2.2 (Heat Pump) |                      |  |
| (excluding standby losses)               |                                   |                      |  |
| Energy Savings                           | Electric: 26.8 kWh                | Heat Pump: 11.94 kWh |  |
| Demand Savings                           | Electric: 0.0028 kW               | Heat Pump: 0.0012 kW |  |

# C.2.4.9. In-Service Rates

#### Table C-52: In-Service Rates

| Delivery Channel          | ISR  |
|---------------------------|------|
| Direct Install            | 0.98 |
| Mailer Kit <sup>188</sup> | 0.45 |

#### C.2.4.10. Future Studies

Metering studies for water use are exceedingly expensive. In past metering efforts, the TPE has found costs to exceed \$750 per site. As such, we do not advise a metering study for this measure unless savings exceed 5% of residential program savings.

<sup>&</sup>lt;sup>187</sup> U.S. DOE's 2006. "Building America Performance Analysis Procedures for Existing Homes". National Renewable Energy Laboratory. May. <u>http://www.nrel.gov/docs/fy06osti/38238.pdf</u> (See Figure 3, page 17.) This TRM looked at hourly share of daily water use at 3pm 4pm, 5pm, and 6pm in Figure 3. The fractions of hourly use derived were 0.022 for 3pm, 0.03 for 4pm, 0.04 for 5pm, and 0.06 for 6pm. The average of these fractions is 0.038, which is the average share of daily water use that falls on a peak hour per day. Dividing that value by 365 days calculates a ratio of 0.000104 as the ratio of peak share to annual use.

<sup>&</sup>lt;sup>188</sup> Based on primary data collection from 4,572 PY5-9 program participants.

### C.2.5.1. Measure Description

This measure consists of removing existing showerheads and installing low-flow showerheads in residences. This measure applies to all residential applications.

# C.2.5.2. Baseline and Efficiency Standards

The baseline average flow rate of the existing stock of showerheads is based on the current US DOE standard.

The incentive is for replacement of an existing showerhead with a new showerhead rated at 2.0, 1.75 or 1.5 gallons per minute (GPM). The only showerheads eligible for installation are those that are not easily modified to increase the flow rate.

# C.2.5.3. Additional Requirement for Contractor-Installed Showerheads

Existing showerheads that have been defaced so as to make the flow rating illegible are not eligible for replacement. All showerheads removed shall be collected by the contractor and held for possible inspection by the utility until all inspections for invoiced installations have been completed.

| Measure             | New<br>Showerhead<br>Flow Rate <sup>189</sup><br>(GPM) | Existing<br>Showerhead<br>Baseline<br>Flow Rate<br>(GPM) |
|---------------------|--------------------------------------------------------|----------------------------------------------------------|
| 2.0 GPM showerhead  | 2.00                                                   | 2.50                                                     |
| 1.75 GPM showerhead | 1.75                                                   | 2.50                                                     |
| 1.5 GPM showerhead  | 1.50                                                   | 2.50                                                     |

Table C-53: Low-Flow Showerhead – Baseline and Efficiency Standards

The U.S. Environmental Protection Agency (EPA) WaterSense® Program has implemented efficiency standards for showerheads requiring a maximum flow rate of 2.0 GPM<sup>190</sup>.

# C.2.5.4. Estimated Useful Life (EUL)

The average lifetime of this measure is 10 years, according to DEER 2014.

<sup>&</sup>lt;sup>189</sup> All flow rate requirements listed here are the rated flow of the showerhead measured at 80 pounds per square inch of pressure (psi).

<sup>&</sup>lt;sup>190</sup> https://www.epa.gov/sites/production/files/2018-07/documents/ws-products-specification-showerheads-v1-1.pdf

# C.2.5.5. Effect of Weather Zones on Water Usage and Water Main Temperature

Average water main temperature is 74.8°F. The water main temperature data was approximated using the following formula.<sup>191</sup>

$$T \text{ of water main} = T_{avg \text{ ambient}} + R \times \Delta T_{amb}$$

Where:

R = 0.05

 $T_{avg ambient}$  = the average annual ambient air dry-bulb temperature

 $\Delta T_{amb} = 74.8$  (New Orleans), the average of maximum and minimum ambient air drybulb temperature for the month (Tmax + Tmin )/2 where Tmax = maximum ambient dry bulb temperature for the month and Tmin = minimum ambient dry bulb temperature for the month

#### C.2.5.6. Estimated Hot Water Usage Reduction

Baseline and efficiency standard water usages per capita were derived from an analysis of metered studies of residential water efficiency retrofit projects conducted for Seattle, WA.; the East Bay Municipal Utility District (CA); and Tampa, FL.<sup>192,193,194</sup> See Table C-54 for derivation of water usage values.

To determine water consumption, the following formula was used:

|                              | Showers per Person | ) 365 Days | , Occupants per Home |
|------------------------------|--------------------|------------|----------------------|
| $\overline{Shower}^{\times}$ | Day >>             | Year       | Showerheads per Home |

Applying the formula to the values from Table C-54 returns the following baseline and post water consumption.

<sup>&</sup>lt;sup>191</sup> Burch, J. & Christensen, C. 2007. *"Towards Development of an Algorithm for Mains Water Temperature"* Proceedings of the 2007 ASES Annual Conference, Cleveland, OH.

<sup>&</sup>lt;sup>192</sup> Seattle Home Water Conservation Study, 2000. "The Impacts of High Efficiency Plumbing Fixture Retrofits in Single-Family Homes." December.

http://www.allianceforwaterefficiency.org/mainsearch.aspx?searchtext=Seattle Home Water Conservation Study

<sup>&</sup>lt;sup>193</sup> Residential Indoor Water Conservation Study, 2003. "Evaluation of High Efficiency Indoor Plumbing Fixture Retrofits in Single-Family Homes in the East Bay Municipal Utility District Service Area." July. http://www.allianceforwaterefficiency.org/WorkArea/DownloadAsset.aspx?id=868

<sup>&</sup>lt;sup>194</sup> Tampa Water Department Residential Water Conservation Study, 2004, *"The Impacts of High Efficiency Plumbing Fixture Retrofits in Single-Family Homes,"* January 8.

https://www.cuwcc.org/Portals/0/Document%20Library/Resources/Water%20Efficient%20Product%20Informatio n/End%20Use%20Studies%20-%20Multiple%20Technologies/Tampa-Residential-Water-Conservation-Final-Report.pdf

- Baseline (2.5 GPM): 20.7 x 0.69 x 365 x 2.37 / 1.62 = 7,627
- Post (2.0 GPM): 16.5 x 0.72 x 365 x 2.37 / 1.62 = 6,344
- Post (1.5 GPM): 12.4 x 0.72 x 365 x 2.37 / 1.62 = 4,767

Although the referenced studies do not provide data on 1.75 GPM showerheads, the consumption values for 2.5, 2.0, and 1.5 GPM roughly follow a linear pattern. Taking a simple average of the consumption for 2.0 and 1.5 GPM showerheads returns a value for a 1.75 GPM showerhead:

Post (1.75 GPM): (6,344 + 4,767) / 2 = 5,556

Gallons of water saved per year can be found by subtracting the post consumption in gallons per year per showerhead from the baseline consumption. These values are also in Table C-54.

- Gallons of water saved per year (2.0 GPM): (7,627 6,344) = 1,283
- Gallons of water saved per year (1.75 GPM): (7,627 5,556) = 2,071
- Gallons of water saved per year (1.5 GPM): (7,627 4,767) = 2,860

| Assumption Type                               | Seattle<br>Study <sup>195</sup> | Tampa<br>Study | East Bay<br>Study <sup>196</sup> | Average    | Value used for<br>New Orleans |
|-----------------------------------------------|---------------------------------|----------------|----------------------------------|------------|-------------------------------|
| Gallons/shower @ 2.5 GPM<br>(baseline)        | 19.8                            | 20.0           | 22.3                             | 20.7       | 20.7                          |
| Gallons/shower @ 2.0 GPM                      | 15.8                            | 16.0           | 17.8                             | 16.5       | 16.5                          |
| Gallons/shower @ 1.5 GPM                      | 11.9                            | 12.0           | 13.4                             | 12.4       | 12.4                          |
| Showers/person/day (baseline)                 | 0.51                            | 0.92           | 0.65                             | 0.69       | 0.69                          |
| Showers/person/day (post)                     | 0.59                            | 0.82           | 0.74                             | 0.72       | 0.72                          |
| Occupants per home                            | 2.54                            | 2.92           | 2.56                             | 2.67       | 2.37 <sup>197</sup>           |
| Showerheads per home <sup>198</sup>           | not listed                      | not listed     | not listed                       | not listed | 1.62                          |
| Water gal./yr./showerhead @ 2.0<br>GPM saved  | not listed                      | not listed     | not listed                       | not listed | 1,283                         |
| Water gal./yr./showerhead @<br>1.75 GPM saved | not listed                      | not listed     | not listed                       | not listed | 2,071                         |

Table C-54: Estimated Showerhead Hot Water Usage Reduction

<sup>&</sup>lt;sup>195</sup> Seattle Study: Average of pre-retrofit percent shower hot water 73.1% on page 35, and post-retrofit percent shower hot water 75.5% on p. 53.

<sup>&</sup>lt;sup>196</sup> East Bay Study: Average of pre-retrofit percent shower hot water 71.9% on page 31 and post-retrofit shower hot water percentage 60.0% on p. 54.

<sup>&</sup>lt;sup>197</sup> 2010-2014, US Census Bureau. http://www.census.gov/quickfacts/table/PST045215/2255000

<sup>&</sup>lt;sup>198</sup> Showerheads per home assumed to be equal to the number of full bathrooms per home, taken from 2009 RECS, Table HC2.10.

| Assumption Type                              | Seattle<br>Study <sup>195</sup> | Tampa<br>Study | East Bay<br>Study <sup>196</sup> | Average    | Value used for<br>New Orleans |
|----------------------------------------------|---------------------------------|----------------|----------------------------------|------------|-------------------------------|
| Water gal./yr./showerhead @ 1.5<br>GPM saved | not listed                      | not listed     | not listed                       | not listed | 2,860                         |
| Percent hot water                            | 74.3%                           | not listed     | 66%                              | 70.1%      | 70.1%                         |

Based on the average percentage hot water shown in, Table C-54, the average mixed water temperature across all weather zones was determined. The hot water temperature was found to be 122.24°F in a sample of 144 homes in New Orleans tested by the TPE. The mixed water temperature used in the energy savings calculation can be seen in Table C-55.

Table C-55: Mixed Water Temperature Calculation

| Weather Zone | Average Water         | Average Setpoint | Percent   | Mixed Water      |
|--------------|-----------------------|------------------|-----------|------------------|
|              | Main Temperature (°F) | Temperature (°F) | Hot Water | Temperature (°F) |
| New Orleans  | 74.8                  | 122.695          | 66.9%     | 106.8            |

# C.2.5.7. Calculation of Deemed Savings

C.2.5.7.1. Energy Savings

Annual Energy Savings = 
$$\frac{\rho \times C_P \times V \times (T_{Mixed} - T_{Supply}) \times (\frac{1}{RE})}{Conversion Factor}$$

Where:

 $\rho$  = Water density = 8.33 lb/gallon

 $C_P$  = Specific heat of water = 1 BTU/lb·°F

V = 2.0, 1.75, or 1.5 GPM showerhead water gallons saved per year (from Table C-54)

 $T_{Mixed}$  = Mixed water temperature, 106.8°F, from Table C-55

 $T_{Supply}$  = Average New Orleans area supply water temperature, 74.8°F

RE = Recovery Efficiency (or in the case of HPWH, EF); if unknown, use 0.98 as a default for electric resistance water heaters, 2.2 for heat pump water heaters,

*Conversion Factor* = 3,412 Btu/kWh for electric water heating or 100,000 Btu/Therm for gas water heating

#### C.2.5.7.2. Demand Savings

Demand savings were calculated using the US Department of Energy's "Building America Performance Analysis Procedures for Existing Homes"<sup>199</sup> combined domestic hot water use profile which resulted in a ratio of 0.000104 Peak kW to Annual kWh. The DOE domestic hot water use study provided values for the share of daily water use per hour in a profile for shower, bath, and sink hot water use. An average was calculated using peak hours of 3pm to 6pm to generate an average hourly share of daily water use during peak hours. That value was divided by 365 to generate a ratio of peak share to annual use.<sup>200</sup>

 $kW_{savings} = kWh_{savings} \times Ratio_{Annual kWh}^{Peak kW}$ 

#### C.2.5.1. Deemed Savings

| 2.0 GPM Showerhead                          |                                              |                        |  |  |
|---------------------------------------------|----------------------------------------------|------------------------|--|--|
| Water gal. saved /year/showerhead @ 2.0 GPM | 1,283                                        |                        |  |  |
| T <sub>Supply</sub>                         | 74                                           | I.8°F                  |  |  |
| T <sub>Mixed</sub>                          | 10                                           | 6.8°F                  |  |  |
| Water heater RE                             | 0.98 (Electric Resista                       | nce) / 2.2 (Heat Pump) |  |  |
| Energy Savings                              | Electric: 102 kWh                            | Heat Pump: 46 kWh      |  |  |
| Demand Savings                              | Electric: 0.0106 kW                          | Heat Pump: 0.0047 kW   |  |  |
| 1.75 GPM Showerhead                         |                                              |                        |  |  |
| Water gal. saved /year/showerhead @ 1.5 GPM | 2,071                                        |                        |  |  |
| $T_{Supply}$                                | 74.8°F                                       |                        |  |  |
| T <sub>Mixed</sub>                          | 106.8°F                                      |                        |  |  |
| Water heater EF (excluding standby losses)  | 0.98 (Electric Resista                       | nce) / 2.2 (Heat Pump) |  |  |
| Energy Savings                              | Electric: 165 kWh                            | Heat Pump: 74 kWh      |  |  |
| Demand Savings                              | Electric: 0.0172 kW                          | Heat Pump:0.0076 kW    |  |  |
| 1.5 GPM \$                                  | Showerhead                                   |                        |  |  |
| Water gal. saved /year/showerhead @ 1.5 GPM | 2,                                           | 860                    |  |  |
| T <sub>Supply</sub>                         | 74.8°F                                       |                        |  |  |
| T <sub>Mixed</sub>                          | 106.8°F                                      |                        |  |  |
| Water heater EF (excluding standby losses)  | 0.98 (Electric Resistance) / 2.2 (Heat Pump) |                        |  |  |
| Energy Savings                              | Electric: 228 kWh Heat Pump: 102 kW          |                        |  |  |
| Demand Savings                              | Electric: 0.0237 kW                          | Heat Pump: 0.0106 kW   |  |  |

#### Table C-56: Low Flow Showerhead Retrofit Deemed Energy Savings

<sup>&</sup>lt;sup>199</sup> U.S. DOE's 2006, *"Building America Performance Analysis Procedures for Existing Homes"*. National Renewable Energy Laboratory. May. <u>www.nrel.gov/docs/fy06osti/38238.pdf</u>

<sup>&</sup>lt;sup>200</sup> At 3pm, the hourly share of daily water use is 0.022, at 4pm is 0.03, at 5pm is 0.04, and at 6pm is 0.06. The average of these values is 0.038. Divided by 365 days, the result is a 0.000104 ratio of peak share to annual use.

#### C.2.5.1. In-Service Rates

| Delivery Channel          | ISR  |
|---------------------------|------|
| Direct Install            | 0.98 |
| Mailer Kit <sup>201</sup> | 0.62 |

Table C-57: In-Service Rates

#### C.2.5.2. Future Studies

The TPE has found costs to exceed \$750 per site. As such, we do not advise a metering study for this measure unless savings exceed 5% of residential program savings.

<sup>&</sup>lt;sup>201</sup> Based on primary data collection from 4,572 PY5-9 program participants.

## C.2.6. Showerhead Thermostatic Restrictor Valves

## C.2.6.1. Measure Description

This measure consists of installing a thermostatic restrictor valve (TRV) between the existing shower arm and showerhead. The valve will reduce behavioral water waste by restricting water flow when the water reaches a set temperature (generally 95°F). Restricting the flow when the water reaches the temperature set point, reduces the amount of water that goes down the drain prior to the user entering the shower.

# C.2.6.2. Baseline and Efficiency Standards

The baseline condition is the residential shower arm and standard (2.5 gpm) showerhead without a thermostatic restrictor valve installed. The baseline average flow rate of the existing stock of showerheads is based on the current US DOE standard.

To qualify for thermostatic restrictor valve deemed savings, the installed equipment must be a thermostatic restrictor valve installed on a residential showerarm and showerhead with either a standard (2.5 gpm) or low-flow (2.0, 1.75, or 1.5 gpm) showerhead. If this measure is installed in conjunction with a low-flow showerhead, refer to C.2.5 Low-Flow Showerheads and claim additional savings as outlined in that measure.

For direct install applications, the residence must have electric resistance water heating.

# C.2.6.3. Estimated Useful Life (EUL)

The average lifetime of this measure is 10 years, according to DEER 2008<sup>202</sup>.

# C.2.6.4. Effect of Weather Zones on Water Usage and Water Main Temperature

Average water main temperatures for the New Orleans is 74.8°F. The water main temperature data was approximated using the following formula.<sup>203</sup>

$$T \text{ of water main} = T_{avg \text{ ambient}} + R \times \Delta T_{amb}$$

Where:

 $T_{avg \ ambient}$  = the average annual ambient dry bulb temperature, 68.8°F in New Orleans

R = 0.05

 $\Delta T_{amb}$  = the average of maximum and minimum ambient air-dry bulb temperature for the month (Tmax + Tmin)/2 where Tmax = maximum ambient dry bulb

<sup>&</sup>lt;sup>202</sup> This value is consistent with the low flow showerhead EUL, DEER 2014.

<sup>&</sup>lt;sup>203</sup> Burch, J & Christensen, C. 2007. "Towards Development of an Algorithm for Mains Water Temperature." Proceedings of the 2007 ASES Annual Conference, Cleveland, OH.

temperature for the month, and Tmin = minimum ambient dry bulb temperature for the month

# C.2.6.5. Estimated Hot Water Usage Reduction

Water usages per capita were derived from an analysis of metered studies of residential water efficiency retrofit projects conducted for Seattle, WA.; the East Bay Municipal Utility District (CA); and Tampa, FL.<sup>204, 205, 206</sup>

| Assumption Type                     | Seattle<br>Study | Tampa<br>Study | East Bay<br>Study | Average    | Value used for<br>New Orleans |
|-------------------------------------|------------------|----------------|-------------------|------------|-------------------------------|
| Showers/person/day                  | 0.51             | 0.92           | 0.65              | 0.69       | 0.69                          |
| Occupants per home                  | 2.54             | 2.92           | 2.56              | 2.67       | 2.37 <sup>207</sup>           |
| Showerheads per home <sup>208</sup> | not listed       | not listed     | not listed        | not listed | 1.62                          |
| Percent hot water                   | 76.1%            | Not listed     | 57.6%             | 66.9%      | 66.9%                         |

Table C-58: Estimated Showerhead Hot Water Usage Reduction

To determine gallons of behavioral waste (defined as hot water that goes down the drain before the user enters the shower) per year, the following formula was used in conjunction with values from Table C-58.

Annual Showerhead Behavioral Waste = SHFR × BW ×  $n_S$  × 365<sub>days/year</sub> ×  $%_{HW}$  ×  $\frac{n_0}{n_{SH}}$ 

Where:

SHFR = Showerhead flow rate, gallons per minute (2.5, 2.0, 1.75 and 1.5 gpm)

BW = Behavioral waste, minutes per shower (0.783<sup>209</sup>)

 $n_{\rm S}$  = Number of showers per day (0.69)

<sup>&</sup>lt;sup>204</sup> Seattle Home Water Conservation Study, 2000. "The Impacts of High Efficiency Plumbing Fixture Retrofits in Single-Family Homes." December.

<sup>&</sup>lt;u>http://www.allianceforwaterefficiency.org/mainsearch.aspx?searchtext=Seattle%20Home%20Water%20Conservation%20Stud</u> <u>v</u>Average of pre-retrofit percent shower hot water 73.1% on page 35, and post-retrofit percent shower hot water 75.5% on p. 53.

<sup>&</sup>lt;sup>205</sup> Residential Indoor Water Conservation Study, 2003 "Evaluation of High Efficiency Indoor Plumbing Fixture Retrofits in Single-Family Homes in the East Bay Municipal Utility District Service Area." July.

www.allianceforwaterefficiency.org/WorkArea/DownloadAsset.aspx?id=868\_Average of pre-retrofit percent shower hot water 71.9% on page 31 and post-retrofit shower hot water percentage 60.0% on p. 54.

<sup>206</sup>\_Tampa Water Department Residential Water Conservation Study, 2004, "The Impacts of High Efficiency Plumbing Fixture Retrofits in Single-Family Homes." January 8.

https://www.cuwcc.org/Portals/0/Document%20Library/Resources/Water%20Efficient%20Product%20Information/End%20Us e%20Studies%20-%20Multiple%20Technologies/Tampa-Residential-Water-Conservation-Final-Report.pdf

<sup>&</sup>lt;sup>207</sup> 2010-2014, US Census Bureau. http://www.census.gov/quickfacts/table/PST045215/2255000

<sup>&</sup>lt;sup>208</sup> Showerheads per home assumed to be equal to the number of full bathrooms per home, taken from 2009 RECS, Table HC2.10.

<sup>&</sup>lt;sup>209</sup> Average behavioral waste from Lutz (2004) Feasibility Study and Roadmap to Improve Residential Hot Water Distribution Systems and Sherman (2014) Disaggregating Residential Shower Warm-Up Waste. Derived by dividing 47 seconds by 60 seconds.

 $n_0$  = Number of occupants per home (2.37)

 $n_{SH}$  = Number of showerheads per home (1.62)

 $\mathcal{W}_{HW}$  = Percent hot water (.669)

Applying the formula to the values from Table C-58 returns the following values for baseline behavioral waste in gallons per showerhead per year:

2.5 GPM (baseline): 2.5 x 0.783 x 0.69 x 365 x .669 x 2.37/1.62 = 483 gal

2.0 GPM: 2.0 x 0.783 x 0.69 x 365 x .669 x 2.37/1.62 = 386 gal

1.75 GPM: 1.75 x 0.783 x 0.69 x 365 x .669 x 2.37/1.62 = 338 gal

1.5 GPM: 1.5 x 0.783 x 0.69 x 365 x .669 x 2.37/1.62 = 290 gal

| Table C-59: Gallons of Hot Water Saved per | <sup>.</sup> Year |
|--------------------------------------------|-------------------|
|--------------------------------------------|-------------------|

| 2.5 gpm | 2.0 | 1.75 | 1.5 |
|---------|-----|------|-----|
|         | gpm | gpm  | gpm |
| 483     | 386 | 338  | 290 |

C.2.6.6. Calculation of Deemed Savings

C.2.6.6.1. Energy Savings

Annual Energy Savings = 
$$\frac{\rho \times C_P \times V \times (T_{Setpoint} - T_{Supply}) \times (\frac{1}{RE})}{Conversion Factor}$$

Where:

 $\rho =$ Water density = 8.33 lb/gal

 $C_P$  = Specific heat of water = 1 BTU/lb·°F

V = Gallons of hot water saved per year (see Table C-59)

 $T_{Setpoint}$  = Water heater setpoint temperature (122.695°F<sup>210</sup>)

 $T_{Supply}$  = Average New Orleans area supply water temperature, 74.8°F

RE = Recovery Efficiency (or in the case of HPWH, EF); if unknown, use 0.98 as a default for electric resistance water heaters, 2.2 for heat pump water heaters<sup>211</sup>.

Conversion Factor = 3,412 Btu/kWh for electric water heating or 100,000 Btu/Therm for gas water heating

#### C.2.6.6.2. Demand Savings

Demand savings for homes with electric water heating were calculated using the following formula:

<sup>&</sup>lt;sup>210</sup> Primary data collections from a sample of 144 homes in New Orleans.

<sup>&</sup>lt;sup>211</sup> Default values based on median recovery efficiency of residential water heaters by fuel type in the AHRI database, at <u>https://www.ahridirectory.org/ahridirectory/pages/rwh/defaultSearch.aspx</u>

$$kW_{savings} = kWh_{savings} \times Ratio_{Annual kWh}^{Peak kW}$$

Where:

 $Ratio_{Annual \, kWh}^{Peak \, kW} = 0.000104$ 

## C.2.6.7. Deemed Savings

Table C-60 summarizes the deemed kWh and kW for TRVs installed on 2.5, 2.0, 1.75 and 1.5 gpm showerheads, using methods above.

| Showerhead<br>GPM Rating        | Water Heater<br>Type   | kWh | kW    |
|---------------------------------|------------------------|-----|-------|
| 2.5 gpm                         | Electric<br>Resistance | 58  | 0.006 |
|                                 | Heat Pump              | 26  | 0.003 |
| 2.0 gpm                         | 2.0 gpm Electric       |     | 0.005 |
|                                 | Heat Pump              | 21  | 0.002 |
| 1.75 gpm                        | Electric<br>Resistance | 40  | 0.004 |
|                                 | Heat Pump              | 18  | 0.002 |
| Electric<br>1.50 gpm Resistance |                        | 35  | 0.004 |
|                                 | Heat Pump              | 15  | 0.002 |

Table C-60. Deemed Savings for TRVs – Showerheads

#### C.2.6.8. Incremental Cost

The incremental cost of the measure should be the actual program cost (including labor if applicable) or \$29.95<sup>212</sup> plus \$15.47<sup>11</sup> labor if not available.

# C.2.6.9. Future Studies

Metering studies for water use are exceedingly expensive. In past metering efforts, the TPE has found costs to exceed \$750 per site. As such, we do not advise a metering study for this measure unless savings exceed 5% of residential program savings.

<sup>&</sup>lt;sup>212</sup> SCE workpaper SWWH003-01.

## C.2.7. Tub Spout Diverters and Thermostatic Restrictor Valves on Showerheads

#### C.2.7.1. Measure Description

This measure consists of replacing existing tub spouts and shower heads with an automatically diverting tub spout and showerhead system with a thermostatic restrictor valve (TRV) between the existing shower arm and showerhead. When the water temperature reaches a set point (generally 95°F), the thermostatic restrictor valve will engage the anti-leak diverter. The water will divert from the spout to a showerhead with a closed valve, which prevents the hot water from flowing down the drain prior to use.

## C.2.7.2. Baseline and Efficiency Standards

The baseline condition is the residential shower arm and standard (2.5 gpm) showerhead without a thermostatic restrictor valve installed.

To qualify for deemed savings, the installed equipment must be a thermostatic restrictor valve installed on a residential shower arm and showerhead with either a standard (2.5 gpm) or low-flow (2.0, 1.75, or 1.5 gpm) showerhead. If this measure is installed in conjunction with a low-flow showerhead, refer to the Low-Flow Showerheads measure (section C.2.5) and claim additional savings as outlined in that measure.

# C.2.7.3. Estimated Useful Life (EUL)

The average lifetime of this measure is 10 years, according to DEER 2008<sup>213</sup>.

# C.2.7.4. Effect of Weather Zones on Water Usage and Water Main Temperature

Average water main temperatures for the New Orleans area is 74.8°F. The water main temperature data was approximated using the following formula.<sup>214</sup>

T of water main = 
$$T_{avg ambient} + R \times \Delta T_{amb}$$

Where:

 $T_{avg \ ambient}$  = the average annual ambient dry bulb temperature, 68.8°F in New Orleans

 $R = \text{Decreased efficiency offset } (0.05)^{208}$ 

 $\Delta T_{amb}$  = the average of maximum and minimum ambient air-dry bulb temperature for the month (Tmax + Tmin)/2 where Tmax = maximum ambient dry bulb temperature for the month, and Tmin = minimum ambient dry bulb temperature for the month

<sup>&</sup>lt;sup>213</sup> This value is consistent with the low flow showerhead EUL, DEER 2014.

<sup>&</sup>lt;sup>214</sup> Burch, J & Christensen, C. 2007. "Towards Development of an Algorithm for Mains Water Temperature." Proceedings of the 2007 ASES Annual Conference, Cleveland, OH.

# C.2.7.5. Estimated Hot Water Usage Reduction

Water usages per capita were derived from an analysis of metered studies of residential water efficiency retrofit projects conducted for Seattle, WA.; the East Bay Municipal Utility District (CA); and Tampa, FL.<sup>215, 216, 217</sup>

| Assumption Type                     | Seattle<br>Study | Tampa<br>Study | East Bay<br>Study | Average    | Value used for<br>New Orleans |
|-------------------------------------|------------------|----------------|-------------------|------------|-------------------------------|
| Showers/person/day                  | 0.51             | 0.92           | 0.65              | 0.69       | 0.69                          |
| Occupants per home                  | 2.54             | 2.92           | 2.56              | 2.67       | 2.37 <sup>218</sup>           |
| Showerheads per home <sup>219</sup> | not listed       | not listed     | not listed        | not listed | 1.62                          |
| Percent hot water                   | 76.1%            | Not listed     | 57.6%             | 66.9%      | 66.9%                         |

Table C-61: Estimated Showerhead Hot Water Usage Reduction

This system provides savings in two parts: elimination of behavioral waste (hot water that goes down the drain prior to the user entering the shower) and elimination of tub spout diverter leakage. Total gallons of water saved are the sum of these two parts.

**Part 1:** To determine gallons of behavioral waste (defined as hot water that goes down the drain before the user enters the shower) per year, the following formula was used in conjunction with values from Table C-61.

Annual Showerhead Behavioral Waste =  $\% WUE_{SH} \times SHFR \times BW \times n_S \times 365_{davs/year} \times$ 

$$\mathcal{M}_{HW} \times \frac{n_0}{n_{SH}}$$

Annual Tub Spout Behavioral Waste =  $\%WUE_{TS} \times TSFR \times BW \times n_S \times 365_{days/year} \times n_S$ 

$$\mathcal{W}_{HW} \times \frac{n_0}{n_{SH}}$$

Where:

 $\% WUE_{SH}$  = Showerhead percentage of warm-up events (0.6<sup>220</sup>)

https://www.cuwcc.org/Portals/0/Document%20Library/Resources/Water%20Efficient%20Product%20Information/End%20Us e%20Studies%20-%20Multiple%20Technologies/Tampa-Residential-Water-Conservation-Final-Report.pdf

<sup>&</sup>lt;sup>215</sup> Seattle Home Water Conservation Study, 2000. "The Impacts of High Efficiency Plumbing Fixture Retrofits in Single-Family Homes." December.

http://www.allianceforwaterefficiency.org/mainsearch.aspx?searchtext=Seattle%20Home%20Water%20Conservation%20Stud v\_Average of pre-retrofit percent shower hot water 73.1% on page 35, and post-retrofit percent shower hot water 75.5% on p. 53.

<sup>&</sup>lt;sup>216</sup> Residential Indoor Water Conservation Study, 2003 "Evaluation of High Efficiency Indoor Plumbing Fixture Retrofits in Single-Family Homes in the East Bay Municipal Utility District Service Area." July.

<sup>&</sup>lt;u>www.allianceforwaterefficiency.org/WorkArea/DownloadAsset.aspx?id=868</u> Average of pre-retrofit percent shower hot water 71.9% on page 31 and post-retrofit shower hot water percentage 60.0% on p. 54.

<sup>&</sup>lt;sup>217</sup> Tampa Water Department Residential Water Conservation Study, 2004, "The Impacts of High Efficiency Plumbing Fixture Retrofits in Single-Family Homes." January 8.

<sup>&</sup>lt;sup>218</sup> 2010-2014, US Census Bureau. http://www.census.gov/quickfacts/table/PST045215/2255000

<sup>&</sup>lt;sup>219</sup> Showerheads per home assumed to be equal to the number of full bathrooms per home, taken from 2009 RECS, Table HC2.10.

<sup>&</sup>lt;sup>220</sup> Percent of warm up events from (Sherman 2014) Disaggregating Residential Shower Warm-Up Waste

 $\% WUE_{TS}$  = Showerhead percentage of warm-up events (0.4<sup>8</sup>) SHFR = Showerhead flow rate, gallons per minute (2.5, 2.0, 1.75 and 1.5 gpm) TSFR = Tub Spout flow rate, gallons per minute (4 gpm) BW = Behavioral waste, minutes per shower (0.783<sup>221</sup>)  $n_S$  = Number of showers per day (0.69)  $n_O$  = Number of occupants per home (2.37)  $n_{SH}$  = Number of showerheads per home (1.62)  $\%_{HW}$  = Percent hot water (.669)

Applying the formula to the values used for New Orleans from returns the following values for baseline behavioral waste in gallons per showerhead and tube spout per year:

Showerheads:

2.0 GPM: 0.6 x 2.0 x 0.783 x 0.69 x 365 x .669 x 2.37/1.62 = 232 gal

1.75 GPM: 0.6 x 1.75 x 0.783 x 0.69 x 365 x .669 x 2.37/1.62 = 203 gal

1.5 GPM: 0.6 x 1.5 x 0.783 x 0.69 x 365 x .669 x 2.37/1.62 = 174 gal

Tub Spout:

5.0 GPM: 0.4 x 5.0 x 0.783 x 0.69 x 365 x .669 x 2.37/1.62 = 386 gal

| 2.5 | 2.0 | 1.75 | 1.5 | Tub   |
|-----|-----|------|-----|-------|
| gpm | gpm | gpm  | gpm | Spout |
| 290 | 232 | 203  | 174 | 386   |

**Part 2:** To determine the baseline gallons of diverted leakage per year, the following formula was used:

Annual Diverter Waste = 
$$DLR \times t_S \times n_S \times 365_{days/year} \times \%_{HW} \times \frac{n_0}{n_{SH}}$$

Where:

*DLR* = Showerhead percentage of warm-up events

<sup>(</sup>Appendix B, Question 8).

<sup>&</sup>lt;sup>221</sup> Average behavioral waste from Lutz (2004) Feasibility Study and Roadmap to Improve Residential Hot Water Distribution Systems and Sherman (2014) Disaggregating Residential Shower Warm-Up Waste. Derived by dividing 47 seconds by 60 seconds.

 $t_s =$  Shower time (mins/shower) (5.68<sup>222</sup>)

 $n_S$  = Number of showers per day (0.69)

 $n_0$  = Number of occupants per home (2.37)

 $n_{SH}$  = Number of showerheads per home (1.62)

 $\mathcal{W}_{HW}$  = Diverter water percentage (.669)

Applying the formula to the values used for New Orleans from Table C-61 returns the following values:

Diverter (0.8 gpm): 0.8 x 5.68 x 0.69 x 365 x 2.37/1.62 x .737= 1,270 gal

**Total water saved:** To determine gallons of water saved per year can be found by adding the total waste from previous calculations:

Gallons Hot Water Saved = SHBW + TSBW + DW

Where:

SHBW = Showerhead behavioral waste (see Table C-62) (gal)

TSBW = Tub spout behavioral waste (386 gal)

DW = Diverter waste (1,270 gal)

#### C.2.7.6. Calculation of Deemed Savings

C.2.7.6.1. Energy Savings

Annual Energy Savings = 
$$\frac{\rho \times C_P \times V \times (T_{Setpoint} - T_{Supply}) \times (\frac{1}{RE})}{Conversion Factor}$$

Where:

 $\rho =$ Water density = 8.33 lb/gal

 $C_P$  = Specific heat of water = 1 BTU/lb·°F

V = Total gallons of water saved per year (see steps 1 and 2)

 $T_{Setpoint}$  = Water heater setpoint temperature (122.695°F<sup>223</sup>)

 $T_{Supply}$  = Average New Orleans area supply water temperature, 74.8°F

RE = Recovery Efficiency (or in the case of HPWH, EF); if unknown, use 0.98 as a default for electric resistance water heaters, 2.2 for heat pump water heaters<sup>224</sup>.

<sup>&</sup>lt;sup>222</sup> RTF Workpaper: "Calculating Savings For: Auto-Diverting Tub Spout System with ShowerStart TSV (2015)" <u>https://rtf.nwcouncil.org/sites/default/files/proposed\_measures/Calculating%20Tub%20Spout%20Savings%2018D</u> <u>ec15.pdf</u>

<sup>&</sup>lt;sup>223</sup> Primary data collections from a sample of 144 homes in New Orleans.

<sup>&</sup>lt;sup>224</sup> Default values based on median recovery efficiency of residential water heaters by fuel type in the AHRI database, at <u>https://www.ahridirectory.org/ahridirectory/pages/rwh/defaultSearch.aspx</u>

*Conversion Factor* = 3,412 Btu/kWh for electric water heating

#### C.2.7.6.2. Demand Savings

Demand savings for homes with electric water heating were calculated using the following formula:

$$kW_{savings} = kWh_{savings} \times Ratio_{Annual \, kW}^{Peak \, kW}$$

Where:

 $Ratio_{Annual \ kWh}^{Peak \ kW} = 0.000104$ 

# C.2.7.7. Deemed Savings

Table C-63 summarizes the deemed kWh and kW for TRVs installed on 2.5, 2.0, 1.75 and 1.5 gpm showerheads, using methods above.

| Showerhead<br>GPM Rating | Water Heater<br>Type   | kWh | kW    |
|--------------------------|------------------------|-----|-------|
| 2.5 gpm                  | Electric<br>Resistance | 232 | 0.024 |
|                          | Heat Pump              | 103 | 0.011 |
| 2.0 gpm                  | Electric<br>Resistance | 225 | 0.023 |
|                          | Heat Pump              | 100 | 0.010 |
| 1.75 gpm                 | Electric<br>Resistance | 222 | 0.023 |
|                          | Heat Pump              | 99  | 0.010 |
| 1.50 gpm                 | Electric<br>Resistance | 218 | 0.023 |
|                          | Heat Pump              | 97  | 0.010 |

Table C-63. Deemed Savings for TRVs – Showerheads

# C.2.7.8. Incremental Cost

The incremental cost of the measure should be the actual program cost (including labor if applicable) or \$91.38<sup>225</sup> plus \$20<sup>226</sup> labor if not available.

# C.2.7.9. Future Studies

Metering studies for water use are exceedingly expensive. In past metering efforts, the TPE has found costs to exceed \$750 per site. As such, we do not advise a metering study for this measure unless savings exceed 5% of residential program savings.

<sup>&</sup>lt;sup>225</sup> SCE workpaper SWWH001-Rev00.

<sup>&</sup>lt;sup>226</sup> Estimate for contractor installation time.

#### C.3. HVAC

#### C.3.1. Central Air Conditioner Replacement

#### C.3.1.1. Measure Description

This measure involves a residential retrofit with a new central air conditioning system or the installation of a new central air conditioning system in a residential new construction (packaged unit, or split system consisting of an indoor unit with a matching remote condensing unit). Maximum cooling capacity per unit is 65,000 BTU/hour. This measure applies to all residential applications.

#### C.3.1.2. Baseline and Efficiency Standards<sup>227</sup>

For new construction (NC) and ROB projects, the cooling baseline is 14 SEER, consistent with the current federal minimum standard<sup>228</sup>.

For Early Replacement projects, the baseline is consistent with the previous federal standard. The cooling baseline is 13 SEER (code which took effect January 23, 2006).

For Early Replacement, the maximum lifetime age of an eligible piece of equipment is capped at the point at which it is expected that 75 percent of the equipment has failed. Where the age of the unit exceeds the 75 percent failure age, ROB savings should be applied. This cap prevents early retirement savings from being applied to projects where the age of the equipment greatly exceeds the estimated useful life of the measure.

Air conditioning equipment shall be properly sized to the dwelling, based on ASHRAE or ACCA Manual J standards. Manufacturer data sheets on installed air conditioning equipment or the AHRI reference number must be provided to the utility. The installed central air conditioning equipment must be AHRI certified.

|                                            | SEER | EER                             |
|--------------------------------------------|------|---------------------------------|
| New Construction and<br>Normal Replacement | 14   | 11.8                            |
| Early Replacement                          | 13   | 11.2                            |
| Required Efficiency                        | 15   | 12.5 (split)<br>12.0 (packaged) |

| Table C-64: | Central Air ( | Conditioner –      | Baseline and | d Efficiency Lev | els |
|-------------|---------------|--------------------|--------------|------------------|-----|
|             |               | o o nancioni o non | Babbinno and |                  | 0.0 |

<sup>&</sup>lt;sup>228</sup> DOE minimum efficiency standard for residential air conditioners/heat pumps. www1.eere.energy.gov/buildings/appliance\_standards/product.aspx/productid/75.

# C.3.1.3. Estimated Useful Life (EUL)

The average lifetime of this measure is 19 years, according to the US DOE.<sup>229</sup>

#### C.3.1.1. Deemed Savings

| Efficiency | kWh Saved per<br>Ton | Average Tons <sup>230</sup> | kWh if Tonnage<br>Unknown |  |
|------------|----------------------|-----------------------------|---------------------------|--|
| 15 SEER    | 93.54                | 3.65                        | 341.43                    |  |
| 16 SEER    | 175.39               | 3.65                        | 640.18                    |  |
| 17 SEER    | 247.61               | 3.65                        | 903.79                    |  |
| 18 SEER    | 311.81               | 3.65                        | 1,138.10                  |  |
| 19 SEER    | 369.25               | 3.65                        | 1,347.76                  |  |
| 20 SEER    | 420.94               | 3.65                        | 1,536.44                  |  |
| 21 SEER    | 467.71               | 3.65                        | 1,707.16                  |  |

Table C-66: High Efficiency Central AC Deemed kW

| Efficiency | kW Saved per Ton | Average Tons <sup>231</sup> | kW if Tonnage<br>Unknown |
|------------|------------------|-----------------------------|--------------------------|
| 12 EER     | 0.0131           | 3.65                        | 0.0476                   |
| 13 EER     | 0.0723           | 3.65                        | 0.2638                   |
| 14 EER     | 0.1231           | 3.65                        | 0.4491                   |
| 15 EER     | 0.1671           | 3.65                        | 0.6097                   |
| 16 EER     | 0.2056           | 3.65                        | 0.7503                   |
| 17 EER     | 0.2395           | 3.65                        | 0.8743                   |
| 18 EER     | 0.2697           | 3.65                        | 0.9845                   |

#### C.3.1.2. Deemed Savings Calculations

#### C.3.1.2.1. Replace-on-Burnout

$$kWh_{savings} = CAP_c \times \frac{1}{1,000} W / _{kW} \times \left(\frac{1}{SEER_{base}} - \frac{1}{SEER_{Eff}}\right) \times EFLH_c$$
$$kW_{savings} = CAP_c \times \frac{1}{1,000} W / _{kW} \times \left(\frac{1}{EER_{base}} - \frac{1}{EER_{Eff}}\right) \times \% CF$$

Where,

<sup>&</sup>lt;sup>229</sup> U.S. DOE, 2011 Technical Support Document: "Residential Central Air Conditioners, Heat Pumps, and Furnaces, 8.2.3.5 Lifetime." June www1.eere.energy.gov/buildings/appliance\_standards/product.aspx/productid/75.

<sup>&</sup>lt;sup>230</sup> Value from PY6 Residential Heating & Cooling Program

<sup>&</sup>lt;sup>231</sup> Value from PY6 Residential Heating & Cooling Program

 $CAP_c$  = Cooling capacity (in BTU)

*EER*<sub>base</sub> = Full-load efficiency of baseline equipment (see Table C-64)

*EER*<sub>eff</sub> = Full-load efficiency of baseline equipment (see Table C-64)

SEER<sub>base</sub> = Seasonal efficiency of baseline equipment (see Table C-64)

SEER<sub>eff</sub> = Seasonal efficiency of efficient equipment (see Table C-64)

*EFLH<sub>c</sub>* = Equivalent Full-Load Cooling Hours

%CF = Peak Coincidence Factor

#### C.3.1.2.2. Equivalent Full-Load Hours

Equivalent Full-Load Cooling Hours (EFLHc) measures the total annual runtime of HVAC equipment. To support development of this value, the usage of 68 HVAC systems in New Orleans was metered. This runtime was then normalized to correspond to Typical Meteorological Year ("TMY") weather data for New Orleans.

The resulting EFLHc is 1,637.

#### C.3.1.2.3. Peak Coincidence Factor

The Peak Coincidence Factor is defined as the percent time during the ENO peak period where the residential central air conditioner is operational. Peak hours were defined as:

- Weekdays
- Non-holidays
- 4:00-5:00 PM
- Average ambient temperature exceeding 90 degrees Fahrenheit.

The average central AC runtime during qualified hours was 77%. This peak coincidence factor is applied to calculate peak kW demand reductions from this measure.

#### C.3.1.2.4. Uncertainty Analysis

The uncertainties associated with the two key parameters collected in EM&V are as follows:

- EFLHc: ±7.81%
- % Coincidence: ±2.11%

## C.3.1.3. Incremental Cost

The incremental cost of high central air conditioners is detailed in Table C-67.232

| Product Type | Incremental Cost<br>Per Ton |  |  |
|--------------|-----------------------------|--|--|
| 15 SEER      | \$119                       |  |  |
| 16 SEER      | \$238                       |  |  |
| 17 SEER      | \$357                       |  |  |
| 18 SEER      | \$477                       |  |  |
| 19 SEER      | \$596                       |  |  |
| 20 SEER      | \$715                       |  |  |
| 21 SEER      | \$789                       |  |  |

Table C-67: High Efficiency Central AC Replacement Incremental Costs

#### C.3.1.4. Future Studies

This measure should be considered for supplementary data collection pertaining to runtime and peak coincidence in three years (PY9, program year 2019-2020).

<sup>&</sup>lt;sup>232</sup>CA DEER 2014

#### C.3.2.1. Measure Description

This measure involves the replacement of a window air conditioner in a residential building.

## C.3.2.2. Baseline and Efficiency Standards<sup>233</sup>

The baseline is a new air conditioning unit with a combined energy efficiency ratio (CEER) that meets federal standards established on June 1, 2014<sup>234</sup>.

Efficient units must meet ENERGY STAR standards, requiring 10% efficiency above federal minimum requirements.

| Reverse<br>Cycle? | Louvered<br>Sides? | Capacity              | Baseline<br>CEER | Efficient<br>CEER | kWh   | kW     |
|-------------------|--------------------|-----------------------|------------------|-------------------|-------|--------|
|                   | Yes                | < 8,000               | 11.0             | 12.1              | 46.4  | 0.0445 |
|                   |                    | ≥ 8,000 and < 14,000  | 10.9             | 12.0              | 74.2  | 0.0453 |
| No                |                    | ≥ 14,000 and < 20,000 | 10.7             | 11.8              | 118.8 | 0.0470 |
|                   |                    | ≥ 20,000              | 9.4              | 10.3              | 171.5 | 0.0501 |
|                   | No                 | < 8,000               | 10.0             | 11.0              | 51.0  | 0.0490 |
|                   |                    | ≥ 8,000               | 9.6              | 10.6              | 78.8  | 0.0530 |
| Yes               | Yes                | < 20,000              | 9.8              | 10.8              | 113.7 | 0.0509 |
|                   |                    | ≥ 20,000              | 9.3              | 10.2              | 190.3 | 0.0511 |
|                   | No                 | < 14,000              | 9.3              | 10.2              | 83.7  | 0.0511 |
|                   |                    | ≥ 14,000              | 8.7              | 9.6               | 146.9 | 0.0581 |

Table C-68: Window Air Conditioner – Baseline and Efficiency Levels

# C.3.2.3. Estimated Useful Life (EUL)

According to the DOE's Technical Support Document, Chapter 8: Life Cycle Cost and Payback Period Analyses 2011, the measure life is 10.5 years.

# C.3.2.4. Deemed Savings Calculations

#### C.3.2.4.1. Replace-on-Burnout

$$kWh_{Savings} = CAP_c \times \frac{1}{1,000} W / _{kW} \times \left(\frac{1}{CEER_{base}} - \frac{1}{CEER_{Eff}}\right) \times EFLH_c \times RAF$$
$$kW_{Savings} = CAP_c \times \frac{1}{1,000} W / _{kW} \times \left(\frac{1}{CEER_{base}} - \frac{1}{CEER_{Eff}}\right) \times %CF$$

<sup>234</sup> 10 CFR 430.32(b).

https://www1.eere.energy.gov/buildings/appliance\_standards/standards.aspx?productid=52&action=viewlive#cur rent\_standards

Where,

 $CAP_c$  = Cooling capacity (in BTU)

CEER<sub>base</sub> = Full-load efficiency of baseline equipment (see Table C-68)

CEER<sub>eff</sub> = Full-load efficiency of baseline equipment (see Table C-68)

CEER<sub>base</sub> = Seasonal efficiency of baseline equipment (see Table C-68)

CEER<sub>eff</sub> = Seasonal efficiency of efficient equipment (see Table C-68)

*EFLHc* = Equivalent Full-Load Cooling Hours, 1,637

%CF = Peak Coincidence Factor, 77%

RAF = Room AC Adjustment Factor, .49<sup>235</sup>

# C.3.2.4.2. Equivalent Full-Load Hours

Equivalent Full-Load Cooling Hours (EFLHc) measures the total annual runtime of HVAC equipment. To support development of this value, the usage of 68 HVAC systems in New Orleans was metered. This runtime was then normalized to correspond to Typical Meteorological Year ("TMY") weather data for New Orleans.

The resulting EFLHc is 1,637.

# C.3.2.4.3. Peak Coincidence Factor

The Peak Coincidence Factor is defined as the percent time during the ENO peak period where the residential central air conditioner is operational. Peak hours were defined as:

- Weekdays
- Non-holidays
- 4:00-5:00 PM
- Average ambient temperature exceeding 90 degrees Fahrenheit.

The average central AC runtime during qualified hours was 77%. This peak coincidence factor is applied to calculate peak kW demand reductions from this measure.

# C.3.2.4.4. Uncertainty Analysis

The uncertainties associated with the two key parameters collected in EM&V are as follows:

- EFLHc: ±7.81%
- % Coincidence: ±2.11%

<sup>&</sup>lt;sup>235</sup> This is a factor derived from the ENERGY STAR calculator which corrects for the fact that window AC's are typically not run as often as central AC systems. This value comes from the Arkansas TRM, which developed estimates based on the ENERGY STAR Room AC calculator.

## C.3.2.5. Incremental Cost

The incremental cost of high central air conditioners is \$50<sup>236</sup>.

#### C.3.2.1. Net-to-Gross Ratio

The NTGR for this measure is  $62\%^{237}$ .

# C.3.2.2. Future Studies

This measure should be considered for supplementary data collection pertaining to runtime and peak coincidence in three years (PY9, program year 2019-2020).

<sup>&</sup>lt;sup>236</sup> ENERGY STAR Room AC Calculator.

<sup>&</sup>lt;sup>237</sup> Based on primary data collection from 30 PY6-9 program participants.

## C.3.3. Electronically Commutated Motors on Furnace Fans

## C.3.3.1. Measure Description

Electronically Commutated Motors (ECMs) are motors that provide the power to furnace blowers to circulate the heated air required for space conditioning. This measure focuses on ECMs installed on residential furnace fans and is not applicable for ECMs on separate air handling units. ECMs operate using a built-in inverter and magnetic rotor to vary the torque and/or air flow rate required by the HVAC system. These motors are able to maintain their high efficiency at a variety of operation points thus improving their desirability compared to baseline motors.

## C.3.3.2. Baseline and Efficiency Standards

The baseline equipment for this measure is different depending on if the measure is retrofit or new construction. Two types of baseline equipment exist; Shaded-pole (SP) motors and permanent split capacitor (PSC) motors on residential furnaces.

## C.3.3.2.1. Retrofit (Early Replacement)

The baseline equipment for retrofit is the existing motor type.

## C.3.3.2.2. New Construction (Includes Major Remodel & ROB)

The baseline equipment for new construction is a PSC motor.

#### C.3.3.3. Deemed Savings Calculations

The algorithms below are to be used to calculate electric energy and demand reductions for this measure:

$$kWh_{savings} = \left(\frac{hp_{base}}{Eff_{base}} - \frac{hp_{ECM}}{Eff_{ECM}}\right) \times 0.746 \times EFLH_h \times y$$

$$kW_{savings} = \left(\frac{hp_{base}}{Eff_{base}} - \frac{hp_{ECM}}{Eff_{ECM}}\right) \times 0.746 \times CF$$

Where,

hpbase = Rated horsepower of baseline motor, hp

 $hp_{ECM}$  = Rated horsepower of installed ECM, hp

 $Eff_{pre}$  = Efficiency of baseline motor as found in the table below, %

 $Eff_{ECM}$  = Efficiency of ECM as found in the table below, %

 $EFLH_h$  = Equivalent full load hours of heating, 1,118

Y = Ratio of fan motor on to burner on as calculated below,

*CF* = Coincidence Factor, 0.71

The ratio of blower on time to furnace burner on time can be taken as 1.39 based on DOE estimated values or calculated based on the DOE furnace test procedure shown below<sup>238</sup> if the relevant parameters are known.

$$y = \frac{t^+ - t^-}{t_{ON}}$$

Where,

 $t^+$  = off-period between burner shutdown and blower shutdown (blower off

delay), min

t = on-period between burner shutdown and blower shutdown (blower off

delay), min

 $t_{ON}$  = average burner on-time, min

# C.3.3.4. Calculation Variables

Typical motor efficiency values were obtained for HVAC applications from a DOE report<sup>239</sup> and can be found below. The original report provided a range; however, the median value of the range was extracted for use in calculating savings.

Table C-69: Furnace Fan Efficiency Values

| Motor Type                | Efficiency (%) |
|---------------------------|----------------|
| Shaded-Pole               | 30             |
| Permanent Split Capacitor | 60             |
| Electronically Commutated | 75             |

### C.3.3.5. Estimated Useful Life (EUL)

The EUL of this measure was taken from the Arkansas TRM 6.0, page 379. The given value is 15 years and was originally obtained from DEER 2008.

# C.3.3.6. Incremental Cost

Actual material and labor costs should be used when available. When not available, the incremental cost of this measure should be \$475<sup>240</sup>.

https://www.energy.gov/sites/prod/files/2014/02/f8/Motor Energy Savings Potential Report 2013-12-4.pdf

<sup>&</sup>lt;sup>238</sup> U.S. Department of Energy (2014, June). TECHNICAL SUPPORT DOCUMENT: ENERGY EFFICIENCY PROGRAM FOR CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT: RESIDENTIAL FURNACE FANS.

<sup>&</sup>lt;sup>239</sup> W. G., T. S., & C. R. (2013, December 4). Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment. Retrieved August 21, 2018, from

<sup>&</sup>lt;sup>240</sup> https://www.nrel.gov/docs/fy14osti/60760.pdf

### C.3.3.7. Future Studies

There will be a convenient sample to meter for these fans when direct load control is metered. The TPE recommends conducting furnace baseline metering alongside DLC metering to validate the baseline for this measure.

Measure performance could receive metering if this measure constitutes more than 1% of portfolio savings.

#### C.3.4. Heat Pump Replacement

#### C.3.4.1. Measure Description

This measure involves a residential retrofit with a new heat pump system or the installation of a new heat pump system in a residential new construction (packaged unit, or split system consisting of an indoor unit with a matching remote condensing unit). Maximum cooling capacity per unit is 65,000 BTU/hour. This measure applies to all residential applications.

### C.3.4.2. Baseline and Efficiency Standards<sup>241</sup>

For new construction (NC) and ROB projects, the cooling baseline is 14 SEER and 8.0 HSPF, consistent with the current federal minimum standard<sup>242</sup>.

For Early Replacement projects, the baseline is consistent with the previous federal standard. The cooling baseline is 13 SEER (code which took effect January 23, 2006).

For Early Replacement, the maximum lifetime age of an eligible piece of equipment is capped at the point at which it is expected that 75 percent of the equipment has failed. Where the age of the unit exceeds the 75 percent failure age, ROB savings should be applied. This cap prevents early retirement savings from being applied to projects where the age of the equipment greatly exceeds the estimated useful life of the measure.

Heat Pump equipment shall be properly sized to the dwelling, based on ASHRAE or ACCA Manual J standards. Manufacturer data sheets on installed air conditioning equipment or the AHRI reference number must be provided to the utility. The installed central air conditioning equipment must be AHRI certified.

|                                                                                                       | SEER | EER             | HSPF                   |  |
|-------------------------------------------------------------------------------------------------------|------|-----------------|------------------------|--|
| Dequired                                                                                              | 15   | 12.5 (split)    | 9                      |  |
| Required                                                                                              |      | 12.0 (packaged) |                        |  |
| New Construction and Normal Donlocoment                                                               | 14   | 11.8            | 8.2 (split)            |  |
| New Construction and Normal Replacement                                                               |      |                 | 8.0 (packaged)         |  |
| Early Retirement - Heat Pump                                                                          | 13   | 11.2            | 7.7 (split & packaged) |  |
| New Construction and Normal Replacement<br>(Replacing Electric Resistance with Heat Pump)             | 14   | 11.8            | 3.41                   |  |
| Early Retirement - Electric Resistance to Heat Pump<br>(Replacing Electric Resistance with Heat Pump) | 13   | 11.2            | 3.41                   |  |

| Table C-70: Heat Pum | n – Raseline and | l Efficiency I evels |
|----------------------|------------------|----------------------|
|                      | u – Dasenne anu  | LINCIENCY LEVEIS     |

<sup>&</sup>lt;sup>242</sup> DOE minimum efficiency standard for residential air conditioners/heat pumps. www1.eere.energy.gov/buildings/appliance\_standards/product.aspx/productid/75.

### C.3.4.3. Estimated Useful Life (EUL)

The average lifetime of this measure is 16 years, according to the US DOE.<sup>243</sup>

#### C.3.4.4. Deemed Savings Values

The values in Table C-71 through Table C-74 reflect the per-ton and per-unit averages from the PY5 through to-date PY9 program years and should be used when nameplate data cannot be collected.

#### C.3.4.4.1. Cooling kWh and kW Savings

| Efficiency | kWh Saved<br>per Ton | Average<br>Tons <sup>244</sup> | kWh if<br>Tonnage<br>Unknown |
|------------|----------------------|--------------------------------|------------------------------|
| 15 SEER    | 93.54                | 3.01                           | 281.26                       |
| 16 SEER    | 175.39               | 3.01                           | 527.36                       |
| 17 SEER    | 247.61               | 3.01                           | 744.51                       |
| 18 SEER    | 311.81               | 3.01                           | 937.53                       |
| 19 SEER    | 369.25               | 3.01                           | 1,110.23                     |
| 20 SEER    | 420.94               | 3.01                           | 1,265.66                     |
| 21 SEER    | 467.71               | 3.01                           | 1,406.29                     |

Table C-71: Deemed Cooling kWh Savings

Table C-72: Deemed Cooling kW Savings

| Efficiency | kW Saved<br>per Ton | Average<br>Tons⁴ | kW if<br>Tonnage<br>Unknown |
|------------|---------------------|------------------|-----------------------------|
| 12 EER     | 0.044               | 3.01             | 0.132                       |
| 13 EER     | 0.083               | 3.01             | 0.248                       |
| 14 EER     | 0.116               | 3.01             | 0.350                       |
| 15 EER     | 0.147               | 3.01             | 0.441                       |
| 16 EER     | 0.174               | 3.01             | 0.522                       |
| 17 EER     | 0.198               | 3.01             | 0.595                       |
| 18 EER     | 0.220               | 3.01             | 0.661                       |

<sup>&</sup>lt;sup>243</sup> US U.S. DOE, 2011. *Technical Support Document: "Residential Central Air Conditioners, Heat Pumps, and Furnaces, 8.2.3.5 Lifetime"*. June.

www1.eere.energy.gov/buildings/appliance\_standards/product.aspx/productid/75.

<sup>&</sup>lt;sup>244</sup> Average reduction based on PY5-PY9 tracking data for 8,160 dwellings.

#### C.3.4.4.2. Heating kWh Savings

| Table C-73: Deemed Heating | a kWh Savinas – | ROB/NC (F | Heat Pump | Baseline) |
|----------------------------|-----------------|-----------|-----------|-----------|
|                            | J J-            |           |           |           |

| Efficiency | kWh Saved<br>per Ton | Average<br>Tons <sup>245</sup> | kWh if<br>Tonnage<br>Unknown |
|------------|----------------------|--------------------------------|------------------------------|
| 9 HSPF     | 66.00                | 3.01                           | 198.44                       |
| 10 HSPF    | 118.80               | 3.01                           | 357.20                       |
| 11 HSPF    | 162.00               | 3.01                           | 487.09                       |
| 12 HSPF    | 198.00               | 3.01                           | 595.33                       |
| 13 HSPF    | 228.46               | 3.01                           | 686.92                       |
| 14 HSPF    | 254.57               | 3.01                           | 765.43                       |
| 15 HSPF    | 277.20               | 3.01                           | 833.46                       |

Table C-74: Heating kWh Savings- ROB/NC (Electric Resistance Baseline)

| Efficiency | kWh Saved<br>per Ton | Average<br>Tons⁵ | kWh if<br>Tonnage<br>Unknown |
|------------|----------------------|------------------|------------------------------|
| 9 HSPF     | 865.55               | 3.01             | 2,602.47                     |
| 10 HSPF    | 918.35               | 3.01             | 2,761.22                     |
| 11 HSPF    | 961.55               | 3.01             | 2,891.11                     |
| 12 HSPF    | 997.55               | 3.01             | 2,999.35                     |
| 13 HSPF    | 1028.01              | 3.01             | 3,090.94                     |
| 14 HSPF    | 1054.12              | 3.01             | 3,169.45                     |
| 15 HSPF    | 1076.75              | 3.01             | 3,237.49                     |

#### C.3.4.5. Calculation of Deemed Savings

#### C.3.4.5.1. Replace-on-Burnout

C.3.4.5.1.1. Cooling Savings

$$kW_{Savings} = CAP_c \times 1kW/1,000W \times \left(\frac{1}{EER_{base}} - \frac{1}{EER_{Eff}}\right) \times \% CF$$
$$kWh_{Savings} = CAP_c \times 1kW/1,000W \times \left(\frac{1}{SEER_{base}} - \frac{1}{SEER_{Eff}}\right) \times EFLH_c$$

Where,

 $CAP_c$  = Cooling capacity (in BTU)

*EER*<sub>base</sub> = Full-load efficiency of baseline equipment (see Table C-70)

<sup>&</sup>lt;sup>245</sup> Average reduction based on PY5-PY9 tracking data for 8,160 dwellings.

 $EER_{eff}$  = Full-load efficiency of baseline equipment (see Table C-70)  $SEER_{base}$  = Seasonal efficiency of baseline equipment (see Table C-70)  $SEER_{eff}$  = Seasonal efficiency of efficient equipment (see Table C-70) EFLHc = Equivalent Full-Load Cooling Hours %CF = Peak Coincidence Factor

### C.3.4.5.1.2. Heating Energy Savings

Heating savings are calculated with the following formula:

$$kWh_{Savings} = CAP_c \times 1kW/1,000W \times \left(\frac{1}{HSPF_{base}} - \frac{1}{HSPF_{Eff}}\right) \times EFLH_h$$

Where,

 $CAP_c$  = Cooling capacity (in BTU)

EER<sub>base</sub> = Full-load efficiency of baseline equipment (see Table C-70)

 $EER_{eff}$  = Full-load efficiency of baseline equipment (see Table C-70)

*HSPF*<sub>base</sub> = Heating Season Performance Factor of baseline equipment (see Table C-70)

*HSPF<sub>eff</sub>* = Heating Season Performance Factor of efficient equipment (see Table C-70)

 $EFLH_h$  = Equivalent Full-Load Heating Hours, 600

%CF = Peak Coincidence Factor

### C.3.4.5.2. Derivation of Equivalent Full-Load Hours and Peak Coincidence Factor

#### C.3.4.5.2.1. Cooling Hours

Equivalent Full-Load Cooling Hours (EFLHc) measures the total annual runtime of HVAC equipment. To support development of this value, the usage of 68 HVAC systems in New Orleans was metered over the course of three years. This runtime was then normalized to correspond to Typical Meteorological Year ("TMY") weather data for New Orleans.

The resulting EFLHc is 1,37.

### C.3.4.5.2.2. Peak Coincidence Factor

The Peak Coincidence Factor is defined as the percent time during the ENO peak period where the residential central air conditioner is operational. Peak hours were defined as:

- Weekdays
- Non-holidays
- 4:00-5:00 PM

Average ambient temperature exceeding 90 degrees Fahrenheit.

The average central AC runtime during qualified hours was 77%. This peak coincidence factor is applied to calculate peak kW demand reductions from this measure.

# C.3.4.5.2.3. Heating Hours

Equivalent Full-Load Heating Hours (EFLH<sub>h</sub>) measures the total annual runtime of heating equipment. To support development of this value, the usage of 295 electric heating systems in New Orleans was estimated using a billing analysis. This runtime was then normalized to correspond to Typical Meteorological Year ("TMY") weather data for New Orleans. In addition, the EFLH<sub>h</sub> was multiplied by a scaling factor of 1.51 to account for differences in usage for heat pump vs. electric resistance heating types.

The heat pump scaling factor was calculated using the following equation:

Scaling Factor<sub>HP</sub> = 
$$\left(\left(\frac{kWh}{HDD}\right) * COP_{HP}\right) / \left(\left(\frac{kWh}{HDD}\right) * COP_{ER}\right)$$

Where,

 $kWh/HDD/Ton_{HP}$ = Weighted average of predicted kWh/HDD/Ton for heat pump heating types for single and multi-family homes = 0.3282

*kWh/HDD/Ton<sub>ER</sub>*= Weighted average of predicted kWh/HDD/Ton for electric resistance heating types for single and multi-family homes = 0.4348

 $COP_{HP}$  = Coefficient of performance for heat pumps = 2.0

 $COP_{HP}$  = Coefficient of performance for electric resistance = 1.0

The resulting  $EFLH_H$  for Electric Resistance systems 396.

The resulting  $EFLH_H$  for Heat Pumps is 600.

### C.3.4.5.2.4. Uncertainty Analysis

The uncertainties associated with the four key parameters collected in EM&V are as follows:

- EFLHc: ±5.10%
- % Coincidence: ±2.11%
- EFLHh: Electric Resistance ±5.10%
- EFLHh: Heat Pumps ±37.10%

### C.3.4.6. Incremental Cost

The incremental cost of high efficiency heat pump is detailed in Table C-75<sup>246</sup>.

| Efficiency | Incremental<br>Cost Per Ton |
|------------|-----------------------------|
| 15 SEER    | \$303                       |
| 16 SEER    | \$438                       |
| 17 SEER    | \$724                       |
| 18 SEER    | \$724                       |

 Table C-75: Replacement Incremental Costs (HP Baseline)
 Incremental Costs (HP Baseline)

The incremental costs of retiring an electric resistance heating system early and replacing it with a high efficiency heat pump are detailed in the table below.

| Efficiency | Incremental<br>Cost Per<br>Ton <sup>247</sup> |
|------------|-----------------------------------------------|
| 15 SEER    | \$1,724                                       |
| 16 SEER    | \$1,859                                       |
| 17 SEER    | \$2,145                                       |
| 18 SEER    | \$2,145                                       |

### C.3.4.7. Future Studies

As with Central Air Conditioning, the cooling side of this measure should be considered for supplementary data collection pertaining to runtime and peak coincidence in three years (PY9, program year 2019-2020).

<sup>&</sup>lt;sup>246</sup>CA DEER 2014

<sup>&</sup>lt;sup>247</sup> Average RUL is 6 years according to DEER. Remaining years are discounted using the Entergy New Orleans Utility Discount Rate.

#### C.3.5. Ground Source Heat Pump Replacement

#### C.3.5.1. Measure Description

This measure involves the installation of water-to-air ground source heat pump as a replacement for an existing air-source heat pump. Maximum cooling capacity per unit is 65,000 BTU/hour. This measure applies to all residential applications.

#### C.3.5.2. Baseline and Efficiency Standards<sup>248</sup>

For new construction (NC) and ROB projects, the cooling baseline is 14 SEER and 8.0 HSPF, consistent with the current federal minimum standard<sup>249</sup>. Due to the high cost of this equipment, all projects are assumed to be replacement on burnout or new construction.

Heat Pump equipment shall be properly sized to the dwelling, based on ASHRAE or ACCA Manual J standards. Manufacturer data sheets on installed air conditioning equipment or the AHRI reference number must be provided to the utility. The installed central air conditioning equipment must be AHRI certified.

|                                            | SEER            | EER               | HSPF                   |
|--------------------------------------------|-----------------|-------------------|------------------------|
| New Construction and                       | 14              | 11.8              | 8.2 (split)            |
| Normal Replacement                         | 14              | 11.0              | 8.0 (packaged)         |
| Early Replacement – Heat<br>Pump           | 13              | 11.2              | 7.7 (split & packaged) |
| Early Replacement –<br>Electric Resistance | 13              | 11.2              | 3.41                   |
| Energy Star Criteria –                     |                 | Closed Loop: 17.1 | Closed Loop: 12.3      |
| Water-to-Air                               |                 | Open Loop: 21.1   | Open Loop: 14.0        |
| Enorgy Star Critoria                       |                 | Closed Loop: 16.1 | Closed Loop: 10.6      |
| Energy Star Criteria –<br>Water-to-Water   | Open Loop: 20.1 | Open Loop: 11.9   |                        |
| water-to-water                             |                 | DGX: 16           | DGX: 12.3              |

### C.3.5.3. Estimated Useful Life (EUL)

The average lifetime of this measure is 25 years, according to the US DOE.<sup>250</sup>

<sup>&</sup>lt;sup>249</sup> DOE minimum efficiency standard for residential air conditioners/heat pumps.www1.eere.energy.gov/buildings/appliance\_standards/product.aspx/productid/75.

<sup>&</sup>lt;sup>250</sup> Source DOE Energy Savers website:

www.energysavers.gov/your\_home/space\_heating\_cooling/index.cfm/mytopic=12640 .

### C.3.5.4. Deemed Savings Values

Savings are calculated in the same manner as for Heat Pump Replacement. See Section C.3.4.5. According to the current ENERGY STAR database<sup>251</sup>, the average efficiency of ENERGY STAR-rated ductless units that are currently in production is as follows:

- COP: 4.30 (this converts to a SEER rating of 20.86 and HSPF of 14.67)
- EER: 24.60

The resulting average unit energy savings for a geothermal heat pump are detailed in the table below.

|                                            | kWh<br>Per<br>Ton | kW per<br>Ton | Average<br>Tons <sup>252</sup> | kWh per<br>Unit | kW per<br>Unit |
|--------------------------------------------|-------------------|---------------|--------------------------------|-----------------|----------------|
| New Construction and<br>Normal Replacement | 849               | 0.4074        | 3.01                           | 2,552           | 1.23           |
| Early Replacement –<br>Heat Pump           | 1,014             | 0.4494        | 3.01                           | 3,048           | 1.35           |
| Early Replacement –<br>Electric Resistance | 2,190             | 0.4494        | 3.01                           | 6,585           | 1.35           |

Table C-78: Geothermal Heat Pump Deemed Savings

## C.3.5.5. Incremental Cost

New Construction and Time of Sale: The actual installed cost of the Ground Source Heat Pump should be used (default of \$3957 per ton<sup>253</sup>), minus the assumed installation cost of the baseline equipment (\$1381 per ton for ASHP<sup>254</sup> or \$2011 for a new baseline 80% AFUE furnace or \$3543 for a new 82% AFUE boiler<sup>255</sup> and \$952 per ton<sup>256</sup> for new baseline Central AC replacement).

Early Replacement: The full installation cost of the Ground Source Heat Pump should be used (default provided above). The assumed deferred cost (after 8 years) of replacing existing equipment with a new baseline unit is assumed to be \$1,518 per ton for a new

<sup>&</sup>lt;sup>251</sup>https://data.energystar.gov/Active-Specifications/ENERGY-STAR-Most-Efficient-Geothermal-Heat-Pumps/4c82-7ysy

<sup>&</sup>lt;sup>252</sup> Average reduction based on program tracking data for 8,160 dwellings.

<sup>&</sup>lt;sup>253</sup> Based on data provided in 'Results of Home geothermal and air source heat pump rebate incentives documented by IL electric cooperatives.

<sup>&</sup>lt;sup>254</sup> Baseline cost per ton derived from DEER 2008 Database Technology and Measure Cost Data. See 'ASHP\_Revised DEER Measure Cost Summary.xls' for calculation.

<sup>&</sup>lt;sup>255</sup> Furnace and boiler costs are based on data provided in Appendix E of the Appliance Standards Technical Support Documents including equipment cost and installation labor.

<sup>&</sup>lt;sup>256</sup> Based on 3 ton initial cost estimate for a conventional unit from ENERGY STAR Central AC calculator.

baseline Air Source Heat Pump, or \$2,903 for a new baseline 90% AFUE furnace or \$4,045 for a new 82% AFUE boiler and 1,047 per ton for new baseline Central AC replacement<sup>257</sup>. This future cost should be discounted to present value using the nominal societal discount rate.

# C.3.5.6. Future Data Collection Needs

As with Central Air Conditioning, the cooling side of this measure should be considered for supplementary data collection pertaining to runtime and peak coincidence in three years (PY9, program year 2019-2020).

<sup>&</sup>lt;sup>257</sup> All baseline replacement costs are consistent with their respective measures and include inflation rate of 1.91%.

#### C.3.6.1. Measure Description

This measure involves the installation of ductless mini-split heat pumps (DMSHP). These systems have increased savings over efficient air source heat pumps as they use less fan energy to move heat and cooled air and don't incur distribution losses.

### C.3.6.2. Baseline and Efficiency Standards

For new construction (NC) and ROB projects, the cooling baseline is 14 SEER and 8.0 HSPF, consistent with the current federal minimum standard<sup>258</sup>. Due to the high cost of this equipment, all projects are assumed to be replacement on burnout or new construction.

A DMSHP must be a high-efficiency, variable-capacity system that exceeds program minimum efficiency requirements. Qualified systems will typically have an inverter-driven DC motor.

Heat Pump equipment shall be properly sized to the dwelling, based on ASHRAE or ACCA Manual J standards. Manufacturer data sheets on installed air conditioning equipment or the AHRI reference number must be provided to the utility. The installed central air conditioning equipment must be AHRI certified.

|                          | SEER | EER  | HSPF           |
|--------------------------|------|------|----------------|
| New Construction and     | 14   | 11.8 | 8.2 (split)    |
| Normal Replacement       | 14   | 11.0 | 8.0 (packaged) |
| Early Replacement – Heat | 13   | 11.2 | 7.7 (split &   |
| Pump                     | 15   | 11.2 | packaged)      |

### C.3.6.3. Estimated Useful Life (EUL)

The average lifetime of this measure is 18 years.<sup>259</sup>

<sup>&</sup>lt;sup>258</sup> DOE minimum efficiency standard for residential air conditioners/heat pumps. www1.eere.energy.gov/buildings/appliance\_standards/product.aspx/productid/75.

<sup>&</sup>lt;sup>259</sup> Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, Inc., June 2007

### C.3.6.4. Deemed Savings Values

Savings are calculated in the same manner as for Heat Pump Replacement. See Section C.3.4.5. According to the current AHRI database<sup>260</sup>, the average efficiency of ENERGY STAR-rated ductless units that are currently in production is as follows:

- SEER: 21.17
- EER: 12.79
- HSPF: 10.43

The average capacity of these units is 2.28 tons.

The resulting average unit energy savings for a ductless mini-split are detailed in the table below. This is per-unit installed in a residence; a retrofit may constitute installation of multiple units, and if so, the calculation is performed separately for each and the savings added.

|                                            | kWh Per<br>Ton | kW per<br>Ton | Average<br>Tons | kWh per<br>Unit | kW per<br>Unit |
|--------------------------------------------|----------------|---------------|-----------------|-----------------|----------------|
| New Construction and<br>Normal Replacement | 599            | 0.0606        | 3.01            | 1,801           | 0.18           |
| Early Replacement – Heat<br>Pump           | 745            | 0.1026        | 3.01            | 2,239           | 0.31           |

Table C-80: Ductless Mini-Split Average Savings

### C.3.6.5. Incremental Cost

New Construction and Time of Sale: The actual installed cost of the DMSHP should be used (defaults are provided below), minus the assumed installation cost of the baseline equipment (\$1,381 per ton for ASHP<sup>261</sup> or \$2,011 for a new baseline 80% AFUE furnace or \$3,543 for a new 82% AFUE boiler<sup>262</sup> and \$952 per ton<sup>263</sup> for new baseline Central AC replacement).

Default full cost of the DMSHP is provided below. Note, for smaller units a minimum cost of \$2,000 should be applied<sup>264</sup>:

<sup>&</sup>lt;sup>260</sup> https://www.ahridirectory.org/ahridirectory/pages/vsmshp/cee/defaultSearch.aspx

<sup>&</sup>lt;sup>261</sup> Baseline cost per ton derived from DEER 2008 Database Technology and Measure Cost Data. See 'ASHP\_Revised DEER Measure Cost Summary.xls' for calculation.

<sup>&</sup>lt;sup>262</sup> Furnace and boiler costs are based on data provided in Appendix E of the Appliance Standards Technical Support Documents including equipment cost and installation labor. Where efficiency ratings are not provided, the values are interpolated from those that are.

<sup>&</sup>lt;sup>263</sup> Based on 3 ton initial cost estimate for a conventional unit from ENERGY STAR Central AC calculator

<sup>&</sup>lt;sup>264</sup> The cost per ton table provides reasonable estimates for installation costs of DMSHP, which can vary significantly due to requirements of the home. It is estimated that all units, even those 1 ton or less will be at least \$2000 to install.

| Unit Size | Full Install Cost<br>(\$/ton) <sup>265</sup> |
|-----------|----------------------------------------------|
| 9-9.9     | \$1,443                                      |
| 10-10.9   | \$1,605                                      |
| 11-12.9   | \$1,715                                      |
| 13+       | \$2,041                                      |

Table C-81: Ductless Mini-Split Full Installed Cost

The incremental cost of the DSMHP compared to a baseline minimum efficiency DSMHP is provided in the table below<sup>266</sup>.

| Efficiency (HSPF) | Incremental Cost<br>(\$/ton) over an<br>HSPF 8.0 DHP |
|-------------------|------------------------------------------------------|
| 9-9.9             | \$62                                                 |
| 10-10.9           | \$224                                                |
| 11-12.9           | \$334                                                |
| 13+               | \$660                                                |

| Table C-82 | : Ductless | Mini-Split | Incremental                                        | Cost |
|------------|------------|------------|----------------------------------------------------|------|
| 10010 0 02 | . Duollooo |            | inter en le la | 0000 |

Early Replacement/retrofit (replacing existing equipment): The full installation cost of the DMSHP should be used (default provided above). The assumed deferred cost (after 8 years) of replacing existing equipment with a new baseline unit is assumed to be \$1,518 per ton for a new baseline Air Source Heat Pump, or \$2,903 for a new baseline 90% AFUE furnace or \$4,045 for a new 82% AFUE boiler and \$1,047 per ton for new baseline Central AC replacement<sup>267</sup>. If replacing electric resistance heat, there is no deferred replacement cost. This future cost should be discounted to present value using the nominal societal discount rate.

Where the DMSHP is a supplemental HVAC system, the full installation cost of the DMSHP should be used (default provided above) without a deferred replacement cost.

# C.3.6.6. Future Data Collection Needs

As with Central Air Conditioning, the cooling side of this measure should be considered for supplementary data collection pertaining to runtime and peak coincidence in three years (PY9, program year 2019-2020).

<sup>&</sup>lt;sup>265</sup> Full costs based upon full install cost of an ASHP plus incremental costs provided in Memo from Opinion Dynamics Evaluation Team, Ductless Mini-Split Heat Pumps: Incremental Cost Analysis, April 27, 2017.

<sup>&</sup>lt;sup>266</sup> Memo from Opinion Dynamics Evaluation Team, Ductless Mini-Split Heat Pumps: Incremental Cost Analysis, April 27, 2017

<sup>&</sup>lt;sup>267</sup> All baseline replacement costs are consistent with their respective measures and include inflation rate of 1.91%.

The baseline for ductless systems may vary widely. Program implementers and the TPE should coordinate to ensure collection of baseline data for these projects.

### C.3.7. Central Air Conditioner and Heat Pump Tune-Up

#### C.3.7.1. Measure Description

This measure applies to central air conditioners and heat pumps. An AC tune-up, in general terms, involves checking, adjusting and resetting the equipment to factory conditions, such that it operates closer to the performance level of a new unit. This measure applies to all residential applications.

For this measure, the service technician must complete the following tasks according to industry best practices:

- Air Conditioner Inspection and Tune-Up Checklist<sup>268</sup>
- Inspect and clean condenser, evaporator coils, and blower.
- Inspect refrigerant level and adjust to manufacturer specifications.
- Measure the static pressure across the cooling coil to verify adequate system airflow and adjust to manufacturer specifications.
- Inspect, clean, or change air filters.
- Calibrate thermostat on/off set points based on building occupancy.
- Tighten all electrical connections, and measure voltage and current on motors.
- Lubricate all moving parts, including motor and fan bearings.
- Inspect and clean the condensate drain.
- Inspect controls of the system to ensure proper and safe operation. Check the starting cycle of the equipment to assure the system starts, operates, and shuts off properly.
- Provide documentation showing completion of the above checklist to the utility or the utility's representative.

#### C.3.7.2. Baseline and Efficiency Standards

The baseline is a system with demonstrated imbalances of refrigerant charge.

After the tune-up, the equipment must meet airflow and refrigerant charge requirements. To ensure the greatest savings when conducting tune-up services, the eligibility minimum requirement for airflow is the manufacturer specified design flow rate, or 350 CFM/ton, if unknown. Also, the refrigerant charge must be within +/- 3 degrees of target sub-cooling

<sup>&</sup>lt;sup>268</sup> Based on ENERGY STAR<sup>®</sup> HVAC Maintenance Checklist.

www.energystar.gov/index.cfm?c=heat\_cool.pr\_maintenance

for units with thermal expansion valves (TXV) and +/- 5 degrees of target super heat for units with fixed orifices or a capillary.

The efficiency standard, or efficiency after the tune-up, is assumed to be the manufacturer specified energy efficiency ratio (EER) of the existing central air conditioner or heat pump. The efficiency improvement resulting from the refrigerant charge adjustment depends on the pre-adjustment refrigerant charge.

# C.3.7.3. Estimated Useful Life (EUL)

The average lifetime of this measure is 10 years, according to CA DEER 2014.

## C.3.7.4. Deemed Savings Values

The methodologies in this chapter detail the approach program staff should take to capture data needed to calculate savings from AC tune-ups. However, this data may not always be readily available or measurable. The values in Table C-83 and Table C-84 reflect the per-ton and per-unit averages from the PY5 through to-date PY9 program years and should be used when test data cannot be collected. HSPF and EER gains used in deemed calculations were derived from the same data.

Table C-83: AC Tune-Up Deemed Savings Single Family Dwelling

| System<br>Type | kWh/Ton | kW/Ton | Average<br>Tons <sup>269</sup> | kWh   | kW    |
|----------------|---------|--------|--------------------------------|-------|-------|
| Central AC     | 283.27  | 0.1332 | 3.28                           | 929   | 0.437 |
| Central HP     | 603.17  | 0.1332 | 3.28                           | 1,978 | 0.437 |

Table C-84: AC Tune-Up Deemed Savings Multifamily Dwelling

| System<br>Type | kWh/Ton | kW/Ton | Average<br>Tons <sup>270</sup> | kWh   | kW    |
|----------------|---------|--------|--------------------------------|-------|-------|
| Central AC     | 283.27  | 0.1332 | 2.46                           | 697   | 0.328 |
| Central HP     | 603.17  | 0.1332 | 2.46                           | 1,484 | 0.328 |

### C.3.7.5. Deemed Savings Calculations

There are two ways in which deemed savings can be calculated for this measure:

- 1) Test-in and test-out efficiency; or
- 2) Application of a stipulated reduction in annual use.

<sup>&</sup>lt;sup>269</sup> Average cooling capacity of 7,393 units servicing single family dwellings

<sup>&</sup>lt;sup>270</sup> Average cooling capacity 767 units servicing multifamily dwellings

#### C.3.7.5.1. Test-in and Test-out Efficiency

$$kWh_{Savings\_Cooling} = CAP_c \times 1kW/1,000W \times \left(\frac{1}{EER_{pre}} - \frac{1}{EER_{post}}\right) \times EFLH_c$$
$$kWh_{Savings\_Heating} = CAP_c \times 1kW/1,000W \times \left(\frac{1}{HSPF_{pre}} - \frac{1}{HSPF_{post}}\right) \times EFLH_H$$
$$kW_{Savings} = CAP_c \times 1kW/1,000W \times \left(\frac{1}{EER_{pre}} - \frac{1}{EER_{post}}\right) \times \% CF$$

Where,

 $CAP_c$  = Cooling capacity (in BTU)

*EER*<sub>pre</sub> = Efficiency of the equipment prior to tune-up

*EER*<sub>post</sub>= Nameplate efficiency of the existing equipment

*EFLHc* = Equivalent Full-Load Cooling Hours = 1,637

*EFLHh* = Equivalent Full-Load Heating Hours = 600

HSPF<sub>pre</sub> = Measured efficiency of the heating equipment before tune-up

HSPF<sub>post</sub> = Measured efficiency of the heating equipment after tune-up

%CF = Peak Coincidence Factor

 $kWh_{Central AC} = kWh_{Savings\_Cooling}$ 

 $kWh_{Heat Pumps} = kWh_{Savings\_Cooling} + kWh_{Savings\_Heating}$ 

#### C.3.7.5.2. Baseline Efficiency

Baseline efficiency is calculated as:

$$EER_{pre} = (1 - EL) \times EER_{post}$$

EL is the Efficiency Loss based on the current refrigerant charge level. The EL values are summarized in Table C-85 and Table C-86.

Table C-85: Efficiency Loss by Refrigerant Charge Level (Fixed Orifice)

| % Charged | EL  |
|-----------|-----|
| ≤70       | .37 |
| 75        | .29 |
| 80        | .20 |
| 85        | .15 |
| 90        | .10 |
| 95        | .05 |
| 100       | 0   |
| ≥120      | .03 |

| % Charged | EL  |
|-----------|-----|
| ≤70       | .12 |
| 75        | .09 |
| 80        | .07 |
| 85        | .06 |
| 90        | .05 |
| 95        | .03 |
| 100       | .00 |
| ≥120      | .04 |

Table C-86: Efficiency Loss by Refrigerant Charge Level (TXV)

# C.3.7.5.3. Equivalent Full-Load Hours

Equivalent Full-Load Cooling Hours (EFLHc) measures the total annual runtime of HVAC equipment. To support development of this value, the usage of 68 HVAC systems in New Orleans was metered. This runtime was then normalized to correspond to Typical Meteorological Year ("TMY") weather data for New Orleans.

The resulting EFLHc is 1,637.

Equivalent Full-Load Heating Hours (EFLH<sub>h</sub>) measures the total annual runtime of heating equipment. To support development of this value, the usage of 295 electric heating systems in New Orleans was estimated using a billing analysis. This runtime was then normalized to correspond to Typical Meteorological Year ("TMY") weather data for New Orleans. In addition, the EFLH<sub>h</sub> was multiplied by a scaling factor of 1.51 to account for differences in usage for heat pump vs. electric resistance heating types.

The heat pump scaling factor was calculated using the following equation:

Scaling Factor<sub>HP</sub> = 
$$\left(\left(\frac{kWh}{HDD}\right) * COP_{HP}\right) / \left(\left(\frac{kWh}{HDD}\right) * COP_{ER}\right) * COP_{ER}\right)$$

Where,

 $kWh/HDD/Ton_{HP}$ = Weighted average of predicted kWh/HDD/Ton for heat pump heating types for single and multi-family homes = 0.3282

 $kWh/HDD/Ton_{ER}$ = Weighted average of predicted kWh/HDD/Ton for electric resistance heating types for single and multi-family homes = 0.4348

 $COP_{HP}$  = Coefficient of performance for heat pumps = 2.0

 $COP_{HP}$  = Coefficient of performance for electric resistance = 1.0

### C.3.7.5.4. Peak Coincidence Factor

The Peak Coincidence Factor is defined as the percent time during the ENO peak period where the residential central air conditioner is operational. Peak hours were defined as:

- Weekdays
- Non-holidays
- 4:00-5:00 PM
- Average ambient temperature exceeding 90 degrees Fahrenheit.

The average central AC runtime during qualified hours was 77%. This peak coincidence factor is applied to calculate peak kW demand reductions from this measure.

## C.3.7.5.5. % Off Annual Use

Alternatively, program administrators may elect to claim savings based off of a percent reduction in annual use.

$$\begin{split} kWh_{Savings} &= CAP_c \times 1kW/1,000W \times \left(\frac{1}{EER_{pre}}\right) \times EFLH_c \times \% Reduction \\ kWh_{Savings} &= CAP_c \times 1kW/1,000W \times \left(\frac{1}{EER_{pre}}\right) \times EFLH_c \times \% Reduction \\ kW_{Savings} &= CAP_c \times 1kW/1,000W \times \left(\frac{1}{EER_{pre}}\right) \times \% CF\% Reduction \end{split}$$

In this, EERpre is assumed to be 10.164<sup>271</sup>. Percent reduction is 17.2%. This value is derived with PY7 through PY9 Residential Heating & Cooling Program data.

 $kWh_{Central AC} = kWh_{Savings\_Cooling}$ 

 $kWh_{Heat Pumps} = kWh_{Savings\_Cooling} + kWh_{Savings\_Heating}$ 

### C.3.7.5.6. Uncertainty Analysis

The uncertainties associated with the two key parameters collected in EM&V are as follows:

- EFLHc: ±7.81%
- EFLHh: Heat Pumps ±37.10%
- % Coincidence: ±2.11%

### C.3.7.6. Incremental cost

The incremental cost of an AC Tune-Up is \$175<sup>272</sup>.

<sup>&</sup>lt;sup>271</sup> Averaged measured EER from 1,564 pre tune-up tests.

<sup>&</sup>lt;sup>272</sup> Illinois TRM 7.0

# C.3.7.7. Net-to-Gross Ratio

The NTGR for this measure is  $82\%^{273}$ .

### C.3.7.8. Future Studies

The incremental cost value is very sensitive to labor costs, and as such a New Orleansspecific cost study should be conducted to revise this value.

<sup>&</sup>lt;sup>273</sup> Based on primary data collection from 135 PY6-9 program participants.

#### C.3.8.1. Measure Description

This measure is comprised of performing duct sealing using mastic sealant or metal tape to the distribution system of homes with a central air conditioning system. Materials should be long-lasting materials such as UL 181A or UL 181 B-approved foil tape. Fabricbased duct tape is not allowed.

In calculating savings for this measure, program administrators are to use the leakageto-unconditioned space metric, entailing a blower-door subtraction test method. this technique is described in detail on p.44 of the Energy Conservatory Blower Door Manual; which can be found on the Energy Conservatory website<sup>274</sup>.

### C.3.8.2. Baseline and Efficiency Standards

The baseline for this measure is unsealed ductwork, with a maximum pre-installation leakage rate of 40% of total fan flow<sup>275</sup>. This cap is imposed because interior temperature in homes that exceed 40 percent total leakage would be above the thermally acceptable comfort levels published by ASHRAE in its 2009 Fundamentals publication. Historically, homeowners would remedy a situation in such a state of disrepair, and out of concern for the validity of baseline test measurements performed by duct sealing contractors and to ensure that the savings are program attributable, program administrators must cap baseline leakage at 40% of fan flow, and report the extent to which contractors' baseline leakage measurements exceed this fan flow.

### C.3.8.3. Estimated Useful Life (EUL)

According to DEER 2014, the Estimated Useful Life for duct sealing is 18 years.

### C.3.8.4. Deemed Savings Values

The methodologies in this chapter detail the approach program staff should take to capture data needed to calculate savings from duct sealing. However, this data may not always be readily available or measurable. The average leakage values in Table C-87 and Table C-88 reflect the average per-home leakage reductions from 5,163 residential single and multifamily duct sealing projects, spanning PY5 though PY9 with correction factors resulting from on-site testing applied<sup>276</sup>. Additional deemed inputs which have been created from program data averages and used in savings calculations are detailed in section C.3.8.5 below.

<sup>&</sup>lt;sup>274</sup> As of Oct 2014: http://www.energyconservatory.com/sites/default/files/documents/mod\_3-4\_dg700\_-\_new\_flow\_rings\_-\_cr\_-tpt\_-\_no\_fr\_switch\_manual\_ce\_0.pdf

<sup>&</sup>lt;sup>275</sup> Total Fan Flow = Cooling Capacity (tons)  $\times$  400

<sup>&</sup>lt;sup>276</sup> PY5 to PY9 average

| System Type                      | Average<br>Leakage<br>Reduction <sup>277</sup> | kWh   | kW    |
|----------------------------------|------------------------------------------------|-------|-------|
| AC with Gas Heat                 | 471                                            | 2,465 | 1.159 |
| Heat Pump                        | 471                                            | 2,879 | 1.159 |
| AC with Electric Resistance Heat | 471                                            | 4,106 | 1.159 |
| Electric Resistance Heat, no AC  | 471                                            | 1,641 | 0.000 |

Table C-87: Duct Sealing Deemed Savings Values – Single Family

Table C-88: Duct Sealing Deemed Savings Values – Multifamily

| System Type                      | Average<br>Leakage<br>Reduction <sup>278</sup> | kWh   | kW    |
|----------------------------------|------------------------------------------------|-------|-------|
| AC with Gas Heat                 | 443                                            | 2,317 | 1.090 |
| Heat Pump                        | 443                                            | 2,707 | 1.090 |
| AC with Electric Resistance Heat | 443                                            | 3,860 | 1.090 |
| Electric Resistance Heat, no AC  | 443                                            | 1,543 | 0.000 |

## C.3.8.5. Deemed Savings Calculations

The following formulas shall be used to calculate deemed savings for duct sealing.

C.3.8.5.1. Cooling Savings

$$kWh_{cooling} = \frac{\left(DL_{pre} - DL_{post}\right) \times EFLH_c \times (h_{out}\rho_{out} - h_{in}\rho_{in}) \times 60}{1000 \times SEER}$$

Where,

*DL<sub>pre</sub>* = Pre-measurement of leakage to unconditioned space

*DL<sub>post</sub>* = Post-measurement of leakage to unconditioned space

 $EFLH_c$  = Equivalent Full Load Cooling Hours, 1,637, based on the TPE's metering of New Orleans homes

<sup>&</sup>lt;sup>277</sup> Based on average results from 4,939 SF participants over PY5-9.

<sup>&</sup>lt;sup>278</sup> Based on average results from 325 MF participants over PY5-9.

 $H_{out}$  = Outdoor design enthalpy, 40 BTU/lb.

 $H_{in}$  = Indoor design enthalpy, 30 BTU/lb.

 $P_{out}$  = Density of outdoor air at 95 deg. F, .0740 lb./ft.<sup>3</sup>

P<sub>in</sub> = Density of outdoor air at 95 deg. F, .0756 lb./ft.<sup>3</sup>

SEER = Seasonal Efficiency Rating of existing systems (BTU/W\*hr.). Default of 13

1,000 = W/kW conversion factor

*60* = Minutes/hour conversion factor

The default of 13 SEER is based on the inspection of 182 program participants in Home Performance with ENERGY STAR and Assisted Home Performance with ENRGY STAR. These 182 participants had 135 unique model numbers, with an average SEER of 12.98. The minimum code prior to 2015 was 13 SEER and given how close the mean value is to that code value, we recommend a default SEER of 13.

### C.3.8.5.2. Heating Savings (Heat Pump)

Heating savings are calculated as:

kWh<sub>Heating,Heat Pump</sub>

 $=\frac{\left(DL_{pre} - DL_{post}\right)/((CAP/12,000) * 400) * EFLH_h * CAP * TRFheat}{\eta \text{Heat} / 3,412}$ 

Where,

*DL*<sub>pre</sub> = Pre-measurement of leakage to unconditioned space

*DL<sub>post</sub>* = Post-measurement of leakage to unconditioned space

CAP = Heating output capacity (Btuh) of electric heat = Actual. Use 72,829<sup>279</sup> Btu/hr if CAP unavailable.

*12,000* = Btu/ton conversion factor

400 = CFM/ton conversion factor

 $EFLH_h$  = Equivalent full load heating hours of heat pumps =  $600^{280}$ 

*TRFheat* = Thermal Regain Factor for heating by space type = 1.0 for Unconditioned Spaces = 0.40 for Semi-Conditioned Spaces

 $\eta$ *Heat* = Efficiency in COP of Heating equipment = Actual. If unavailable, use 2.40.

*3,412* = Conversion of BTU/kWh.

<sup>&</sup>lt;sup>279</sup> Average heating capacity of 2,022 program participants.

<sup>&</sup>lt;sup>280</sup> Measured metering data from 295 New Orleans residences.

The default CAP of 72,829 is based on average capacity found for 2,022 residential customers who participated in a residential program PY5-PY9.

# C.3.8.5.3. Heating Savings (Electric Resistance)

Heating savings are calculated as:

kWh<sub>Heating,Electric Resistance</sub>

$$=\frac{(DL_{pre} - DL_{post})/((CAP/12,000) * 400) * EFLH_h * CAP * TRFheat}{\eta \text{Heat} / 3,412}$$

Where,

*DL<sub>pre</sub>* = Pre-measurement of leakage to unconditioned space

*DL<sub>post</sub>* = Post-measurement of leakage to unconditioned space

CAP = Heating output capacity (Btu/hr) of electric heat = Actual. Use 72,829<sup>281</sup> Btu/hr if CAP unavailable.

*12,000* = Btu/ton conversion factor

*400* = CFM/ton conversion factor

 $EFLH_h$  = Equivalent full load heating hours =  $396^{282}$ 

*TRFheat* = Thermal Regain Factor for heating by space type = 1.0 for Unconditioned Spaces = 0.40 for Semi-Conditioned Spaces

 $\eta$ *Heat* = Efficiency in COP of Heating equipment = Actual. If unavailable, use 1.0.

3,412 = Conversion of BTU/kWh.

### C.3.8.5.4. Demand Savings (Cooling)

Demand savings are calculated by applying peak coincidence to the Cooling kWh savings. If the residence does not have central air conditioning (i.e., the ductwork is used only for heating distribution) then demand savings are 0.

$$kW = \frac{kWh_{cooling}}{EFLH_c} \times Coincidence\%$$

Where,

kWh<sub>cooling</sub> = Calculated kWh cooling savings

 $EFLH_c$  = Equivalent Full Load Cooling Hours, 1,637, based on the TPE 's metering of New Orleans homes

<sup>&</sup>lt;sup>281</sup> Average heating capacity of 2,022 program participants.

<sup>&</sup>lt;sup>282</sup> Measured metering data from 295 New Orleans residences.

*Coincidence%* = 77%, calculated based on the TPE's metering of New Orleans homes.

# C.3.8.5.5. Derivation of Equivalent Full-Load Hours and Peak Coincidence Factor

### C.3.8.5.5.1. Cooling Hours

Equivalent Full-Load Cooling Hours (EFLHc) measures the total annual runtime of HVAC equipment. To support development of this value, the usage of 68 HVAC systems in New Orleans was metered over. This runtime was then normalized to correspond to Typical Meteorological Year ("TMY") weather data for New Orleans.

The resulting EFLHc is 1,637.

### C.3.8.5.5.2. Peak Coincidence Factor

The Peak Coincidence Factor is defined as the percent time during the ENO peak period where the residential central air conditioner is operational. Peak hours were defined as:

- Weekdays
- Non-holidays
- 4:00-5:00 PM
- Average ambient temperature exceeding 90 degrees Fahrenheit.

The average central AC runtime during qualified hours was 77%. This peak coincidence factor is applied to calculate peak kW demand reductions from this measure.

#### C.3.8.5.5.3. Heating Hours

Equivalent Full-Load Heating Hours (EFLH<sub>h</sub>) measures the total annual runtime of heating equipment. To support development of this value, the usage of 295 electric heating systems in New Orleans was estimated using a billing analysis. This runtime was then normalized to correspond to Typical Meteorological Year ("TMY") weather data for New Orleans. In addition, the EFLH<sub>h</sub> was multiplied by a scaling factor of 1.51 to account for differences in usage for heat pump vs. electric resistance heating types.

The heat pump scaling factor was calculated using the following equation:

Scaling Factor<sub>HP</sub> = 
$$\left(\left(\frac{kWh}{HDD}\right) * COP_{HP}\right) / \left(\left(\frac{kWh}{HDD}\right) * COP_{ER}\right)$$

Where,

 $kWh/HDD/Ton_{HP}$  = Weighted average of predicted kWh/HDD/Ton for heat pump heating types for single and multi-family homes = 0.3282

kWh/HDD/Ton<sub>ER</sub>= Weighted average of predicted kWh/HDD/Ton for electric resistance heating types for single and multi-family homes = 0.4348

 $COP_{HP}$  = Coefficient of performance for heat pumps = 2.0

 $COP_{HP}$  = Coefficient of performance for electric resistance = 1.0

The resulting  $EFLH_H$  for Electric Resistance systems 396.

The resulting EFLH<sub>H</sub> for Heat Pumps is 600.

### C.3.8.5.5.4. Uncertainty Analysis

The uncertainties associated with the four key parameters collected in EM&V are as follows:

- EFLHc: ±5.10%
- % Coincidence: ±2.11%
- EFLHh: Electric Resistance ±5.10%
- EFLHh: Heat Pumps ±37.10%

### C.3.8.6. Incremental cost

The incremental cost of this measure is the full installed cost. If this is not available than the PY6 average cost of \$368 may be used instead.

### C.3.8.7. Net-to-Gross Ratio

The NTGR for this measure is 95%<sup>283</sup>.

### C.3.8.8. Future Studies

This is a high impact measure, regularly constituting a large percent of Energy Smart program savings. The TPE recommends that savings estimates for Duct Sealing be validated with a billing analysis of the past three years of program participants.

<sup>&</sup>lt;sup>283</sup> Based on primary data collection from 282 PY6-9 program participants.

#### C.3.9. Smart Thermostats

#### C.3.9.1. Measure Description

The Smart Thermostats measure involves the replacement of a manually operated or programmable thermostat with a smart programmable thermostat. This measure applies to all residential applications.

Recent research<sup>284</sup> indicates that today's programmable thermostat is evolving into a more usable, capable, and connected device. Smart thermostats are the next generation of programmable thermostats, which provide an array of features including automatic occupancy sensing and set-point adjustment. An energy management system that includes a communicating climate control will provide energy users with vastly improved and potentially real-time information on heating, ventilation, and air conditioning (HVAC) consumption and cost. Armed with these capabilities, consumers are able to take immediate action to reduce energy use and see the results in real-time.

The location of the smart thermostat can affect its performance and efficiency. To operate properly, a thermostat must be installed on an interior wall away from direct sunlight, drafts, doorways, skylights, and windows.<sup>285</sup> Additionally, thermostats should be installed in a location with the house that is regularly occupied while residents are home.

For homes with a heat pump, smart thermostats must be professionally installed and commissioned. Smart thermostats on heat pumps must be capable of controlling heat pumps to optimize energy use and minimize the use of backup electric resistance heat.

Smart thermostats have capabilities beyond those found in a traditional programmable thermostat. To qualify as a smart thermostat, the units installed, at a minimum, should have the following capabilities and installation parameters:

- 1. Successful connection to existing WIFI
- 2. Remote adjustment via smart phone or online
- 3. Automatic scheduling
- 4. Energy history
- 5. Occupancy sensing (set "on" as a default)

Other optional features include:

- 1. Early on function to allow desired set points to be met at onset of occupancy
- 2. Filter reminders
- 3. On screen indication when temperature is set to an energy saving value

<sup>&</sup>lt;sup>284</sup> Archived ENERGY STAR<sup>®</sup> Programmable Thermostat Specification. www.energystar.gov/index.cfm?c=archives.thermostats\_spec.

<sup>&</sup>lt;sup>285</sup> U.S. DOE, "Thermostats." May 7, 2015. http://energy.gov/energysaver/articles/thermostats.

 4. For heat pumps, smart thermostat must be able to control heat pump to optimize energy use and minimize the use of backup electric resistance heat

## C.3.9.2. Baseline and Efficiency Standards

The baseline condition is a manually operated or properly programmed thermostat.

## C.3.9.3. Estimated Useful Life (EUL)

According to DEER 2014, the estimated useful life for thermostats is 11 years.<sup>286</sup>

### C.3.9.4. Deemed Savings Values

The deemed savings values for this measure is 343 kWh per household.

Savings are based on the results of the Smart Thermostat Direct Install Pilot Program, comprised of 894 multifamily dwellings, with 749 used in the estimation of final savings.

Billing data was used from program participants and supplemented with a matched control group. The evaluation used a pre-post fixed effects model with a vector of control variables for each month to capture seasonal effects. This is called a model specification allows the model to capture much of the baseline differences across customers while obtaining reliable estimates of the impact of the thermostat installation. The reductions are calculated in terms of kWh per day.

The model is shown below in Equation 1:

Equation 1: P Pre-Post Fixed Effects Model

$$\begin{split} kWh \ Usage_{it} &= \alpha_{0} + \beta_{1} * Post_{i} + \beta_{2} * Post_{i} * Treatment_{i} \\ &+ \beta_{3} * Month_{t} + \beta_{4} * Post_{i} * Month_{t} + \beta_{5} * Post_{i} * Treatment_{i} * Month_{t} \\ &+ \beta_{6} * Customer_{i} + \varepsilon_{it} \end{split}$$

### Where

i = ith customer

- *t* = the first, second, third, etc. month of the post-treatment period
- *kWh Usage*<sub>*it*</sub> = the average daily use during month *t* for household *i* in the post-treatment period
- $Post_i$  = a dummy indicator for whether an observation for household *i* occurs preor post-installation of the thermostat
- $Treatment_i$  = a dummy indicator for whether the household was a participant household with a Nest thermostat installed
- $Month_t$  = the month of the billing period t

<sup>&</sup>lt;sup>286</sup> Database for Energy Efficient Resources (2014). www.deeresources.com/.

- $Post_i * Treatment_i$  = an interaction term between the Post and Treatment variables
- $Post_i * Month_t$  = an interaction term between the Post and Month variables
- $Post_i * Treatment_i * Month_t$  = an interaction term between the Post, Treatment and Month variables
- Customer<sub>i</sub> = a customer-specific dummy variable which account for exogenous heterogeneity that cannot be explicitly controlled for (for a Fixed Effects Model)  $\alpha_0$  = an intercept term

 $\varepsilon_{it}$  = an error term

In this specification, the predicted participant savings in the post-period are calculated as in Equation 2.

Equation 2: Participant Annual Savings

Participant Annual Savings = 
$$\sum_{t=1}^{12 \text{ month}} \left\{ \beta_{2t} * \frac{Days}{Month_t} + \beta_{5t} * \frac{Days}{Month_t} \right\}$$

Where,

 $\beta_2$  = the coefficient for Post\*Treatment parameter

 $\beta_5$  = the coefficient for the Post\*Treatment\*Month parameter, which captures the seasonal factors following the installation of the thermostat

 $\frac{Days}{Month_t}$  = the total number of days during billing period t

Below, Table C-89 shows the model results and average annual savings per household.

|                   | Average<br>Annual<br>Usage<br>(kWh) | Average<br>Annual<br>kWh<br>Savings | kWh<br>Savings<br>(%) | Average<br>kWh<br>Savings<br>Variance | Error <sup>287</sup> | 90%<br>Confidence<br>Interval | R²     |
|-------------------|-------------------------------------|-------------------------------------|-----------------------|---------------------------------------|----------------------|-------------------------------|--------|
| Annual<br>Average | 12,821.58                           | 343.13                              | 2.68%                 | 3,300.19                              | 94.50                | (248.63 <i>,</i><br>437.63)   | 0.6797 |

Table C-89: Model Results and Annual Savings

### C.3.9.5. Incremental Cost

For HPwES and other programs for which installation services are provided, the actual material, labor, and other costs should be used. If this is not available, use \$394.17 for retrofit, \$199.12 for new construction.<sup>288</sup>

<sup>&</sup>lt;sup>287</sup> Square root of Monthly kWh Savings Variance, multiplied by 1.645 (z-score at 90% confidence).

<sup>&</sup>lt;sup>288</sup> Measure and base equipment costs are taken from Pacific Gas & Electric Workpaper SW13XX### <u>https://static1.squarespace.com/static/53c96e16e4b003bdba4f4fee/t/57d7624aebbd1a24f2855382/1473733196</u>

#### C.3.9.6. Future Studies

This sample from the program pilot was sufficient to provide statistically valid savings on a per-dwelling basis, but not sufficient to provide robust savings based on annual household energy use. In PY8 Smart Thermostat installations through residential programs is sufficient to perform a supplementary billing analysis of the measure. This analysis should be used to update this TRM chapter, basing saving on annual household energy use.

<sup>&</sup>lt;u>367/Workpaper+CA+Residential+Smart+Thermostat+Statewide+WorkPaper+Draft+2.pdf</u>. Measure and base labor costs are taken from Northeast Energy Efficiency Partnerships 'Emerging Technologies Incremental Cost Study Final Report' <u>http://www.neep.org/file/4475/download?token=ALT2qBvt</u> Table 3-22.

#### C.4. Envelope Measures

#### C.4.1. Attic Knee Wall Insulation

#### C.4.1.1. Measure Description

This measure involves adding attic knee wall insulation to un-insulated knee wall areas in residential dwellings of existing construction. A wall with an insulation value of R-0 has no insulation but does have a nominal wall R-value made up of interior and exterior wall materials, air film and wood studs. This measure applies to all residential applications.

#### C.4.1.2. Baseline and Efficiency Standards

This measure applies to existing construction only.

Table C-90: Attic Knee Wall Insulation – Baseline and Efficiency Standards

| Baseline              | Efficiency Standard  |
|-----------------------|----------------------|
| Uninsulated knee wall | Minimum R-19 or R-30 |

### C.4.1.3. Estimated Useful Life (EUL)

The average lifetime of this measure is 20 years, based on NEAT v. 8.6.

#### C.4.1.4. Deemed Savings

This measure has not been included in Energy Smart programs to-date. To provide an estimate of per-project savings, we use PY6 average project size for attic insulation. The average project in PY6 Home Performance with Energy Star was 1,633 square feet. For this estimation, we assume a square attic (40.41 feet per wall side). The assumed kneewall height is three feet. The resulting surface area to be insulated is:

Knee – Wall Area =  $40.41_{Wall \ length} \times 4_{\#walls} \times 3_{Wall \ heigh} = 496.92 \ ft.^2$ 

| Ceiling Insulation<br>Base R-Value | AC/Gas<br>Heat kWh | AC/Electric<br>Resistance<br>kWh | Heat Pump<br>kWh | AC Peak<br>Savings (kW) |
|------------------------------------|--------------------|----------------------------------|------------------|-------------------------|
|                                    | (/ sq. ft.)        | (/ sq. ft.)                      | (/ sq. ft.)      | (/ sq. ft.)             |
| R-19                               | 1,789              | 487                              | 3,328            | 1,155                   |
| R-30                               | 2,225              | 302                              | 3,747            | 1,297                   |

Table C-91: Knee Wall Insulation – Deemed Savings Values Per Residence

| Ceiling Insulation<br>Base R-Value | AC/Gas<br>Heat kWh | AC/Electric<br>Resistance<br>kWh | Heat Pump<br>kWh | AC Peak<br>Savings (kW) |
|------------------------------------|--------------------|----------------------------------|------------------|-------------------------|
|                                    | (/ sq. ft.)        | (/ sq. ft.)                      | (/ sq. ft.)      | (/ sq. ft.)             |
| R-19                               | 3.600              | 6.698                            | 2.324            | 0.000                   |
| R-30                               | 4.477              | 7.540                            | 2.610            | 0.000                   |

Table C-92: Knee Wall Insulation – Deemed Savings Values Per Square Foot

# C.4.1.5. Calculation of Deemed Savings

The deemed savings are dependent on the R-value of the attic knee wall, pre- and post-retrofit.

BEopt<sup>™</sup> was used to estimate energy savings for a series of models using the DOE EnergyPlus simulation engine. Since attic knee wall insulation savings are sensitive to weather, available TMY3 weather data specific to each of the four Arkansas weather regions was used for the analysis. The prototype home characteristics used in the BEopt<sup>™</sup> building model are outlined in Appendix A.

# C.4.1.6. Incremental Cost

The incremental cost for this measure is the total cost. The cost is \$0.035 per sq. ft. per "R" unit of insulation<sup>289</sup>. For the average project size of 496.92 square feet, the resulting cost is:

- R-19: \$330
- R-49: \$522

# C.4.1.7. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure was not implemented in Energy Smart programs. As a result, savings are calculated using default values based on simulation results. If this measure is added to Energy Smart programs and exceeds 1% of residential savings, then the simulation model should be updated to align with the billed use of customers that install the measure.

<sup>&</sup>lt;sup>289</sup> Public Service Company of New Mexico Commercial & Industrial Incentive Program Work Papers, 2011.

### C.4.2.1. Measure Description

This measure requires adding ceiling insulation above a conditioned area in a residential dwelling of existing construction to a minimum ceiling insulation value of R-30. Savings are also estimated for an optional final insulation level of R-38 and R-49. This measure applies to all residential applications.

This measure pertains to ceiling insulation only (attic floor). There is a separate measure (Measure 2.2.5) for roof deck insulation.

## C.4.2.2. Baseline and Efficiency Standards

In existing construction, ceiling insulation levels vary greatly, depending on the age of the home, type of insulation, and attic space utilization (such as using the attic for storage and HVAC equipment). The average pre-retrofit insulation level of the treated area will be determined and documented by the insulation contractor according to the ranges in Table C-93. Degradation due to age and condition of the existing insulation will need to be considered by the insulation contractor. Care must be exercised in differentiating between an existing R-value in the 0-1 range versus in the 2-4 range as the resulting savings are very sensitive in the lower ranges.

The eligibility standard for this measure (minimum final R-value) is R-30, as specified in IECC 2009. Savings are also provided for R-38 and R-49 as an optional final R-value, as specified for IECC climate zone 4 beginning in IECC 2012.

| Baseline     | Efficiency Standard |
|--------------|---------------------|
| R-0 to R-1   |                     |
| R-2 to R-4   |                     |
| R-5 to R-8   | R-30, R-38 or R-49  |
| R-9 to R-14  |                     |
| R-15 to R-22 |                     |

Table C-93: Ceiling Insulation – Baseline and Efficiency Standards

# C.4.2.3. Estimated Useful Life (EUL)

The average lifetime of this measure is 20 years, according to DEER 2014.

### C.4.2.4. Deemed Savings Values

Deemed savings values have been calculated for four HVAC configurations: AC with electric resistance heating, AC with gas heating, heat pumps and residences with heating but no AC. The deemed savings are based on the R-value of the ceiling insulation preretrofit and a combined post-retrofit R-value (R-values of the existing insulation and the insulation being added) of at least R-38. Savings are also provided for R-49, and linear interpolation may be used to claim savings for final R-values between R-38 and R-49. Note that the savings per square foot is a factor to be multiplied by the square footage of the ceiling area over a conditioned space that is being insulated.

For deemed savings for installation between the range of R-38 to R-49, linear interpolation can be used to determine the value that can be claimed as savings.

When providing per-residence estimates, we have included the following parameters from the PY6 Home Performance with Energy Star Program:

- Average project size: 1,633 square feet
- Average baseline: R 0.85<sup>290</sup>

| Table C-94: Deemed Savings for R-30 – Per-Residence |
|-----------------------------------------------------|
|-----------------------------------------------------|

| AC/Gas<br>Heat kWh | AC/Electric<br>Resistance<br>kWh | Heat Pump<br>kWh | No AC/Electric<br>Resistance<br>kWh | AC Peak<br>Savings (kW) |
|--------------------|----------------------------------|------------------|-------------------------------------|-------------------------|
| (/ residence)      | (/ residence)                    | (/ residence)    | (/ residence)                       | (/ residence)           |
| 1,841              | 4,697                            | 2,343            | 2,856                               | 9.335                   |

Table C-95: Deemed Savings for R-38 – Per-Residence

| AC/Gas<br>Heat kWh | AC/Electric<br>Resistance<br>kWh | Heat Pump<br>kWh | No AC/Electric<br>Resistance<br>kWh | AC Peak<br>Savings (kW) |
|--------------------|----------------------------------|------------------|-------------------------------------|-------------------------|
| (/ residence)      | (/ residence)                    | (/ residence)    | (/ residence)                       | (/ residence)           |
| 1,879              | 4,798                            | 2,393            | 2,919                               | 9.480                   |

Table C-96: Deemed Savings for R-49 – Per-Residence

| AC/Gas<br>Heat kWh | AC/Electric<br>Resistance<br>kWh | Heat Pump<br>kWh | No AC/Electric<br>Resistance<br>kWh | AC Peak<br>Savings (kW) |
|--------------------|----------------------------------|------------------|-------------------------------------|-------------------------|
| (/ residence)      | (/ residence)                    | (/ residence)    | (/ residence)                       | (/ residence)           |
| 1,931              | 4,937                            | 2,463            | 3,005                               | 9.681                   |

<sup>&</sup>lt;sup>290</sup> 83% of projects in PY6 had R-0 baseline. Contractors in the HPwES Program have demonstrated that they do not install insulation on lower-return projects (such as R-9 or above)

### C.4.2.5. Calculation of Deemed Savings

BEopt<sup>™</sup> was used to estimate energy savings for a series of models using the DOE EnergyPlus simulation engine; available TMY3 weather data specific to the New Orleans area was used for the analysis. The prototype home characteristics used in the BEopt<sup>™</sup> building model are outlined in Appendix A.

#### C.4.2.5.1. Energy Savings

 $\begin{aligned} Savings_{kWh} &= Installed \ Square \ Footage \\ &\times \left[ (I_1 \times R_{Final}) + (C_1 \times R_{initial}^4) + (C_2 \times R_{initial}^3) + (C_3 \times R_{initial}^2) \\ &+ (C_4 \times R_{initial}) + I_2 \right] \end{aligned}$ 

Where:

Installed Square Footage = Total installed square footage of insulation

*R*<sub>final</sub> = Ending R-value of insulation

*R*<sub>initial</sub> = Starting R-value of insulation

I<sub>1</sub>, I<sub>2</sub>, C<sub>1</sub>, C<sub>2</sub>, C<sub>3</sub>, C<sub>4</sub> = Coefficients as found in Table C-97 below

| Coefficients for Energy Savings |                |                           |              |                                 |  |  |  |
|---------------------------------|----------------|---------------------------|--------------|---------------------------------|--|--|--|
| Coefficients                    | AC/Gas<br>Heat | AC/Electric<br>Resistance | Heat<br>Pump | No<br>AC/Electric<br>Resistance |  |  |  |
| I <sub>1</sub>                  | 3.189E-03      | 8.412E-03                 | 4.211E-03    | 5.224E-03                       |  |  |  |
| C1                              | 1.431E-05      | 2.810E-05                 | 1.214E-05    | 1.379E-05                       |  |  |  |
| C <sub>2</sub>                  | -8.743E-04     | -1.812E-03                | -8.110E-04   | -9.377E-04                      |  |  |  |
| C <sub>3</sub>                  | 2.041E-02      | 4.517E-02                 | 2.102E-02    | 2.476E-02                       |  |  |  |
| C4                              | -2.388E-01     | -5.693E-01                | -2.754E-01   | -3.305E-01                      |  |  |  |
| I <sub>2</sub>                  | 1.3226         | 3.3375                    | 1.6578       | 2.0149                          |  |  |  |

Table C-97: Coefficients for kWh Savings Calculations

Rounding is not permitted.

C.4.2.5.2. Demand Savings

 $Savings_{kW} = Installed Square Footage$ 

$$\times \left[ (I_1 \times R_{Final}) + (C_1 \times R_{initial}^6) + (C_2 \times R_{initial}^5) + (C_3 \times R_{initial}^4) + (C_4 \times R_{initial}^3) + (C_5 \times R_{initial}^2) + (C_6 \times R_{initial}) + I_2 \right]$$

Where:

Installed Square Footage = Total installed square footage of insulation

 $R_{final}$  = Ending R-value of insulation

*R*<sub>initial</sub> = Starting R-value of insulation

I<sub>1</sub>, I<sub>2</sub>, C<sub>1</sub>, C<sub>2</sub>, C<sub>3</sub>, C<sub>4</sub>, C<sub>5</sub>, C<sub>6</sub> = Coefficients as found in Table C-98 below

| Coefficients for Demand Savings |                |                           |            |                                 |
|---------------------------------|----------------|---------------------------|------------|---------------------------------|
| Coefficients                    | AC/Gas<br>Heat | AC/Electric<br>Resistance | Heat Pump  | No<br>AC/Electric<br>Resistance |
| I <sub>1</sub>                  | 1.246E-05      | 1.246E-05                 | 1.157E-05  | 5.637E-06                       |
| C1                              | 3.789E-09      | 3.789E-09                 | 3.773E-09  | 1.817E-09                       |
| C <sub>2</sub>                  | -2.871E-07     | -2.871E-07                | -2.861E-07 | -1.393E-07                      |
| C <sub>3</sub>                  | 8.571E-06      | 8.571E-06                 | 8.549E-06  | 4.234E-06                       |
| C <sub>4</sub>                  | -1.281E-04     | -1.281E-04                | -1.279E-04 | -6.509E-05                      |
| C5                              | 1.008E-03      | 1.008E-03                 | 1.009E-03  | 5.376E-04                       |
| C <sub>6</sub>                  | -4.137E-03     | -4.137E-03                | -4.148E-03 | -2.397E-03                      |
| I <sub>2</sub>                  | 8.709E-03      | 8.709E-03                 | 8.786E-03  | 5.658E-03                       |

Table C-98: Coefficients for kW Savings Calculations

Rounding is not permitted.

### C.4.2.6. Incremental Cost

The incremental cost for this measure is the total cost. The cost is \$0.035 per sq. ft. per "R" unit of insulation<sup>291</sup>. For the average project size of 1,633 square feet, the resulting cost is:

- R-30: \$1,109<sup>292</sup>
- R-38: \$2,172
- R-49: \$2,801

## C.4.2.7. Future Studies

This measure should have its simulation model recalibrated to the billed use of the past three years of program participants.

If there is adequate participation, the assumed default square foot value should be revised.

<sup>&</sup>lt;sup>291</sup> Public Service Company of New Mexico Commercial & Industrial Incentive Program Work Papers, 2011.

<sup>&</sup>lt;sup>292</sup> R-30 IC based on PY7 and PY8 ENO program data.

### C.4.3.1. Measure Description

This measure consists of adding wall insulation in the wall cavity in residential dwellings of existing construction. This measure applies to all residential applications.

## C.4.3.2. Baseline and Efficiency Standards

In order to qualify for this measure, there must be no existing wall cavity insulation. Postretrofit condition will be a wall cavity filled with either fiberglass or cellulose insulation (R-13 nominal value), open cell insulation (R-13 nominal value), or closed cell foam insulation (R-23 nominal value). Each type of insulation's nominal R-value depends on a full thickness application within the cavity of a wall with 2x4 inch studs.

Table C-99: Wall Insulation – Baseline and Efficiency Standards

| Baseline                | Efficiency Standard<br>(Nominal R-Values) |      |
|-------------------------|-------------------------------------------|------|
| Uninsulated wall cavity | Fiberglass/Cellulose                      | R-13 |
|                         | Open Cell Foam                            | R-13 |
|                         | Closed Cell Foam                          | R-23 |

## C.4.3.3. Estimated Useful Life (EUL)

The average lifetime of this measure is 20 years, according to DEER 2014.

## C.4.3.4. Deemed Savings

The savings per square foot is a factor to be multiplied by the square footage of the net wall area insulated. Wall area must be part of the thermal envelope of the home and shall not include window or door area.

Deemed savings for R-13 can be achieved with either fiberglass, cellulose, or open cell foam insulation. Deemed savings for R-23 is only applicable to closed cell insulation. The R-value represents the nominal value of the cavity insulation and not the R-value of the wall assembly.

For deemed savings for installation between the range of R-13 to R-23, linear interpolation can be used to determine the value that can be claimed as savings.

To calculate savings per-residence, the following assumptions are used:

Average square feet of insulation: 1,501<sup>293</sup>

<sup>&</sup>lt;sup>293</sup> ENERGY STAR guidance.

https://www.energystar.gov/ia/partners/bldrs lenders raters/downloads/Savings and Cost Estimate Summary. pdf

| Ceiling Insulation       | kWh Savings / sq. ft. |         | kW Peak Savings / sq. ft. |         |
|--------------------------|-----------------------|---------|---------------------------|---------|
| Base R-Value             | R-13                  | R-23    | R-13                      | R-23    |
| Electric Cooling with    | 0 79296               | 0.92574 | 0.00033                   | 0.00060 |
| Gas Heat                 | 0.78286               | 0.82574 | 0.00033                   | 0.00060 |
| Electric Cooling with    | 3.33772               | 2 74995 | 0.00022                   | 0.00060 |
| Electric Resistance Heat | 3.33772               | 3.74885 | 0.00033                   | 0.00060 |
| Electric Cooling with    | 1 05252               | 1.13064 | 0.00033                   | 0.00051 |
| Electric Heat Pump       | 1.05252               | 1.13004 | 0.00055                   | 0.00051 |

Table C-100: Wall Insulation – Deemed Savings Values Per-Residence

Table C-101: Wall Insulation – Deemed Savings Values Per-Ft.<sup>2</sup>

| Ceiling Insulation       | kWh Savings / sq. ft. |         | kW Peak Savings / sq. ft. |         |
|--------------------------|-----------------------|---------|---------------------------|---------|
| Base R-Value             | R-13                  | R-23    | R-13                      | R-23    |
| Electric Cooling with    | 0.78286               | 0.82574 | 0.00033                   | 0.00060 |
| Gas Heat                 | 0.78280               | 0.82374 | 0.00033                   | 0.00000 |
| Electric Cooling with    | 3.33772               | 3.74885 | 0.00033                   | 0.00060 |
| Electric Resistance Heat | 5.55772               | 5.74665 | 0.00055                   | 0.00060 |
| Electric Cooling with    | 1.05252               | 1.13064 | 0.00033                   | 0.00051 |
| Electric Heat Pump       | 1.03252               | 1.13004 | 0.00055                   | 0.00051 |

## C.4.3.5. Calculation of Deemed Savings

Deemed savings values have been calculated for each of the four weather zones. The deemed savings are dependent on the R-value of the wall pre- and post-retrofit. BEopt<sup>™</sup> was used to estimate energy savings for a series of models using the DOE EnergyPlus simulation engine. Since wall insulation savings are sensitive to weather, available TMY3 weather data specific to each of the four Arkansas weather regions were used for the analysis. The prototype home characteristics used in the BEopt<sup>™</sup> building model are outlined in Appendix A.

## C.4.3.6. Incremental Cost

The incremental cost of this measure is equal to the full installed cost. If this is not available, use \$.92 per square foot.<sup>294</sup>. For the average project size of 1,501 square feet, this results in an incremental cost of \$1,381.

<sup>&</sup>lt;sup>294</sup> Midpoint value for floor insulation specified on Home Advisor. <u>http://www.homeadvisor.com/cost/insulation/</u>

## C.4.3.1. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure was not implemented in Energy Smart programs. As a result, savings are calculated using default values based on simulation results. If this measure is added to Energy Smart programs and exceeds 1% of residential savings, then the simulation model should be updated to align with the billed use of customers that install the measure.

If there is adequate participation, the assumed default square foot value should be revised.

### C.4.4.1. Measure Description

This measure presents two eligible scenarios for retrofitting a crawl space underneath an uninsulated floor<sup>295</sup>:

- 1. Insulating the underside of the floor (above the vented crawl space), where the floor previously had no insulation
- 2. "Encapsulating" the crawl space sealing and insulating the vented perimeter skirt or stem wall between the ground (finished grade) and the first floor of the house, leaving the underside of the first floor structure uninsulated

This measure applies to all residential applications.

### C.4.4.2. Baseline and Efficiency Standards

The baseline is considered to be a house with pier and beam construction, no insulation under the floor of the conditioned space, and a vented crawl space. In order to qualify for deemed savings, either the floor can be insulated to a minimum of R-19 or the crawl space can be encapsulated as described below. Deemed savings are provided for each option.

- Option 1 Insulating the underside of the floor to a minimum of R-19.
- Option 2 Encapsulating the crawl space: The crawl space perimeter skirt or stem walls are sealed in a sound and durable manner and the ground (floor of the crawl space) is sealed with a heavy plastic vapor barrier. The skirt or stem wall interior surfaces are insulated to R-13 (minimum) with closed cell foam<sup>296</sup>. The underside of the floor above the crawlspace is left uninsulated. A small flow of conditioned air to the crawl space is recommended to moderate humidity levels<sup>297</sup>.

Occupational Safety and Health Administration (OSHA) standards and applicable versions of the IECC and IRC codes will be pertinent to the installation. Note that this will include ensuring that any oil or gas-fueled furnaces or water heaters located in the crawlspace be provided with dedicated combustion air supply or be sealed-combustion units equipped with a powered combustion system.<sup>298</sup>

<sup>&</sup>lt;sup>295</sup> U.S. DOE publication "Building America Best Practices Series, Vol 17, "Insulation" found at <a href="http://apps1.eere.energy.gov/buildings/publications/pdfs/building\_america/insulation\_guide.pdf">http://apps1.eere.energy.gov/buildings/publications/pdfs/building\_america/insulation\_guide.pdf</a> (accessed 7-8-15) has extensive building science and code conformance information regarding insulating floors as well as sealing and insulating crawl spaces.

<sup>&</sup>lt;sup>296</sup> IECC 2012, Table R402.1

<sup>&</sup>lt;sup>297</sup> U.S. DOE publication "Building America Best Practices Series, Vol 17, "Insulation" found at <a href="http://apps1.eere.energy.gov/buildings/publications/pdfs/building\_america/insulation\_guide.pdf">http://apps1.eere.energy.gov/buildings/publications/pdfs/building\_america/insulation\_guide.pdf</a> (accessed 7-8-15), p. 58, 1 cfm per every 50 sq. ft. of floor area.

<sup>&</sup>lt;sup>298</sup> Ibid (p. 59).

| Baseline                     | Efficiency Standard                                                                                                                                                                                                                  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No insulation<br>under floor | <ol> <li>R-19 installed under floor, OR</li> <li>Encapsulated crawl space with air-sealed perimeter having R-13 insulation on the<br/>interior side, no floor insulation under the floor above, and moisture-sealed grade</li> </ol> |
|                              | under the crawl space                                                                                                                                                                                                                |

### C.4.4.3. Estimated Useful Life (EUL)

The average lifetime of this measure is 20 years, according to DEER 2014.

### C.4.4.4. Deemed Savings Values

The deemed savings values listed below are per square foot of first level floor area above the crawl space.

For the per-residence savings, we assume the same square feet as attic insulation (1,633  $ft.^2$ ), due to a lack of participation in this measure. This is to be updated when there is adequate participation to support an estimate.

Table C-103: R-19 Floor Insulation – Deemed Savings Values Per-Residence

| Equipment Type           | kWh<br>Savings /<br>residence | kW Peak<br>Savings /<br>residence |
|--------------------------|-------------------------------|-----------------------------------|
| Electric Cooling with    | -393.226                      | Negligible                        |
| Gas Heat                 | -333.220                      | Negligible                        |
| Electric Cooling with    | 108.5945                      | n/a                               |
| Electric Resistance Heat | 108.3943                      | ny a                              |
| Electric Cooling with    | 807.5185                      | Negligible                        |
| Electric Heat Pump       | 807.5185                      | Negligible                        |

Table C-104: R-19 Floor Insulation – Deemed Savings Values Per-Ft.<sup>2</sup>

| Equipment Type                                    | kWh<br>Savings /<br>sq. ft. | kW Peak<br>Savings /<br>sq. ft. |
|---------------------------------------------------|-----------------------------|---------------------------------|
| Electric Cooling with<br>Gas Heat                 | -0.2408                     | Negligible                      |
| Electric Cooling with<br>Electric Resistance Heat | 0.4945                      | Negligible                      |
| Electric Cooling with<br>Electric Heat Pump       | 0.0952                      | Negligible                      |

## C.4.4.5. Calculation of Deemed Savings

Deemed savings values have been calculated for each of the four weather zones. BEopt™ was used to estimate energy savings for both options using the same base case model

(uninsulated floor) and the DOE EnergyPlus simulation engine. Savings are sensitive to weather; therefore, available TMY3 weather data specific to New Orleans used for the analysis. The prototype home characteristics used in the BEopt<sup>™</sup> building model are outlined in Appendix A.

## C.4.4.6. Incremental Cost

The incremental cost of this measure is equal to the full installed cost.

### C.4.4.7. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure was not implemented in Energy Smart programs. As a result, savings are calculated using default values based on simulation results. If this measure is added to Energy Smart programs and exceeds 1% of residential savings, then the simulation model should be updated to align with the billed use of customers that install the measure.

If there is adequate participation, the assumed default square foot value should be revised.

## C.4.5. ENERGY STAR® Windows, Doors and Skylights

### C.4.5.1. Measure Description

This measure involves the replacement of windows with an ENERGY STAR® window(s), door(s) or skylight(s) in an existing home. This measure applies to all residential applications and are calculated on per square foot of window basis, inclusive of frame and sash. All windows must be in a metal frame. Converted residences are not eligible.

ENEGRY STAR® U-factor and Solar Heat Gain Coefficient (SHGC) qualification criteria vary based on climate zone. Figure C-11 displays the fours zones, with New Orleans appearing in the 'Southern' zone. Relevant required efficiency levels are shown in Table C-105.

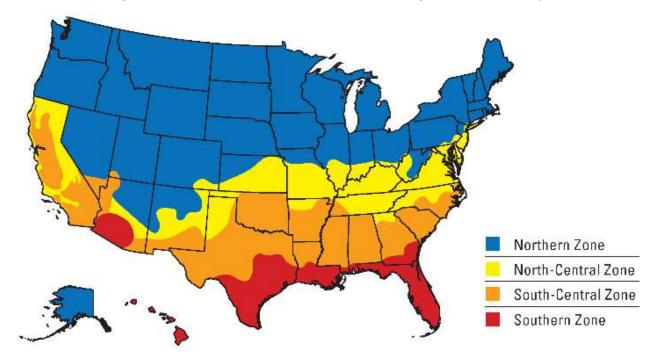



Figure C-11: ENERGY STAR® Window Program Climate Map

| New Orleans -<br>Southern | U-<br>Factor <sup>300</sup> | SHGC <sup>301</sup> |
|---------------------------|-----------------------------|---------------------|
| Windows                   | ≤ 0.40                      | ≤ 0.25              |
| Doors (Opaque)            | ≤ 0.17                      | No Rating           |
| Doors (≤ ½ Glass)         | ≤ 0.25                      | ≤ 0.25              |
| Doors (> ½ Glass)         | ≤ 0.30                      | ≤ 0.25              |
| Skylights                 | ≤ 0.60                      | ≤ 0.28              |

Table C-105: ENERGY STAR® Efficiency Requirements for New Orleans<sup>299</sup>

### C.4.5.2. Baseline and Efficiency Standards

For this measure, there are two separate baseline assumptions and two sets of deemed savings values for both single and double pane windows. Prototypical U-Values and SHGCs for baseline windows are presented in Table C-106.

| Number<br>of Panes | U-Factor<br>Btu/ (h*ft2 *°F) | Solar Heat Gain<br>Coefficient (SHGC) |
|--------------------|------------------------------|---------------------------------------|
| 1                  | 1.12                         | 0.79                                  |
| 2                  | 0.81                         | 0.64                                  |

## C.4.5.3. Estimated Useful Life (EUL)

The lifetime of an ENERGY STAR® window is 20 years<sup>302</sup>.

## C.4.5.4. Deemed Savings

### C.4.5.4.1. Windows

Table C-107 and Table C-108 provide per-square foot deemed savings values for single pane and double pane windows.

<sup>299</sup> Effective as of January 1, 2016.

https://www.energystar.gov/sites/default/files/asset/document/Windows Doors and Skylights Program Requir ements%20v6.pdf

<sup>300</sup> Btu/(h\*ft2 \*°F)

<sup>301</sup> Solar Heat Gain Coefficient

<sup>302</sup> DEER 2008, 2014.

| Equipment Type                | kWh<br>Savings<br>/ sq. ft. | kW<br>Savings<br>/ sq. ft. |
|-------------------------------|-----------------------------|----------------------------|
| Electric AC with Gas Heat     | 5.847                       | 0.0024                     |
| Elec. AC with Resistance Heat | 6.149                       | 0.0024                     |
| Heat Pump                     | 5.975                       | 0.0024                     |

Table C-108: ENERGY STAR® Replacement for Double-Pane Window<sup>304</sup>

| Equipment Type                | kWh<br>Savings<br>/ sq. ft. | kW<br>Savings<br>/ sq. ft. |
|-------------------------------|-----------------------------|----------------------------|
| Electric AC with Gas Heat     | 3.931                       | 0.0017                     |
| Elec. AC with Resistance Heat | 3.990                       | 0.0017                     |
| Heat Pump                     | 4.035                       | 0.0017                     |

Table C-109 and Table C-110 show savings for a typical window, 11.06 ft<sup>2</sup> (approximately 35.6" x 44.5").<sup>305</sup>

Table C-109: Average Savings for Single-Pane Windows

| Equipment Type                | kWh<br>Savings | kW<br>Savings |
|-------------------------------|----------------|---------------|
| Electric AC with Gas Heat     | 64             | 0.027         |
| Elec. AC with Resistance Heat | 68             | 0.027         |
| Heat Pump                     | 66             | 0.027         |

Table C-110: Average Savings for Double-Pane Windows

| Equipment Type                | kWh<br>Savings | kW<br>Savings |
|-------------------------------|----------------|---------------|
| Electric AC with Gas Heat     | 43             | 0.019         |
| Elec. AC with Resistance Heat | 44             | 0.019         |
| Heat Pump                     | 44             | 0.019         |

## C.4.5.4.2. Doors

Table C-111 through Table C-113 provide per-square foot deemed savings values for doors.

<sup>&</sup>lt;sup>303</sup> Modeled at 202 ft<sup>2</sup> area

<sup>&</sup>lt;sup>304</sup> Modeled at 202 ft<sup>2</sup> area

<sup>&</sup>lt;sup>305</sup> Based on an inventory of the 100 highest-selling windows in local stores.

| Equipment Type                | kWh<br>Savings<br>/ sq. ft. | kW<br>Savings<br>/ sq. ft. |
|-------------------------------|-----------------------------|----------------------------|
| Electric AC with Gas Heat     | 0.725                       | 0.0171                     |
| Elec. AC with Resistance Heat | 3.725                       | 0.0171                     |
| Heat Pump                     | 1.750                       | 0.0171                     |

Table C-111: ENERGY STAR® Replacement for Doors (Opaque) <sup>306</sup>

Table C-112: ENERGY STAR® Replacement for Doors (≤ ½-Lite) <sup>307</sup>

| Equipment Type                | kWh<br>Savings<br>/ sq. ft. | kW<br>Savings<br>/ sq. ft. |
|-------------------------------|-----------------------------|----------------------------|
| Electric AC with Gas Heat     | 1.400                       | 0.0262                     |
| Elec. AC with Resistance Heat | 4.100                       | 0.0262                     |
| Heat Pump                     | 2.275                       | 0.0262                     |

Table C-113: ENERGY STAR® Replacement for Doors (> 1/2-Lite) 308

| Equipment Type                | kWh<br>Savings<br>/ sq. ft. | kW<br>Savings<br>/ sq. ft. |
|-------------------------------|-----------------------------|----------------------------|
| Electric AC with Gas Heat     | 3.000                       | 0.0523                     |
| Elec. AC with Resistance Heat | 6.225                       | 0.0523                     |
| Heat Pump                     | 4.175                       | 0.0523                     |

## C.4.5.4.3. Skylights

Table C-114 provides per-square foot deemed savings values for skylights.

Table C-114: ENERGY STAR® Replacement for Skylights<sup>309</sup>

| Equipment Type                | kWh<br>Savings<br>/ sq. ft. | kW<br>Savings<br>/ sq. ft. |
|-------------------------------|-----------------------------|----------------------------|
| Electric AC with Gas Heat     | 0.842                       | 0.0322                     |
| Elec. AC with Resistance Heat | 0.842                       | 0.0322                     |
| Heat Pump                     | 0.901                       | 0.0322                     |

BEopt<sup>™</sup> was used to estimate energy savings for a series of models using the DOE EnergyPlus simulation engine. Since ENERGY STAR<sup>®</sup> window, skylight and door

<sup>&</sup>lt;sup>306</sup> 40 ft<sup>2</sup> area, no glass

<sup>&</sup>lt;sup>307</sup> 40 ft<sup>2</sup> area, 25% glass

<sup>&</sup>lt;sup>308</sup> 40 ft<sup>2</sup> area, 75% glass

 $<sup>^{309}</sup>$  101 ft<sup>2</sup> area

savings are sensitive to weather, available TMY3 weather data specific to New Orleans was used for the analysis. The prototype home characteristics used in the BEopt<sup>™</sup> building model are outlined in Appendix A.

## C.4.5.5. Incremental Costs

Windows: ENERGY STAR $^{310}$  estimates window incremental costs for the New Orleans climate zone to be  $0.61/ft^2$ , or 0.74 for a typical  $11.06ft^2$  window.

Doors: ENERGY STAR®<sup>311</sup> estimates incremental costs for doors to be \$13 for  $\leq$  1/2 lite doors and \$30 for >1/2 lite doors. The average cost increase over best-selling opaque doors is \$0, thus the incremental cost for opaque doors is \$0.

Skylights: ENERGY STAR®<sup>311</sup> estimates incremental costs for skylights to be \$20-\$40 for a typical skylight.

## C.4.5.6. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure has not yet been implemented in Energy Smart programs. As a result, savings are calculated using Texas values which have been weather-normalized for New Orleans. If this measure is added to Energy Smart programs, the evaluation should include a review of actual efficiency levels and costs of units purchased by New Orleans residents.

If participation reached 1% of residential Energy Smart program savings, the TPE recommends a simulation models be calibrated with utility metering data and deemed savings estimates be updated at that time.

<sup>&</sup>lt;sup>310</sup> <u>https://www.energystar.gov/sites/default/files/asset/document/Savings\_and\_Cost\_Estimate\_Summary.pdf</u>
<sup>311</sup>

https://www.energystar.gov/ia/partners/prod\_development/revisions/downloads/windows\_doors/Draft6\_V1\_Cri teria\_Analysis\_Report.pdf

### C.4.6. ENERGY STAR® Low Emissivity Storm Windows

### C.4.6.1. Measure Description

This measure involves the installation of interior or exterior ENERGY STAR® low emissivity (low-e) storm windows over existing windows. Savings is achieved through lowering structure emissivity, solar gain and air leakage. This measure applies residential applications including low-rise multifamily buildings. ENEGRY STAR® U-factor and Solar Heat Gain Coefficient (SHGC) qualification criteria vary based on climate zone. Figure C-11 displays the fours zones, with New Orleans appearing in the 'Southern' zone. Relevant required efficiency levels are shown in Figure C-12.

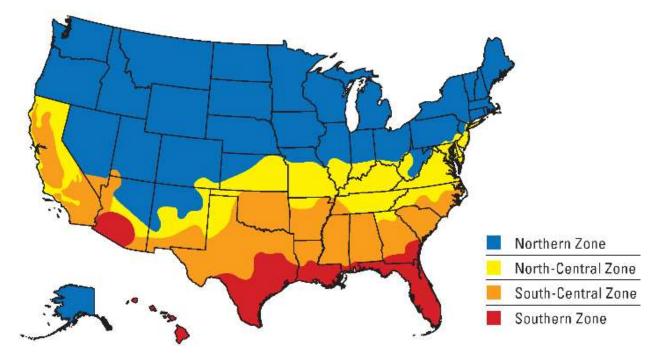



Figure C-12: ENERGY STAR® Window Program Climate Map

Table C-115: ENERGY STAR® Requirements for Storm Windows (Southern Region)

| Emissivity | Solar<br>Transmission | Air Leakage                          |
|------------|-----------------------|--------------------------------------|
| ≤0.22      | ≤ 0.55                | ≤ 1.5 (exterior)<br>≤ 0.5 (interior) |

## C.4.6.2. Baseline and Efficiency Standards

The baseline for this measure is an existing single or double pane glass window with no existing storm window.

## C.4.6.3. Estimated Useful Life (EUL)

The lifetime of an ENERGY STAR® window is 20 years<sup>312</sup>.

### C.4.6.4. Deemed Savings

Table C-116 and Table C-117 provide deemed savings values for interior and exterior ENERGY STAR® storm windows.

| Equipment Type       | kWh<br>Savings/ ft.² | kW<br>Savings/ ft.² |
|----------------------|----------------------|---------------------|
| Gas & AC             | 1.51                 | 0.0007              |
| AC & Elec Resistance | 2.98                 | 0.0007              |
| Heat Pump            | 1.96                 | 0.0007              |

Table C-116: ENERGY STAR® Interior Storm Window Deemed Savings

Table C-117: ENERGY STAR® Exterior Storm Window Deemed Savings

| Equipment Type       | kWh<br>Savings/ ft.² | kW<br>Savings/ ft.² |
|----------------------|----------------------|---------------------|
| Gas & AC             | 1.38                 | 0.0006              |
| AC & Elec Resistance | 2.10                 | 0.0006              |
| Heat Pump            | 1.62                 | 0.0006              |

BEopt<sup>™</sup> was used to estimate energy savings for a series of models using the DOE EnergyPlus simulation engine. Since ENERGY STAR® storm window savings are sensitive to weather, available TMY3 weather data specific to New Orleans was used for the analysis. The prototype home characteristics used in the BEopt<sup>™</sup> building model are outlined in Appendix A.

## C.4.6.5. Incremental Costs

The incremental cost of this measure is equal to the full installed cost. If this is not available, the incremental costs for low-E storm windows are assumed to be \$1/sqft<sup>313</sup>.

## C.4.6.6. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure has not yet been implemented in Energy Smart programs. As a result, savings are calculated using

<sup>&</sup>lt;sup>312</sup> DEER 2008, 2014.

<sup>&</sup>lt;sup>313</sup> https://www.pnnl.gov/main/publications/external/technical\_reports/PNNL-24826.pdf

national values which have been weather-normalized for New Orleans. If this measure is added to Energy Smart programs, the evaluation should include a review of actual efficiency levels and costs of units purchased by New Orleans residents.

If participation reached 1% of residential Energy Smart program savings, the TPE recommends running simulation models be calibrated with utility metering data and deemed savings estimates be updated at that time.

## C.4.7.1. Measure Description

This measure reduces air infiltration into the residence, using pre- and post-treatment blower door air pressure readings to quantify the air leakage reduction. There is no postretrofit minimum infiltration requirement, however, installations must comply with the prevailing Arkansas mechanical code. This measure applies to all residential applications.

## C.4.7.2. Baseline and Efficiency Standards

The baseline for this measure is the existing leakage rate of the residence to be treated. The existing leakage rate should be capped to account for the fact that the deemed savings values per CFM50 leakage reduction are only applicable up to a point where the existing HVAC equipment would run continuously. Beyond that point, energy use will no longer increase linearly with an increase in leakage.

Baseline assumptions used in the development of these deemed savings are based on the *2013 ASHRAE Handbook of Fundamentals, Chapter 16*, which provides typical infiltration rates for residential structures. In a study of low income homes reported in ASHRAE, approximately 95 percent of the home infiltration rates were below 3.0 ACH<sub>Nat</sub>.<sup>314</sup> Therefore, to avoid incentivizing homes with envelope problems not easily remedied through typical weatherization procedures, or improperly conducted blower door tests, these savings should only be applied starting at a baseline ACH<sub>Nat</sub> of 3.0 or lower.

To calculate the maximum allowable CFM<sub>50,pre</sub>-value for a particular house, use the following equation:

$$CFM_{50,pre}/ft^2 = \frac{ACH_{Nat,pre} \times h \times N}{60}$$

Where:

 $CFM_{50,pre}/_{ft}^2$  = Per square foot pre-installation infiltration rate (CFM50/ft2)

 $ACH_{Nat,pre}$  = Maximum pre-installation air change rate (ACH<sub>Nat</sub>) = 3.0

60 = Constant to convert from minutes to hours

*h* = Ceiling height (ft.) = 8.5 (default)315

N = N factor (Table C-118:)

<sup>&</sup>lt;sup>314</sup> 2013 ASHRAE Handbook of Fundamentals, Chapter 16, pp. 16.18, Figure 12.

<sup>&</sup>lt;sup>315</sup> Typical ceiling height of 8 feet adjusted to account for greater ceiling heights in some areas of a typical residence.

|               | Number of Stories  |       |       |
|---------------|--------------------|-------|-------|
| Wind          | Single Two Three + |       |       |
| Shielding     | Story              | Story | Story |
| Well Shielded | 25.8               | 20.6  | 18.1  |
| Normal        | 21.5               | 17.2  | 15.1  |
| Exposed       | 19.4               | 15.5  | 13.5  |

| Table C-118: Air Infiltration – | N Factor <sup>316</sup> |
|---------------------------------|-------------------------|
|---------------------------------|-------------------------|

<u>Well Shielded</u> is defined as urban areas with high buildings or sheltered areas, and buildings surrounded by trees, bermed earth, or higher terrain.

<u>Normal</u> is defined as buildings in a residential neighborhood or subdivision, with yard space between buildings. Approximately 80-90 percent of houses fall in this category.

<u>Exposed</u> is defined as buildings in an open setting with few buildings or trees around and buildings on top of a hill or ocean front, exposed to winds.

Maximum CFM<sub>50</sub> per square foot values are available in Table C-119. Pre-retrofit leakage rates are limited to fa maximum per ft.<sup>2</sup> value specified in the table, as this generally indicates severe structural damage not repairable by typical infiltration reduction techniques.

| Wind          | Number of Stories                    |     |     |  |
|---------------|--------------------------------------|-----|-----|--|
| Shielding     | Single Two Three<br>Story Story Stor |     |     |  |
| Well Shielded | 11.0                                 | 8.8 | 7.7 |  |
| Normal        | 9.1                                  | 7.3 | 6.4 |  |
| Exposed       | 8.2                                  | 6.6 | 5.7 |  |

Table C-119: Pre-Retrofit Infiltration Cap (CFM<sub>50</sub>/<sub>ft</sub><sup>2</sup>)

## C.4.7.3. Estimated Useful Life (EUL)

According to DEER 2014, the Estimated Useful Life for air infiltration is 11 years.

## C.4.7.4. Deemed Savings Values

Programs should calculate savings based on pre- and post-retrofit leakage testing. If this data is not available, default estimates may be applied. The following assumptions based

<sup>&</sup>lt;sup>316</sup> Krigger, J. & Dorsi, C. 2005, Residential Energy: Cost Savings and Comfort for Existing Buildings, 4<sup>th</sup> Edition. Version RE. Appendix A-11: Zone 3 Building Tightness Limits, p. 284., December 20. www.waptac.org/data/files/Website docs/Technical Tools/Building%20Tightness%20Limits.pdf.

on PY6 evaluation results of the Home Performance with ENERGY STAR Program are used in providing per-residence savings estimates:

Leakage reduction: 2,045 CFM

Table C-120: Air Infiltration Reduction – Deemed Savings Values Per-Residence

| Equipment<br>Type                | kWh<br>Savings<br>/ CFM₅₀<br>(ESF) | kW<br>Savings<br>/ CFM₅₀<br>(DSF) |
|----------------------------------|------------------------------------|-----------------------------------|
| Electric AC with<br>Gas Heat     | 840                                | 0.6769                            |
| Elec. AC with<br>Resistance Heat | 2,082                              | 0.6789                            |
| Heat Pump                        | 1,474                              | 0.6789                            |

## C.4.7.5. Deemed Savings Calculations

The following formulas shall be used to calculate deemed savings for infiltration efficiency improvements. The formulas apply to all building heights and shielding factors.

$$kWh_{savings} = CFM_{50} \times ESF$$
$$kW_{savings} = CFM_{50} \times DSF$$

Where:

 $CFM_{50}$  = Air infiltration reduction in Cubic Feet per Minute at 50 pascals, as measured by the difference between pre- and post-installation blower door air leakage tests

*ESF* = corresponding energy savings factor (Table C-121)

*DSF* = corresponding demand savings factor (Table C-121)

Table C-121: Air Infiltration Reduction – Deemed Savings Values Per-Ft.<sup>2</sup>

| Equipment<br>Type                | kWh Savings<br>∕ CFM₅₀<br>(ESF) | kW Savings<br>∕ CFM₅₀<br>(DSF) |
|----------------------------------|---------------------------------|--------------------------------|
| Electric AC with<br>Gas Heat     | 0.4108                          | 0.000331                       |
| Elec. AC with<br>Resistance Heat | 1.018                           | 0.000332                       |
| Heat Pump                        | 0.721                           | 0.000332                       |

## C.4.7.6. Calculation of Deemed Savings

BEopt<sup>™</sup> was used to estimate energy savings for a series of models using the US DOE EnergyPlus simulation engine. Since infiltration savings are sensitive to weather, available TMY3 weather data specific to New Orleans was used for the analysis. The prototype home characteristics used in the BEopt<sup>™</sup> building model are outlined in Appendix A.

The deemed savings are dependent on the pre- and post-CFM<sub>50</sub> leakage rates of the home and are presented as annual savings / CFM<sub>50</sub> reduction. A series of model runs was completed in order to establish the relationship between various CFM<sub>50</sub> leakage rates and heating and cooling energy consumption. The resulting analysis of model outputs was used to create the deemed savings tables of kWh and kW per CFM<sub>50</sub> of air infiltration reduction.

## C.4.7.7. Incremental Cost

The incremental cost of this measure is equal to the full installed cost. If this is not available, a default value of \$.25 per square foot of conditioned floor area may be applied<sup>317</sup>. This should use a default of 1,762 square feet, based on PY6 program tracking for the Home Performance with ENERGY STAR Program.

The resulting per-project incremental cost is \$441.

## C.4.7.1. Net-to-Gross Ratio

The NTGR for this measure is 95%<sup>318</sup>.

## C.4.7.2. Future Studies

This measure is a High Impact Measure, having constituted 13.3% of PY6 program savings. To-date, the evaluations have not conducted significant primary research on this measure due to the focusing of EM&V budget on Residential Lighting and Residential HVAC studies.

This measure should have its simulation model recalibrated to the billed use of the past three years of program participants.

<sup>&</sup>lt;sup>317</sup> ENERGY STAR guidance.

https://www.energystar.gov/ia/partners/bldrs lenders raters/downloads/Savings and Cost Estimate Summary. pdf

<sup>&</sup>lt;sup>318</sup> Based on primary data collection from 78 PY6-9 program participants.

### C.4.8.1. Measure Description

This measure consists of adding solar film to east and west facing windows. This measure applies to all residential applications.

### C.4.8.2. Baseline and Efficiency Standards

This measure is applicable to existing homes only. Low E windows and tinted windows are not applicable for this measure. In order to qualify for deemed savings, solar film should be applied to east and west facing glass.

Table C-122: Window Film – Baseline and Efficiency Standards

| Baseline                                                          | Efficiency Standard        |
|-------------------------------------------------------------------|----------------------------|
| Single- or double-pane window with no existing solar films, solar | Solar Film with SHGC <0.50 |
| screens, or low-e coating                                         |                            |

## C.4.8.3. Estimated Useful Life (EUL)

The average lifetime of this measure is 10 years, according to DEER 2014.

### C.4.8.4. Deemed Savings Values

Please note that the savings per square foot is a factor to be multiplied by the square footage of the window area to which the films are being added.

For the per-residence values, we assume 330 total window square feet<sup>319</sup>.

<sup>&</sup>lt;sup>319</sup> ENERGY STAR guidance.

https://www.energystar.gov/ia/partners/bldrs lenders raters/downloads/Savings and Cost Estimate Summary. pdf

| Existing<br>Windowpane<br>Type          | AC/Gas Heat<br>kWh | AC/Electric<br>Resistance<br>kWh | Heat Pump<br>kWh | AC Peak<br>Savings (kW) |  |
|-----------------------------------------|--------------------|----------------------------------|------------------|-------------------------|--|
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | (/ residence)      | (/ residence)                    | (/ residence)    | (/ residence)           |  |
| Single Pane                             | 1,391              | -218                             | 531              | 0.33                    |  |
| Double Pane                             | 813                | -75                              | 273              | 0.33                    |  |

Table C-123: Window Film – Deemed Savings Values Per-Residence

| Existing<br>Windowpane Type | AC/Gas<br>Heat kWh | AC/Electric<br>Resistance<br>kWh | Heat Pump<br>kWh | AC Peak<br>Savings (kW) |  |
|-----------------------------|--------------------|----------------------------------|------------------|-------------------------|--|
|                             | (/ sq. ft.)        | (/ sq. ft.)                      | (/ sq. ft.)      | (/ sq. ft.)             |  |
| Single Pane                 | 4.216              | -0.661                           | 1.610            | 0.001                   |  |
| Double Pane                 | 2.465              | -0.226                           | 0.826            | 0.001                   |  |

## C.4.8.5. Calculation of Deemed Savings

Deemed savings values have been calculated for each of the four weather zones. The deemed savings are dependent on the SHGC of pre- and post-retrofit glazing. BEopt<sup>™</sup> was used to estimate energy savings for a series of models using the DOE EnergyPlus simulation engine. Since window film savings are sensitive to weather, available TMY3 weather data specific to New Orleans was ere used for the analysis. The prototype home characteristics used in the BEopt building model are outlined in Appendix A.

## C.4.8.6. Incremental Cost

The incremental cost of this measure is equal to the full installed cost. If this is not available, the default cost is:

- \$2.00 per square foot<sup>320</sup>
- \$660 per residence

## C.4.8.1. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure was not implemented in Energy Smart programs. As a result, savings are calculated using default values based on simulation results. If this measure is added to Energy Smart programs

<sup>&</sup>lt;sup>320</sup> Energize Connecticut cost documentation.

http://www.uinet.com/wps/wcm/connect/193bba80476e1bc19d6c9d02c80795ac/FINAL-C0118-2017-UI-CI-Incentive-Matrix-Gas-Caps-Rev.+02.17.pdf?MOD=AJPERES&CACHEID=193bba80476e1bc19d6c9d02c80795ac

and exceeds 1% of residential savings, then the simulation model should be updated to align with the billed use of customers that install the measure.

If there is adequate participation, the assumed default square foot value should be revised.

### C.4.9. Radiant Barriers

#### C.4.9.1. Measure Description

Radiant barriers are designed to block radiant heat transfer between a building roof and the attic space insulation. They typically consist of a metallic foil material (usually aluminum) and are generally installed on the roof decking or beneath roof sheathing. Radiant barriers are most effective at reducing cooling consumption by reflecting heat away from a home.

### C.4.9.2. Baseline and Efficiency Standards

This measure applies to existing construction that does not have a radiant barrier installed on the roof decking.

The efficiency requirements for radiant barriers must meet the standards set by the Reflective Insulation Manufacturers Association International (RIMA) to include proper attic ventilation. The following table displays the requirements for radiant barriers:

| Required Substantiation  |                                                 |                                            |  |  |  |
|--------------------------|-------------------------------------------------|--------------------------------------------|--|--|--|
| Physical Property        | al Property Test Method or Standard Requirement |                                            |  |  |  |
| Surface Emittance        | ASTM C 1371                                     | 0.1 or less                                |  |  |  |
| Water Vapor Transmission | ASTM E 96: Procedure A Desiccant                | 0.02 for Vapor Retarder 0.5 or greater for |  |  |  |
|                          | Method                                          | perforated products                        |  |  |  |
|                          | Surface Burning                                 |                                            |  |  |  |
| Flame Spread             | ASTM E 84                                       | 25 or less                                 |  |  |  |
| Smoke Density            | ASTM E 84                                       | 450 or less                                |  |  |  |
| Corrosivity              | ASTM D 3310                                     | Corrosion on less than 2% of the affected  |  |  |  |
| Corrosivity              | A3101 D 3310                                    | surface                                    |  |  |  |
| Tear Resistance          | ASTM D 2261                                     |                                            |  |  |  |
|                          | Adhesive Performanc                             | e                                          |  |  |  |
| Bleeding                 | Section 10.1 of ASTM C 1313                     | Bleeding or delamination of less than 2%   |  |  |  |
| Bieeung                  | Section 10.1 OF ASTIM C 1313                    | of the surface area                        |  |  |  |
| Pliability               | Section 10.2 of ASTM C 1313                     | No cracking or delamination                |  |  |  |
| Mold and Mildew          | ASTM C 1338                                     | No growth when visually examined under     |  |  |  |
|                          | ASTIVI C 1556                                   | 5X magnification                           |  |  |  |

Interior radiation control coatings are not applicable for the deemed savings derived. A study performed by RIMA found that none of the coating-type products currently on the market had an emittance of 0.10 or lower as required by the standards set by the American Society for Testing and Materials (ASTM) for a product to be considered a radiant barrier.<sup>321</sup> Therefore, all coating materials and spray application materials are ineligible for application of these savings values.

All radiant barriers should be installed according to the RIMA Handbook, Section 7.4.<sup>322</sup> However, horizontal installation is not eligible, due to the likelihood of dust buildup and wear-and-tear damage to the radiant barrier.

A radiant barrier cannot be in contact with any other materials on its underside or else it becomes defective. Therefore, once a radiant barrier is installed on the roof decking, no roof deck insulation can be installed.

## C.4.9.3. Estimated Useful Life (EUL)

The average lifetime of this measure is estimated to be about 25 years for downward facing radiant barriers, based on the DOE's Radiant Barrier Fact Sheet.<sup>323</sup>

## C.4.9.4. Deemed Savings Values

Deemed savings values have been calculated for New Orleans. The calculations for deemed savings values are based on the addition of a radiant barrier to the roof decking where a radiant barrier did not previously exist. Please note that the savings per square foot is a factor to be multiplied by the square footage of the ceiling area over a conditioned space to which the radiant barrier is applied. Gas Heat (no AC) kWh applies to forced air furnace systems only.

| Savings Values                                     |                    |                            |                               |                     |                       |  |
|----------------------------------------------------|--------------------|----------------------------|-------------------------------|---------------------|-----------------------|--|
| Addition of Radiant<br>Barrier with existing attic | AC/Gas<br>Heat kWh | Gas Heat<br>(no AC)<br>kWh | AC/Electric<br>Resistance kWh | Heat<br>Pump<br>kWh | AC Peak<br>Savings kW |  |
| insulation level                                   | (/ sq. ft.)        | (/ sq. ft.)                | (/ sq. ft.)                   | (/ sq. ft.)         | (/ sq. ft.)           |  |
| Attic insulation ≤R-19                             | 0.2142             | 0.006                      | 0.3238                        | 0.1794              | 0.0001                |  |
| Attic insulation >R19                              | 0.1361             | 0.0039                     | 0.1853                        | 0.0993              | 0.0001                |  |

## Table C-126: Deemed Savings Values

## C.4.9.5. Incremental Cost

The incremental cost is \$0.15 to \$0.45 per square feet.<sup>324</sup>

<sup>&</sup>lt;sup>321</sup> Study by RIMA that found no radiant coating on the market having a low enough emittance to be considered a radiant barrier: http://www.rimainternational.org/technical/ircc.html

<sup>&</sup>lt;sup>322</sup> RIMA Handbook available online: http://www.rimainternational.org/technical/handbook.html

<sup>&</sup>lt;sup>323</sup> http://web.ornl.gov/sci/ees/etsd/btric/RadiantBarrier/RBFactSheet2010.pdf

<sup>&</sup>lt;sup>324</sup> Oak Ridge National Laboratory. https://web.ornl.gov/sci/buildings/tools/radiant/rb2/rb-tables/index.shtml#table1

### C.5. Residential Lighting

### C.5.1. Residential Lighting Efficiency

#### C.5.1.1. Measure Description

A variety of high-efficiency fixtures, ballasts and lamps exist in the market today, producing the same lighting level (in lumens) as their standard-efficiency counterparts while consuming less electricity. This measure provides energy and demand savings calculations for the replacement of residential lighting equipment with energy efficient lamps or fixtures. The operating hours and demand factors are based on primary research in the New Orleans market.

### C.5.1.2. Baseline

The baseline equipment is assumed to be an incandescent or halogen lamp with adjusted baseline wattages compliant with EISA 2007 regulations dictate higher efficiency baseline lamps.

The first Tier of EISA 2007 regulations were phased in from January 2012 to January 2014. Beginning January 2012, a typical 100W lamp wattage was reduced to comply with a maximum 72W lamp wattage standard for a rated lumen output range of 1,490-2,600 lumens. Beginning January 2013, a typical 75W lamp wattage was reduced to comply with a maximum 53W lamp wattage standard for a rated lumen output range of 1,050-1,489 lumens. Beginning January 2014, typical 60W and 40W lamp wattages were reduced to comply with maximum 43W and 29W lamp wattage standards for rated lumen output range of 750-1,049 and 310-749 lumens.

The second Tier of EISA 2007 regulations go into effect beginning January 2020. At that time, general service lamps must comply with a 45 lumen per watt efficacy standard. Since the EUL of some lamps in this measure extend beyond that date, the baseline should be adjusted to the second Tier for any years after 2022.<sup>325</sup>

Specific baselines are discussed in individual lighting measure chapters.

## C.5.1.3. Efficiency Standard

Lamps must be a standard ENERGY STAR® qualified lighting.

Exceptions to the ENERGY STAR® label are allowed for unlisted lamps, fixtures or other lighting-related devices that have been submitted to ENERGY STAR® for approval. If the lamp or fixture does not achieve ENERGY STAR® approval within the New Orleans

<sup>&</sup>lt;sup>325</sup> First tier EISA compliant halogens have a lifetime of 4 years (3,000 hours at 2.17 hours per day). The last year these lamps are available is 2019, and they will need replacement at the end of 2022. Thus, the new standard must be used after 2022.

program year, however, then the lamp or fixture would have to be immediately withdrawn from the program.

# C.5.1.4. Lighting Hours of Use (HOU) Metering

Hours of use were estimated through direct monitoring of lighting in the on-site sample homes. Each logger was extrapolated to full annual usage by using a linear model with day length as the predictor, where day length varies inversely with the number of hours of use. Latitude and longitude coordinates for New Orleans, Louisiana were used in the computation of day length (29.9511, -90.0715). The regression used to extrapolate the meter data to a full year is shown in the equation below.

$$H_d = \alpha + \beta * \text{Day Length} + \varepsilon_d$$

Where:

 $H_d$  = hours of use on day d

*Day Length* = Number of daylight hours on day d

 $\alpha$  and  $\beta$  are coefficients determined by the regression

 $\varepsilon_d$  = residual error.

A similar model was run which added room type as an explanatory variable in order to estimate hours of use for each room type.

## C.5.1.4.1. Hours of Use Results

Results of the regressed logger data provided the TPE with overall efficient lighting hours of use, as well as breakdowns of hours of use by room type as shown in. In total 355 lighting loggers were used, and all results were found to meet precision requirements. Overall daily HOU are 2.38, which corresponds to 871 annual HOU. The coefficients from the overall model and the model which adds room type are also shown below.

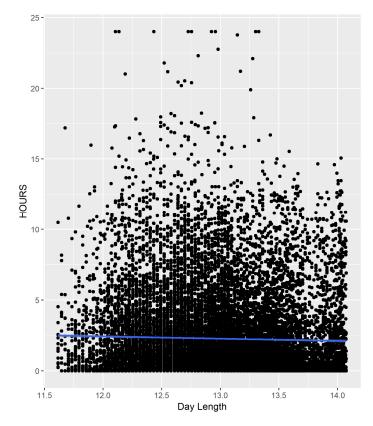

| Area/Room   | HOU Annual | HOU Daily | # Loggers | Precision |
|-------------|------------|-----------|-----------|-----------|
| Kitchen     | 855        | 2.34      | 83        | 0.04      |
| Living Room | 841        | 2.30      | 81        | 0.04      |
| Bedroom     | 796        | 2.18      | 49        | 0.06      |
| Bath        | 1,121      | 3.07      | 62        | 0.04      |
| Dining Room | 769        | 2.11      | 80        | 0.05      |
| Overall     | 871        | 2.38      | 355       | 0.02      |

Table C-127: Hours of Use by Area

| Table C-128: Lighting Model C | Coefficients |
|-------------------------------|--------------|
|-------------------------------|--------------|

| Coefficient | Estimate | SE    | T-Stat | P-value  |
|-------------|----------|-------|--------|----------|
| Intercept   | 4.263    | 0.561 | 7.594  | 3.26E-14 |
| Day Length  | -0.154   | 0.043 | -3.567 | 0.000362 |

The graph below is a scatterplot showing average hours of use for all of the loggers in the M&V sample and the corresponding day length (based on New Orleans, LA). The fitted line shows a slightly negative relationship between average daily hours and day length, which an expedited pattern ex-ante. The day length coefficients for both models also confirm this relationship, as they are both negative, although neither is statistically significant.



C.5.1.4.2. Coincidence Factor

the TPE calculated the coincident factor (CF) based on actual lighting logger data in July through September between the hours of 4 and 5 pm as 11.12%.

# C.5.1.4.3. Exterior Lighting

Annual hours of operation for exterior lighting, which operates during non-daylight hours, was calculated using dusk-to-dawn data taken from the National Oceanic and Atmospheric Administration website. Savings for lamps installed in exterior areas of residences should be calculated using 4,319 hours annually, and 0% CF.

# C.5.1.5. Calculation of Deemed Savings

# C.5.1.5.1. Energy Savings

$$kWh_{savings} = ((W_{base} - W_{post})/1000) \times Hours \times ISR \times IEF_{E}$$

Where:

 $W_{base}$  = Based on wattage equivalent of the lumen output of the purchased lamp and the program year purchased/installed (see Table C-134 and Table C-138 for LEDs, *Table C-144* and Table C-147 for CFLs)

 $W_{post}$  = Actual wattage of lamp purchased/installed

*Hours* = Average hours of use per year (see Table C-129)

 $IEF_E$  = Interactive Effects Factor to account for cooling energy savings and heating energy penalties; this factor also applies to outdoor and unconditioned spaces (see Table C-131)

*ISR* = In Service Rate, or percentage of rebate units that get installed, to account for units purchased but not immediately installed (see Table C-130)

When the EISA 2007 standard goes into effect for lighting, the reduced wattage savings should be claimed for the rest of the measure life.

#### Table C-129: Average Hours of Use Per Year

| Installation Location  | Hours  |
|------------------------|--------|
| Indoor <sup>326</sup>  | 870.50 |
| Outdoor <sup>327</sup> | 4,319  |

Table C-130: In Service Rates

| Delivery Channel                                        | ISR  |
|---------------------------------------------------------|------|
| Retail (Time of Sale) and Direct Install <sup>328</sup> | 0.98 |
| Mailer Kit <sup>329,330</sup>                           | 0.71 |

<sup>&</sup>lt;sup>326</sup> Indoor Hours based off aggregated lighting study performed by TPE with lighting logger data from 80 homes.

<sup>&</sup>lt;sup>327</sup> Calculated using dusk-to-dawn data taken from the National Oceanic and Atmospheric Administration website

<sup>&</sup>lt;sup>328</sup> Dimetrosky, S. et al, 205, , "Residential Lighting Evaluation Protocol – The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures." January. ISR for upstream programs, including storage lamps installed within four years of purchase.

<sup>&</sup>lt;sup>329</sup> Based on primary data collection from 4,572 PY5-9 program participants.

<sup>&</sup>lt;sup>330</sup> Applicable only to A-lamp LEDs.

| Heating Type                           | Interactive Effects<br>Factor (IEF <sub>E</sub> ) <sup>331</sup> |
|----------------------------------------|------------------------------------------------------------------|
| Gas Heat with AC                       | 1.10                                                             |
| Gas Heat with no AC                    | 1.00                                                             |
| Electric Resistance Heat with AC       | 0.83                                                             |
| Electric Resistance Heat with no AC    | 0.73                                                             |
| Heat Pump                              | 0.96                                                             |
| Heating/Cooling Unknown <sup>332</sup> | 0.91                                                             |

Table C-131: IEF for Cooling/Heating Savings

### C.5.1.5.2. Peak Demand Savings

$$kW_{savings} = \left( (W_{base} - W_{post}) / 1000 \right) \times CF \times ISR \times IEF_D$$

Where:

*CF* = Coincidence Factor (see Table C-132)

 $IEF_D$  = Interactive Effects Factor to account for cooling demand savings; this factor also applies to outdoor and unconditioned spaces (see Table C-133).

Table C-132: Residential Lighting Efficiency – Summer Peak Coincidence Factor

| Lamp Location         | CF     |
|-----------------------|--------|
| Indoor <sup>333</sup> | 11.12% |
| Outdoor               | 0%     |

Table C-133: IEF for Cooling Demand Savings

| Heating Type                           | Interactive Effects<br>Factor (IEF <sub>D</sub> ) <sup>334</sup> |
|----------------------------------------|------------------------------------------------------------------|
| Gas Heat with AC                       | 1.29                                                             |
| Gas Heat with no AC                    | 1.00                                                             |
| Electric Resistance Heat with AC       | 1.29                                                             |
| Electric Resistance Heat with no AC    | 1.00                                                             |
| Heat Pump                              | 1.29                                                             |
| Heating/Cooling Unknown <sup>335</sup> | 1.21                                                             |

<sup>&</sup>lt;sup>331</sup> Refer to Appendix I, Arkansas TRM 6.0 Volume 3.

<sup>&</sup>lt;sup>332</sup> Unknown factors are based on EnergyStar Interactive effects, weighted by primary data collected on New Orleans typical HVAC arrangements.

<sup>&</sup>lt;sup>333</sup> Based off of TPE lighting metering, detailed in this chapter

<sup>&</sup>lt;sup>334</sup> Refer to Appendix I, Arkansas TRM 6.0 Volume 3.

<sup>&</sup>lt;sup>335</sup> Unknown factors are based on EnergyStar Interactive effects, weighted by primary data collected on New Orleans typical HVAC arrangements.

### C.5.1.6. Annual kW, Annual kWh, and Lifetime kWh Savings Calculation Example

A 5W CFL is installed in program year (PY) 2016. In July 2014 Tier 1 EISA 2007 standards went into effect, and the baseline shifted to 29 watts. In January 2023, due to Tier 2 EISA 2007 standards going into effect, the baseline will shift again to 12 watts. This CFL has a rated life of 15,000 hours. Necessary inputs for calculating the kWh savings include the EUL (13.0 years), IEF<sub>D</sub> (1.25 for unknown heating/cooling type), IEF<sub>E</sub> (0.97 for unknown cooling/heating type), ISR (0.98), summer coincidence factor (0.1112), and Hours of Use per Year (870.50 hours). All kWh values are rounded to the second decimal place.

<u>PY 2018 through PY 2022 Savings:</u> From January 2018 to December 2022, the baseline is 29 watts. 2023 – 2018 is 5 years.

2018 to 2023 kW Savings (for each year) = 
$$\left(\frac{[29-5]}{1000}\right) \times 0.1112 \times 1.21 \times 0.98$$
  
= 0.0032 kW

Cumulative 2018 to 2023 kWh Savings = 
$$\left(\frac{[29-5]}{1000}\right) \times 870.50 \times 0.91 \times 0.98 \times 6$$
  
= 111.79 kWh

<u>PY 2023 through PY 2028 Savings:</u> In January 2023, the baseline changes to the 2<sup>nd</sup> Tier EISA 2007 standard. The baseline wattage changes from 29 watts to 12 watts. The remaining measure life is 5 years.

2023 to 2028 kW Savings (for each year) =  $\left(\frac{[12-5]}{1000}\right) \times 0.1112 \times 1.21 \times 0.98$ = 0.0009 kW ([12-5])

Cumulative 2023 to 2028 kWh Savings =  $\left(\frac{[12-5]}{1000}\right) \times 870.50 \times 0.91 \times 0.98 \times 5$ = 27.17 kWh

Lifetime kWh Savings:

 $111.79 + 27.17 = 138.96 \, kWh \, lifetime \, savings$ 

#### C.5.1.7. Cross-Sector Sales

For retail (time of sale) programs, increased savings may be claimed based on sales to nonresidential customers.<sup>336</sup> Based on a review of 23 utility programs across 10 states, 6.7% of installed lamps may be allocated to the commercial program. To implement, multiply the total number of fixtures by 6.7% and apply the savings methodologies

<sup>&</sup>lt;sup>336</sup> Dimetrosky, S., Parkinson, K. & Lieb, N. 2015, "Residential Lighting Evaluation Protocol – The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures." January.

described in the Commercial Lighting Efficiency measure. Since no building type will have been identified, apply the weighted average annual operating hours and coincidence factor based on a review of the building types that participating in commercial lighting programs during the current program year.

Calculate savings for the remaining 93.3% of fixtures using the residential savings calculations described below. If it is not possible to apply the commercial allocation strategy described above, a program may calculate savings for all fixtures using the residential savings calculations described below. This will result in a conservative estimate for upstream programs. Note: This strategy should only be applied to retail (time of sale) programs. For all other programs, use the residential savings calculations exclusively.

## C.5.1.8. Future Studies

This measure is a High Impact Measure, having constituted more than 1% of residential Energy Smart program savings. However, most the major research need (hours of use and coincidence) has been completed. Given the pending code change to EISA Phase II starting in 2020, this measure should not be the focus of other research studies for future program implementation. EM&V for this measure should focus on savings validation.

The TPE recommends that this measure cease implementation when EISA Phase II takes effect in 2020, unless program administrators can show that the savings are still cost-effective under the more stringent baseline.

### C.5.2. ENERGY STAR® Omni-Directional LEDs

### C.5.2.1. Measure Description

This measure provides a method for calculating savings for replacing an incandescent lamp with an omni-directional LED in residential applications. The applicable lamp types that are omni-directional LEDs are the following shapes, using ANSI C79.1-2002 nomenclature: A, BT, P, PS, S, and T.<sup>337</sup>

### C.5.2.2. Baseline

The baseline equipment is assumed to be an incandescent or halogen lamp with adjusted baseline wattages compliant with EISA 2007 regulations dictate higher efficiency baseline lamps.

The baselines for omni-directional LED lamps are summarized in Table C-134.

| Minimum<br>Lumens | Maximum<br>Lumens | Incandescent<br>Equivalent 1 <sup>st</sup> Tier<br>EISA 2007 (W <sub>base</sub> ) | Incandescent<br>Equivalent 2 <sup>nd</sup> Tier<br>EISA 2007 (W <sub>base</sub> ) <sup>338</sup> | Effective dates for 2 <sup>nd</sup><br>Tier EISA 2007<br>Baselines |
|-------------------|-------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 310               | 749               | 29                                                                                | 12                                                                                               | 1/1/2023339                                                        |
| 750               | 1,049             | 43                                                                                | 20                                                                                               | 1/1/2023                                                           |
| 1,050             | 1,489             | 53                                                                                | 28                                                                                               | 1/1/2023                                                           |
| 1,490             | 2,600             | 72                                                                                | 45                                                                                               | 1/1/2023                                                           |

Table C-134: ENERGY STAR® Omni-Directional LEDs – EISA Baselines

## C.5.2.3. Efficiency Standard

Omni-directional LEDs must be a standard ENERGY STAR® qualified omni-directional LED.

Exceptions to the ENERGY STAR® label are allowed for unlisted lamps, fixtures or other lighting-related devices that have been submitted to ENERGY STAR® for approval. If the lamp or fixture does not achieve ENERGY STAR® approval within the Arkansas DSM program year, however, then the lamp or fixture would have to be immediately withdrawn from the program.

<sup>&</sup>lt;sup>337</sup> According to ENERGY STAR<sup>®</sup>, omni-directional LED products "...shall have an even distribution of luminous intensity (candelas) within the 0° to 135° zone (vertically axially symmetrical). Luminous intensity at any angle within this zone shall not differ from the mean luminous intensity for the entire 0° to 135° zone by more than 20%. At least 5% of total flux (lumens) must be emitted in the 135°-180° zone. Distribution shall be vertically symmetrical as measured in three vertical planes at 0°, 45°, and 90°."

http://www.energystar.gov/ia/partners/product\_specs/program\_reqs/Integral\_LED\_Lamps\_Program\_Requiremen\_ts.pdf.

<sup>&</sup>lt;sup>338</sup> Wattages developed using the 45 lpw standard that goes into effect in 2020.

<sup>&</sup>lt;sup>339</sup> 2023 allows for a one year "sell-through" period where retailers may sell off existing less efficient stock.

## C.5.2.4. Estimated Useful Life (EUL)

The EUL is calculated as follows: Rated life in hours (15,000 hours life) / Average annual hours of use (871). The measure life for indoor and outdoor LED omni-directional lamps is 17.23 years<sup>340</sup>. Due to the EISA standards, the savings over the useful life will need to be adjusted to account for second tier EISA standards for all years after 2023.

Table C-135: ENERGY STAR® Omni-Directional LEDs – Measure Life

| Rated                             | First Tier EISA | Second Tier   |
|-----------------------------------|-----------------|---------------|
| Measure Life                      | Standard        | EISA Standard |
| (Hours)                           | Baseline        | Baseline      |
| <u>&gt;</u> 15,000 <sup>341</sup> | 3               |               |

## C.5.2.5. Deemed Savings Per Lamp

Table C-136 summarizes the unit energy savings for directional LEDs in each lumen bin. This assumes retail markdown delivery and an unknown heating and cooling system configuration.

 Table C-136: ENERGY STAR® Omnidirectional LEDs – Deemed Savings Per Lamp

| Minimum<br>Lumens | Maximum<br>Lumens | Incandescent<br>Equivalent 1 <sup>st</sup><br>Tier EISA<br>2007 (W <sub>base</sub> ) | LED<br>Wattage | kWh/Lamp | kW/Lamp |
|-------------------|-------------------|--------------------------------------------------------------------------------------|----------------|----------|---------|
| 310               | 749               | 29                                                                                   | 7              | 17.08    | 0.00290 |
| 750               | 1,049             | 43                                                                                   | 9              | 26.39    | 0.00448 |
| 1,050             | 1,489             | 53                                                                                   | 12             | 31.83    | 0.00541 |
| 1,490             | 2,600             | 72                                                                                   | 15             | 44.25    | 0.00752 |

# C.5.2.6. Calculation of Savings

See Section. C.5.1.5 Calculation of Deemed Savings.

## C.5.2.7. Incremental Cost

Prices for LEDs decrease each year. Given this, actual lighting costs should be compared to a stipulated baseline cost where feasible. If that information is not available, use costs detailed in the table below.

<sup>&</sup>lt;sup>340</sup> Emerging Technologies Research Report prepared for the Regional Evaluation, Measurement, and Verification Forum facilitated by the Northeast Energy Efficiency Partnerships (NEEP). February 13, 2013.

<sup>&</sup>lt;sup>341</sup> Minimum requirement from current ENERGY STAR® specification. <u>https://www.energystar.gov/products/lighting\_fans/light\_bulbs/key\_product\_criteria</u>.

Table C-137: ENERGY STAR® Directional LEDs Incremental Costs<sup>342</sup>

| Year        | EISA<br>Compliant<br>Halogen Cost | LED A-Lamp<br>Cost | Incremental<br>Cost |
|-------------|-----------------------------------|--------------------|---------------------|
| Directional | \$1.25                            | \$3.11             | \$1.86              |
| Specialty   | Ş1.25                             | \$2.70             | \$1.45              |

# C.5.2.1. Net-to-Gross Ratio

The NTGR for this measure is 62%<sup>343</sup> for direct install applications, and 65%<sup>344</sup> for home energy mailer kit applications.

# C.5.2.2. Future Studies

This measure is a High Impact Measure, having constituted more than 1% of residential Energy Smart program savings. However, the major research need (hours of use and coincidence) has been completed. Further, given the pending code change to EISA Phase II starting in 2020, this measure should not be the focus of research studies for future program implementation. EM&V for this measure should focus on savings validation.

The TPE recommends that this measure cease implementation when EISA Phase II takes effect in 2020, unless program administrators can show that the savings are still cost-effective under the more stringent baseline.

<sup>&</sup>lt;sup>342</sup> Illinois TRM v8.0. Final draft, September 20<sup>th</sup>, 2019.

<sup>&</sup>lt;sup>343</sup> Based on primary data collection from 126 PY6-9 program participants.

<sup>&</sup>lt;sup>344</sup> Based on primary data collection from 221 PY9 program participants.

## C.5.3. ENERGY STAR® Directional and Specialty LEDs

## C.5.3.1. Measure Description

This measure provides a method for calculating savings for replacing an incandescent or halogen reflector or other specialty lamp with an ENERGY STAR® qualified LED lamp. These lamp shapes include PAR, R, BR, MR, and similar lamp shapes, as well as other specialty lamps such as 3-way lamps, globes and candelabra base lamps.

## C.5.3.2. Baseline

The baseline equipment is assumed to be an incandescent or halogen lamp, and where applicable, with adjusted baseline wattages compliant with EISA 2007 regulations dictate higher efficiency baseline lamps.

Directional and most specialty lamps were not covered under Tier 1 EISA legislation. Directional lamps are currently governed by a 2009 DOE rulemaking for Incandescent Reflector Lamps (IRL)—this ruling went into effect in July 2012. The baselines for these products are from this IRL ruling in July 2012. The first Tier of EISA 2007 regulations, as originally drafted, did not apply to all bulb types. Commonly used pre-2020 EISA-exempt bulbs include: reflectors, three-way bulbs, globes with  $\geq$  5-in. diameter or  $\leq$  749 lumens, candelabra base bulbs with  $\leq$  1049 lumens.345

On January 18, 2017, DOE issued the Final Rules on General Service Lamps for the second Tier of EISA.<sup>346</sup> These rules, in general, expand the definition of GSLs, extending the covered lumen range, base types, and shapes, as well as reduce the types of bulbs exempted. According to the rulings, these expanded bulbs will be subject to GSL efficiency standards, including the 2020 backstop, starting January 1, 2020. This ruling covers IRLs and adds them to the provisions for EISA Tier 2.

The ruling includes the following:

- Reflector exemptions: Reflector bulbs will no longer be exempt. The following three reflector lamp types (which represent the vast majority of reflectors) are no longer exempt from GSL standards: (A) Lamps rated at 50 watts or less that are ER30, BR30, BR40, or ER40 lamps; (B) Lamps rated at 65 watts that are BR30, BR40, or ER40 lamps; or (C) R20 incandescent reflector lamps rated 45 watts or less.
- **Lumen maximums:** The lumen maximum subject to the EISA GSL definition has been expanded to 3,300 lumens (previously 2600).

<sup>&</sup>lt;sup>345</sup> See EISA legislation for the full list of exemptions.

<sup>&</sup>lt;sup>346</sup> https://energy.gov/eere/buildings/downloads/two-gsl-final-rules

- Base types exemptions: All standard bulb bases will be included (small screw base and candelabra).
- Other exemptions: 3-way, decorative (including globes <5", flame shapes and candelabra shape), T-lamps (≤40w OR ≥ 10"), vibration service, rough service, and shatter resistant bulb exemptions are to be discontinued. These bulbs will be subject to GSL efficiency regulations starting January 1, 2020.

| C.5.3.2.1. | Directional |
|------------|-------------|
|            |             |

Table C-138: ENERGY STAR® Directional LEDs – Reflector Lamps Baseline Watts <sup>347</sup>

| <i>Lamp Туре</i> | Incandescent<br>Equivalent<br>(Pre-EISA) | WattsBase<br>(Post-EISA) | WattsBase<br>(Post-EISA) <sup>348</sup> |
|------------------|------------------------------------------|--------------------------|-----------------------------------------|
| PAR20            | 50                                       | 35                       | 23                                      |
| PAR30            | 50                                       | 35                       | 23                                      |
| R20              | 50                                       | 45                       | 29                                      |
| PAR38            | 60                                       | 55                       | 35                                      |
| BR30             | 65                                       | EXEMPT                   | 38                                      |
| BR40             | 65                                       | EXEMPT                   | 38                                      |
| ER40             | 65                                       | EXEMPT                   | 38                                      |
| BR40             | 75                                       | 65                       | 42                                      |
| BR30             | 75                                       | 65                       | 42                                      |
| PAR30            | 75                                       | 55                       | 35                                      |
| PAR38            | 75                                       | 55                       | 35                                      |
| R30              | 75                                       | 65                       | 42                                      |
| R40              | 75                                       | 65                       | 42                                      |
| PAR38            | 90                                       | 70                       | 45                                      |
| PAR38            | 120                                      | 70                       | 45                                      |
| R20              | ≤ 45                                     | EXEMPT                   | 23                                      |
| BR30             | ≤ 50                                     | EXEMPT                   | EXEMPT                                  |
| BR40             | ≤ 50                                     | EXEMPT                   | EXEMPT                                  |
| ER30             | ≤ 50                                     | EXEMPT                   | EXEMPT                                  |
| ER40             | ≤ 50                                     | EXEMPT                   | EXEMPT                                  |

### C.5.3.2.2. Specialty

ENERGY STAR provides separate equivalent incandescent wattages for specialty and decorative bulb shapes. These shapes include candle, globe, bullet, and shapes other than A-lamp bulbs.<sup>349</sup> For these bulbs, use the Watts<sub>Base</sub> from Table C-139.

<sup>&</sup>lt;sup>347</sup> Based on manufacturer available reflector lighting products as available in August 2013.

<sup>&</sup>lt;sup>348</sup> Developed based on using Tier 1 efficacy for standard lamps and adjusting efficacy to the 45 lum/Watt requirement stated for EISA Tier 2.

<sup>&</sup>lt;sup>349</sup> ANSI Shapes for decorative bulbs: B, BA, C, CA, DC, and F. Globe shapes are labeled as ANSI shape G.

| Lumen Bins<br>(decorative) | Lumen Bins<br>(globe) | Incandescent<br>Equivalent<br>WattsBase<br>(Exempt Bulbs) | WattsBase<br>(Post-EISA<br>2007) |
|----------------------------|-----------------------|-----------------------------------------------------------|----------------------------------|
|                            | 1100-1300             | 150                                                       | 72                               |
|                            | 650-1099              | 100                                                       | 72                               |
|                            | 575-649               | 75                                                        | 53                               |
| 500-699                    | 500-574               | 60                                                        | 43                               |
| 300-499                    | 350-499               | 40                                                        | 29                               |
| 150-299                    | 250-349               | 25                                                        | 25                               |
| 90-149                     |                       | 15                                                        | 15                               |
| 70-89                      |                       | 10                                                        | 10                               |

Table C-139: Baseline Wattage by Lumen Output for Specialty Lamps<sup>350</sup>

ENERGY STAR provides separate equivalent incandescent wattages for specialty and decorative bulb shapes. These shapes include candle, globe, bullet, and shapes other than A-lamp bulbs.<sup>351</sup> For these bulbs, use the Watts<sub>Base</sub> from Table C-140.

| Lumen Bins<br>(decorative) | Lumen Bins<br>(globe) | Incandescent<br>Equivalent<br>WattsBase<br>(Exempt Bulbs) | WattsBase<br>(Post-EISA 2007) |
|----------------------------|-----------------------|-----------------------------------------------------------|-------------------------------|
|                            | 1100-1300             | 150                                                       | 72                            |
|                            | 650-1099              | 100                                                       | 72                            |
|                            | 575-649               | 75                                                        | 53                            |
| 500-699                    | 500-574               | 60                                                        | 43                            |
| 300-499                    | 350-499               | 40                                                        | 29                            |
| 150-299                    | 250-349               | 25                                                        | 25                            |
| 90-149                     |                       | 15                                                        | 15                            |
| 70-89                      |                       | 10                                                        | 10                            |

 Table C-140: Baseline Wattage by Lumen Output for Specialty Lamps<sup>352</sup>

For other specialty, EISA exempt lamps<sup>353</sup>, use the baseline wattage in Table C-141. Commonly used EISA exempt lamps include 3-way lamps, globes with  $\geq$  5" diameter or

<sup>&</sup>lt;sup>350</sup> Lumen bins and incandescent equivalent wattages from ENERGY STAR labeling requirements, Version 1.0 <u>http://www.energystar.gov/products/specs/sites/products/files/ENERGY%20STAR%20Lamps%20V1.0%20Final%2</u> <u>ODraft%20Specification.pdf</u> EISA Standards from: United States Department of Energy. Impact of EISA 2007 on General Service Incandescent Lamps: FACT SHEET.

<sup>&</sup>lt;sup>351</sup> ANSI Shapes for decorative bulbs: B, BA, C, CA, DC, and F. Globe shapes are labeled as ANSI shape G.

<sup>&</sup>lt;sup>352</sup> Lumen bins and incandescent equivalent wattages from ENERGY STAR labeling requirements, Version 1.0 <u>http://www.energystar.gov/products/specs/sites/products/files/ENERGY%20STAR%20Lamps%20V1.0%20Final%2</u> <u>ODraft%20Specification.pdf</u> EISA Standards from: United States Department of Energy. Impact of EISA 2007 on General Service Incandescent Lamps: FACT SHEET.

<sup>&</sup>lt;sup>353</sup>A complete list of the 22 incandescent lamps exempt from EISA 2007 is listed in the United States U.S. DOE Impact of EISA 2007 on General Service Incandescent Lamps: FACT SHEET.

 $\leq$  749 lumens, and candelabra base lamps with  $\leq$  1049 lumens. See EISA legislation for full list of exemptions. If rated lumen values fall above or below these values, use manufacturer rated equivalent incandescent wattage.

|                   | ,                 |                                                    |
|-------------------|-------------------|----------------------------------------------------|
| Minimum<br>Lumens | Maximum<br>Lumens | Incandescent<br>Equivalent<br>(W <sub>base</sub> ) |
| 310               | 749               | 40                                                 |
| 750               | 1,049             | 60                                                 |
| 1,050             | 1,489             | 75                                                 |
| 1,490             | 2,600             | 100                                                |

 Table C-141: ENERGY STAR® Directional LEDs –Baseline Watts for EISA-Exempt

 Lamps<sup>354</sup>

# C.5.3.3. Efficiency Standard

LEDs must be ENERGY STAR® qualified for the relevant lamp shape being removed.

Exceptions to the ENERGY STAR® label are allowed for unlisted lamps, fixtures or other lighting-related devices that have been submitted to ENERGY STAR® for approval. If the lamp or fixture does not achieve ENERGY STAR® approval within the New Orleans DSM program year, however, then the lamp or fixture would have to be immediately withdrawn from the program.

# C.5.3.4. Estimated Useful Life (EUL)

The measure life for indoor and outdoor LED reflector and decorative lamps is 20 years.<sup>355</sup>

# C.5.3.5. Deemed Savings Per Lamp

Table C-142 summarizes the unit energy savings for directional LEDs by lamp configuration. This assumes retail markdown delivery and an unknown heating and cooling system configuration.

<sup>355</sup> Emerging Technologies Research Report prepared for the Regional Evaluation, Measurement, and Verification Forum facilitated by the Northeast Energy Efficiency Partnerships (NEEP). February 13, 2013.

www1.eere.energy.gov/buildings/appliance standards/residential/pdfs/general service incandescent factsheet. pdf.

<sup>&</sup>lt;sup>354</sup> Note that ENERGY STAR® has recently assigned new incandescent equivalent wattage lumen bins for the ENERGY STAR® v2.0 lighting standards (see

https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Lamps%20V2\_0%20Revised%20OCT-2016\_1.pdf, page 13). This TRM maintains the EISA lumen bins for assigning baseline wattage. Future TRM iterations of the AR TRM, however, may incorporate these new lumen bins for baseline wattage estimates.

| <i>Lamp Туре</i> | Incandescent<br>Equivalent<br>(Pre-EISA) | Baseline<br>Watts | Efficient<br>Watts | kWh/Lamp | kW/Lamp |
|------------------|------------------------------------------|-------------------|--------------------|----------|---------|
| PAR20            | 50                                       | 35                | 8                  | 20.96    | 0.00356 |
| PAR30            | 50                                       | 35                | 11                 | 18.63    | 0.00316 |
| R20              | 50                                       | 45                | 8                  | 28.72    | 0.00488 |
| PAR38            | 60                                       | 55                | 11                 | 34.16    | 0.00580 |
| BR30             | 65                                       | 65                | 10                 | 42.70    | 0.00725 |
| BR40             | 65                                       | 65                | 14                 | 39.59    | 0.00672 |
| ER40             | 65                                       | 65                | 14                 | 39.59    | 0.00672 |
| BR40             | 75                                       | 65                | 14                 | 39.59    | 0.00672 |
| BR30             | 75                                       | 65                | 13                 | 40.37    | 0.00686 |
| PAR30            | 75                                       | 55                | 13                 | 32.61    | 0.00554 |
| PAR38            | 75                                       | 55                | 14                 | 31.83    | 0.00541 |
| R30              | 75                                       | 65                | 9                  | 43.47    | 0.00738 |
| R40              | 75                                       | 65                | 12                 | 41.14    | 0.00699 |
| PAR38            | 90                                       | 70                | 11                 | 45.80    | 0.00778 |
| PAR38            | 120                                      | 70                | 15                 | 42.70    | 0.00725 |
| R20              | ≤ 45                                     | 45                | 6                  | 30.28    | 0.00514 |
| BR30             | ≤ 50                                     | 50                | 9                  | 31.83    | 0.00541 |
| BR40             | ≤ 50                                     | 50                | 12                 | 29.50    | 0.00501 |
| ER30             | ≤ 50                                     | 50                | 11                 | 30.28    | 0.00514 |
| ER40             | ≤ 50                                     | 50                | 12                 | 29.50    | 0.00501 |

Table C-142: Deemed Savings for ENERGY STAR® Directional LEDs

# C.5.3.6. Calculation of Deemed Savings

Deemed savings are calculated in the same manner as for standard CFLs (see Section C.5.5.6).

#### C.5.3.7. Incremental Cost

Prices for LEDs decrease each year. Given this, actual lighting costs should be compared to a stipulated baseline cost where feasible. If that information is not available, use costs detailed in the table below

 Table C-143: ENERGY STAR® Directional LEDs Incremental Costs from 2019

 Forward<sup>356</sup>

| Туре        | Incandescent<br>Cost | LED Cost | Incremental<br>Cost |
|-------------|----------------------|----------|---------------------|
| Directional | \$3.53               | \$5.18   | \$1.65              |
| Specialty   | \$1.74               | \$3.40   | \$1.66              |

<sup>&</sup>lt;sup>356</sup> Illinois TRM v8.0. Final draft, September 20<sup>th</sup>, 2019.

## C.5.3.8. Future Studies

This measure is a High Impact Measure, having constituted more than 1% of residential Energy Smart program savings. Further, given the pending code change to EISA Phase II starting in 2020, this measure should not be the focus of research studies for future program implementation. EM&V for this measure should focus on savings validation.

The TPE recommends that this measure cease implementation when EISA Phase II takes effect in 2020, unless program administrators can show that the savings are still cost-effective under the more stringent baseline.

The TPE recommends that this measure cease implementation when EISA Phase II takes effect in 2020, unless program administrators can show that the savings are still cost-effective under the more stringent baseline.

# C.5.4.1. Measure Description

This measure provides a method for calculating savings for replacing an incandescent lamp with a standard CFL in residential applications.

# C.5.4.2. Baseline

The baseline equipment is assumed to be an incandescent or halogen lamp with adjusted baseline wattages compliant with EISA 2007 regulations dictate higher efficiency baseline lamps.

When the EISA 2007 standard goes into effect for a CFL, the reduced wattage savings should be claimed for the rest of the measure life. For example, up until 2022, a 20W CFL with 1200 lumens may claim a 53W baseline. After 2022, the baseline becomes 27W for the remainder of the measure life.

| Minimum<br>Lumens | Maximum<br>Lumens | Incandescent<br>Equivalent 1 <sup>st</sup> Tier<br>EISA 2007 (W <sub>base</sub> ) | Incand. Equiv. 2 <sup>nd</sup><br>Tier EISA 2007<br>(W <sub>base</sub> ) <sup>358</sup> | Effective dates for<br>2 <sup>nd</sup> Tier EISA 2007<br>Baselines |
|-------------------|-------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 310               | 749               | 29                                                                                | 12                                                                                      | 1/1/2023 <sup>359</sup>                                            |
| 750               | 1,049             | 43                                                                                | 20                                                                                      | 1/1/2023                                                           |
| 1,050             | 1,489             | 53                                                                                | 28                                                                                      | 1/1/2023                                                           |
| 1,490             | 2,600             | 72                                                                                | 45                                                                                      | 1/1/2023                                                           |

Table C-144: ENERGY STAR® CFLs – EISA Baselines<sup>357</sup>

# C.5.4.3. Efficiency Standard

CFLs must be a standard ENERGY STAR® qualified CFL.

Exceptions to the ENERGY STAR® label are allowed for unlisted lamps, fixtures or other lighting-related devices that have been submitted to ENERGY STAR® for approval. If the lamp or fixture does not achieve ENERGY STAR® approval within the New Orleans program year, however, then the lamp or fixture would have to be immediately withdrawn from the program.

<sup>&</sup>lt;sup>357</sup> Note that ENERGY STAR® has assigned new incandescent equivalent wattage lumen bins for the upcoming ENERGY STAR® lighting standards, coming into effect September 2014. Due to the likelihood of sell-through of existing ENERGY STAR® lighting through fall 2014 and the on-going use of the EISA bin definitions, this TRM maintains the EISA lumen bins for assigning baseline wattage. Future TRM iterations of the New Orleans TRM, however, may incorporate these new lumen bins for baseline wattage estimates.

<sup>&</sup>lt;sup>358</sup> Wattages developed using the 45 lpw standard that goes into effect in 2020.

<sup>&</sup>lt;sup>359</sup> 2023 allows for a one year "sell-through" period where retailers may sell off existing less efficient stock.

# C.5.4.4. Estimated Useful Life (EUL)

The average measure life is based upon rated lamp life of the CFL shown in the following table. The measure life assumes an average daily use of 2.38 blended<sup>360</sup> hours for indoor/outdoor applications and applies a 0.688<sup>361</sup> degradation factor to indoor residential CFLs. This table shows the useful life that should be used for the first tier EISA baseline, and the useful life remaining for the increased second tier EISA standard baseline.

Note that the values are in this table are incremented each program year so that the firsttier values do not exceed 2023 minus the program year. For PY10 (calendar year 2020), the first-tier measure life cannot exceed the result of 2023 - 2020, which is equal to 3 years. The remainder of the measure life is applied to the second tier.

| Rated                      | First Tier EISA Standard Baseline                      |                                                         | Second Tier E<br>Base                                  |                                                         |
|----------------------------|--------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|
| Measure<br>Life<br>(Hours) | CFL Indoor<br>Application –<br>Measure Life<br>(Years) | CFL Outdoor<br>Application –<br>Measure Life<br>(Years) | CFL Indoor<br>Application –<br>Measure Life<br>(Years) | CFL Outdoor<br>Application –<br>Measure Life<br>(Years) |
| 8,000                      | 3                                                      | 3                                                       | 4                                                      | 4                                                       |
| 10,000                     | 3                                                      | 3                                                       | 6                                                      | 6                                                       |
| 12,000                     | 3                                                      | 3                                                       | 7                                                      | 8                                                       |
| 15,000                     | 3                                                      | 3                                                       | 10                                                     | 10                                                      |

Table C-145: ENERGY STAR® CFLs – Measure Life<sup>362</sup>

# C.5.4.5. Deemed Savings Per Lamp

Table C-146 summarizes the unit energy savings for general service lamps in each lumen bin. This assumes retail markdown delivery and an unknown heating and cooling system configuration.

<sup>&</sup>lt;sup>360</sup> TPE lighting metering, detailed in this chapter.

<sup>&</sup>lt;sup>361</sup> Average of 0.526 and 0.85. Original 0.526 is from Itron, Hirsch and Associates, and Research Into Action, "Welcome to the Dark Side: The Effect of Switching on CFL Measure Life"2008 ACEEE Summer Study on Energy Efficiency in Buildings, p. 2-146; and 0.85 is from ENERGY STAR<sup>®</sup> CFL THIRD PARTY TESTING AND VERIFICATION Offthe-Shelf CFL Performance: Batch 3. Figure 27, p. 47.

<sup>&</sup>lt;sup>362</sup> EUL = Rated Measure Life in Hours \* Degradation Factor / (365.25 \* Average Hours of Daily Use). Degradation Factor = 0.526 for indoor applications and 1.000 for outdoor applications.

| Minimum<br>Lumens | Maximum<br>Lumens | Incandescent<br>Equivalent 1 <sup>st</sup><br>Tier EISA<br>2007 (W <sub>base</sub> ) | CFL<br>Wattage | kWh/Lamp | kW/Lamp |
|-------------------|-------------------|--------------------------------------------------------------------------------------|----------------|----------|---------|
| 310               | 749               | 29                                                                                   | 10             | 14.75    | 0.00251 |
| 750               | 1,049             | 43                                                                                   | 14             | 22.51    | 0.00382 |
| 1,050             | 1,489             | 53                                                                                   | 20             | 25.62    | 0.00435 |
| 1,490             | 2,600             | 72                                                                                   | 26             | 35.71    | 0.00607 |

Table C-146: ENERGY STAR® CFLs – Deemed Savings Per Lamp

# C.5.4.6. Calculation of Deemed Savings

See section C.5.1.5 Calculation of Deemed Savings.

# C.5.4.7. Incremental Cost

Costs by delivery channel area as follows:

- Retail Markdown: \$1.20<sup>363</sup>
- Direct Install: program actual. If unavailable, use full measure cost of \$2.45 per bulb plus \$5 installation cost<sup>364</sup>.
- Efficiency Kits: program actual.

# C.5.4.8. Future Studies

This measure is a High Impact Measure, having constituted more than 1% of residential Energy Smart program savings. However, most the major research need (hours of use and coincidence) has been completed. Given the pending code change to EISA Phase II starting in 2020, this measure should not be the focus of other research studies for future program implementation. EM&V for this measure should focus on savings validation.

The TPE recommends that this measure cease implementation when EISA Phase II takes effect in 2020, unless program administrators can show that the savings are still cost-effective under the more stringent baseline.

<sup>&</sup>lt;sup>363</sup> Illinois TRM v6.0. Final draft, February 8<sup>th</sup>, 2017.

<sup>&</sup>lt;sup>364</sup> Assumes 15 minutes at \$20/hour. This includes proration of travel time to the site.

## C.5.5. ENERGY STAR® Specialty Compact Fluorescent Lamps (CFLs)

#### C.5.5.1. Measure Description

This measure provides a method for calculating savings for replacing a specialty incandescent or halogen lamp with an ENERGY STAR®-qualified specialty CFL. These lamps include R, PAR, ER, BR, BPAR, globes G40, decorative globes equal to or less that 60W with candelabra base, and decorative candles equal to or less than 60W with candelabra base.

#### C.5.5.2. Baseline

The baseline equipment is a specialty incandescent or halogen lamp.<sup>365</sup>

#### C.5.5.2.1. Reflector

The baseline wattages for reflector lamps are presented in Table C-147.

Table C-147: ENERGY STAR® Specialty CFLs - Baseline Watts for Reflector Lamps<sup>366</sup>

| Lamp Type | Incandescent<br>Equivalent (Pre-<br>EISA) | WattsBase<br>(Post-EISA) | WattsBase<br>(Post-<br>EISA) <sup>367</sup> |
|-----------|-------------------------------------------|--------------------------|---------------------------------------------|
| PAR20     | 50                                        | 35                       | 23                                          |
| PAR30     | 50                                        | 35                       | 23                                          |
| R20       | 50                                        | 45                       | 29                                          |
| PAR38     | 60                                        | 55                       | 35                                          |
| BR30      | 65                                        | EXEMPT                   | 38                                          |
| BR40      | 65                                        | EXEMPT                   | 38                                          |
| ER40      | 65                                        | EXEMPT                   | 38                                          |
| BR40      | 75                                        | 65                       | 42                                          |
| BR30      | 75                                        | 65                       | 42                                          |
| PAR30     | 75                                        | 55                       | 35                                          |
| PAR38     | 75                                        | 55                       | 35                                          |
| R30       | 75                                        | 65                       | 42                                          |
| R40       | 75                                        | 65                       | 42                                          |
| PAR38     | 90                                        | 70                       | 45                                          |
| PAR38     | 120                                       | 70                       | 45                                          |
| R20       | ≤ 45                                      | EXEMPT                   | 23                                          |
| BR30      | ≤ 50                                      | EXEMPT                   | EXEMPT                                      |
| BR40      | ≤ 50                                      | EXEMPT                   | EXEMPT                                      |

<sup>&</sup>lt;sup>365</sup> Note that on January 18, 2017, DOE issued the Final Rules on General Service Lamps for the second Tier of EISA (https://energy.gov/eere/buildings/downloads/two-gsl-final-rules). These rules, in general, expand the definition of GSLs, extending the covered lumen range, base types, and shapes, as well as reduce the types of bulbs exempted. According to the rulings, these expanded bulbs will be subject to GSL efficiency standards, including the 2020 backstop, starting January 1, 2020.

<sup>&</sup>lt;sup>366</sup>Based on manufacturer available reflector lighting products as available in August 2013.

<sup>&</sup>lt;sup>367</sup> Developed based on using Tier 1 efficacy for standard lamps and adjusting efficacy to the 45 lum/Watt requirement stated for EISA Tier 2.

| <i>Lamp Туре</i> | Incandescent<br>Equivalent (Pre-<br>ElSA) | WattsBase<br>(Post-EISA) | WattsBase<br>(Post-<br>EISA) <sup>367</sup> |
|------------------|-------------------------------------------|--------------------------|---------------------------------------------|
| ER30             | ≤ 50                                      | EXEMPT                   | EXEMPT                                      |
| ER40             | ≤ 50                                      | EXEMPT                   | EXEMPT                                      |

C.5.5.2.2. Specialty

ENERGY STAR provides separate equivalent incandescent wattages for specialty and decorative bulb shapes. These shapes include candle, globe, bullet, and shapes other than A-lamp bulbs.<sup>368</sup> For these bulbs, use the Watts<sub>Base</sub> from Table C-148.

Table C-148: Baseline Wattage by Lumen Output for Specialty Lamps<sup>369</sup>

| Lumen Bins<br>(decorative) | Lumen Bins<br>(globe) | Incandescent<br>Equivalent<br>WattsBase<br>(Exempt Bulbs) | WattsBase<br>(Post-EISA<br>2007) |
|----------------------------|-----------------------|-----------------------------------------------------------|----------------------------------|
|                            | 1100-1300             | 150                                                       | 72                               |
|                            | 650-1099              | 100                                                       | 72                               |
|                            | 575-649               | 75                                                        | 53                               |
| 500-699                    | 500-574               | 60                                                        | 43                               |
| 300-499                    | 350-499               | 40                                                        | 29                               |
| 150-299                    | 250-349               | 25                                                        | 25                               |
| 90-149                     |                       | 15                                                        | 15                               |
| 70-89                      |                       | 10                                                        | 10                               |

For other specialty, EISA exempt lamps<sup>370</sup>, use the baseline wattage in

<sup>&</sup>lt;sup>368</sup> ANSI Shapes for decorative bulbs: B, BA, C, CA, DC, and F. Globe shapes are labeled as ANSI shape G.

<sup>&</sup>lt;sup>369</sup> Lumen bins and incandescent equivalent wattages from ENERGY STAR labeling requirements, Version 1.0 <u>http://www.energystar.gov/products/specs/sites/products/files/ENERGY%20STAR%20Lamps%20V1.0%20Final%2</u> <u>ODraft%20Specification.pdf</u> EISA Standards from: United States Department of Energy. Impact of EISA 2007 on General Service Incandescent Lamps: FACT SHEET.

Table C-149. Commonly used EISA exempt lamps include 3-way lamps, globes with  $\geq$  5" diameter or  $\leq$  749 lumens, and candelabra base lamps with  $\leq$  1049 lumens. See EISA legislation for full list of exemptions. If rated lumen values fall above or below these values, use manufacturer rated equivalent incandescent wattage.

| Minimum<br>Lumens | Maximum<br>Lumens | Incandescent<br>Equivalent<br>(Wbase) |
|-------------------|-------------------|---------------------------------------|
| 310               | 749               | 40                                    |
| 750               | 1,049             | 60                                    |
| 1,050             | 1,489             | 75                                    |
| 1,490             | 2,600             | 100                                   |

 Table C-149: Baseline Wattage for Specialty, EISA Exempt Lamps<sup>371</sup>

# C.5.5.3. Efficiency Standard

CFLs must be an ENERGY STAR® specialty CFL.

Exceptions to the ENERGY STAR® label are allowed for unlisted lamps, fixtures or other lighting-related devices that have been submitted to ENERGY STAR® for approval. If the lamp or fixture does not achieve ENERGY STAR® approval within the program year, however, then the lamp or fixture would have to be immediately withdrawn from the program.

# C.5.5.4. Estimated Useful Life (EUL)

The average measure life is based upon rated lamp life of the CFL shown in the following table. The measure life assumes an average daily use of 270.50 blended hours for indoor/outdoor applications and applies a 0.688<sup>372</sup> degradation factor to indoor residential CFLs.

| Rated Measure Life<br>(Hours) | Measure Life (Years) |
|-------------------------------|----------------------|
| 8,000                         | 7                    |
| 10,000                        | 9                    |
| 12,000                        | 10                   |
| 15,000                        | 13                   |

Table C-150: ENERGY STAR® Specialty CFLs – Measure Life<sup>373</sup>

<sup>&</sup>lt;sup>371</sup>Note that ENERGY STAR<sup>®</sup> has recently assigned new incandescent equivalent wattage lumen bins for the ENERGY STAR<sup>®</sup> v2.0 lighting standards (see

https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Lamps%20V2\_0%20Revised%20OCT-2016\_1.pdf, page 13)). this TRM maintains the EISA lumen bins for assigning baseline wattage. Future TRM iterations of the TRM, however, may incorporate these new lumen bins for baseline wattage estimates.

<sup>&</sup>lt;sup>372</sup> Average of 0.526 and 0.85. Original 0.526 is from Itron, Hirsch and Associates, and Research Into Action, "Welcome to the Dark Side: The Effect of Switching on CFL Measure Life". 2008 ACEEE Summer Study on Energy Efficiency in Buildings, p. 2-146; and 0.85 is from ENERGY STAR<sup>®</sup> CFL THIRD PARTY TESTING AND VERIFICATION Offthe-Shelf CFL Performance: Batch 3. Figure 27, p. 47.

<sup>&</sup>lt;sup>373</sup> EUL = Rated Measure Life in Hours \* Degradation Factor / (365.25 \* Average Hours of Daily Use). Degradation Factor = 0.526 for indoor applications and 1.000 for outdoor applications.

# C.5.5.5. Deemed Savings Per Lamp

Table C-151 summarizes the unit energy savings for specialty CFLs in each lumen bin. This assumes retail markdown delivery and an unknown HVAC system configuration.

| Minimum<br>Lumens | Maximum<br>Lumens | Incandescent<br>Equivalent 1 <sup>st</sup><br>Tier EISA<br>2007 (W <sub>base</sub> ) | CFL<br>Wattage | kWh/Lamp | kW/Lamp |
|-------------------|-------------------|--------------------------------------------------------------------------------------|----------------|----------|---------|
| 310               | 749               | 40                                                                                   | 10             | 23.29    | 0.00396 |
| 750               | 1,049             | 60                                                                                   | 14             | 35.71    | 0.00607 |
| 1,050             | 1,489             | 75                                                                                   | 20             | 42.70    | 0.00725 |
| 1,490             | 2,600             | 100                                                                                  | 26             | 57.45    | 0.00976 |

Table C-151: ENERGY STAR® Specialty CFLs – Deemed Savings Per Lamp

## C.5.5.6. Calculation of Deemed Savings

Deemed savings are calculated in the same manner as for standard CFLs (see Section C.5.5.6).

# C.5.5.7. Incremental Cost

Costs by delivery channel area as follows:

- Retail Markdown: \$5.00<sup>374</sup>
- Direct Install: program actual. If unavailable, use full measure cost of \$8.50 per bulb plus \$5 installation cost<sup>375</sup>
- Efficiency Kits: program actual

# C.5.5.8. Future Studies

This measure is a High Impact Measure, having constituted more than 1% of residential Energy Smart program savings. However, the major research need (hours of use and coincidence) has been completed. Further, given the pending code change to EISA Phase II starting in 2020, this measure should not be the focus of research studies for future program implementation. EM&V for this measure should focus on savings validation.

The TPE recommends that this measure cease implementation when EISA Phase II takes effect in 2020, unless program administrators can show that the savings are still cost-effective under the more stringent baseline.

<sup>&</sup>lt;sup>374</sup> NEEP Residential Lighting Survey, 2011.

<sup>&</sup>lt;sup>375</sup> Assumes 15 minutes at \$20/hour. This includes proration of travel time to the site.

# D.1. Commercial Motors

## D.1.1. Electronically Commutated Motors for Refrigeration and HVAC Applications

#### D.1.1.1. Measure Description

An electronically commutated motor (ECM) is a fractional horsepower direct current (DC) motor used most often in commercial refrigeration applications such as display cases, walk-in coolers/freezers, refrigerated vending machines, and bottle coolers. ECMs can also be used in HVAC applications, primarily as small fan motors for packaged terminal units or in terminal air boxes. ECMs generally replace shaded pole (SP) or permanent split-capacitor (PSC) motors and offer energy savings of at least 50 percent.

## D.1.1.2. Baseline and Efficiency Standards

The standard motor type for this application is a shaded pole or permanent split-capacitor motor.

Any ECM up to 1 HP in size will meet the minimum requirements for both retrofit and new construction installations.

#### D.1.1.3. Estimated Useful Life (EUL)

In accordance with DEER 2014, the estimated useful life (EUL) is 15 years.

#### D.1.1.4. Deemed Savings Values

Table D-1 summarizes deemed kWh and kW by facility type for this measure. Thefollowing assumptions are used:

- Baseline watts: 102. This is the average of SP motors (132W) and PSC motors (72W).
- Hours:
  - o HVAC: 4,386
  - Refrigeration: 8,760
  - Unknown: 6,573
- COP:
  - HVAC: 3.45 (assumes 11.8 EER)
  - Refrigeration: 1.90 (average of refrigerator and freezer)
  - o Unknown: 2.67
- Duty Cycle:
  - HVAC, medium-temp refrigeration: 1.00

- o Freezer: .94
- Unknown: .985

| End-Use           | н   | VAC Refrigeration<br>(Med. temps) |     | Refrigeration (Freezers) |     | Unknown |     |       |
|-------------------|-----|-----------------------------------|-----|--------------------------|-----|---------|-----|-------|
|                   | kWh | kW                                | kWh | kW                       | kWh | kW      | kWh | kW    |
| Assembly          | 351 | 0.066                             | 829 | 0.095                    | 779 | 0.089   | 552 | 0.07  |
| College           | 351 | 0.066                             | 829 | 0.095                    | 779 | 0.089   | 552 | 0.069 |
| Fast Food         | 351 | 0.067                             | 829 | 0.095                    | 779 | 0.089   | 552 | 0.071 |
| Full Menu         | 351 | 0.062                             | 829 | 0.095                    | 779 | 0.089   | 552 | 0.066 |
| Grocery           | 351 | 0.068                             | 829 | 0.095                    | 779 | 0.089   | 552 | 0.071 |
| Health Clinic     | 351 | 0.072                             | 829 | 0.095                    | 779 | 0.089   | 552 | 0.076 |
| Large Office      | 351 | 0.068                             | 829 | 0.095                    | 779 | 0.089   | 552 | 0.071 |
| Lodging           | 351 | 0.067                             | 829 | 0.095                    | 779 | 0.089   | 552 | 0.071 |
| Religious Worship | 351 | 0.062                             | 829 | 0.095                    | 779 | 0.089   | 552 | 0.065 |
| Retail            | 351 | 0.066                             | 829 | 0.095                    | 779 | 0.089   | 552 | 0.069 |
| Unknown           | 351 | 0.07                              | 829 | 0.095                    | 779 | 0.089   | 552 | 0.074 |

Table D-1: Deemed Savings by Facility Type

#### D.1.1.5. Calculation of Deemed Savings

#### D.1.1.5.1. Energy Savings

$$kWh_{savings} = (W_{base} - W_{ECM}) \times Hrs \times DC \times (1 + \frac{1}{COP})/1000 W/kW$$

Where:

 $kW_{\text{base}}$  = Power of the motor being replaced; use known wattage of motor, or if unknown, use 132W (SP motors)<sup>376</sup> or 72W (PSC motors)<sup>377</sup>

 $kW_{ECM}$  = Power of the replacement EC motor; use known wattage of motor, or if unknown, use 40W<sup>378</sup>

The motor's power for either Base or ECM can be calculated using the following equation if power is not known. The values for rated wattage and phase can be found on motor's nameplate:

<sup>&</sup>lt;sup>376</sup> http://www.fishnick.com/publications/appliancereports/refrigeration/GE\_ECM\_revised.pdf

<sup>&</sup>lt;sup>377</sup> The Massachusetts TRM specifies a load factor of 54% for SP motors and a load factor of 29% for PSC motors, as specified by National Resource Management (NRM). Multiplying the 132 W default value for SP motors by the ratio of PSC load factor to SP load factor results in a default PSC motor wattage of 72 watts.

<sup>&</sup>lt;sup>378</sup> http://www.fishnick.com/publications/appliancereports/refrigeration/GE\_ECM\_revised.pdf

$$kW_{motor} = \frac{Volts \ \times Amperage}{1000} \times \sqrt{Phase} \times Power \ Factor$$

Hrs = Hours of yearly operation, use 8,760 hours for refrigeration and 4,386 for HVAC

DC = Duty cycle, only use a value of 0.94 if the application of the motor being replaced is for a freezer system. This is because the freezer will complete four 20-min defrost cycles per day where the evaporator fan will not be used. Use a value of 1 if the application is for a cooler refrigeration or HVAC.

*PowerFactor* = Power factor of the motor, if not known an average value of 0.55 can be used for ECM in refrigeration, 0.7 for ECM in HVAC, and 0.85 for base motor in both applications.<sup>379</sup>

COP = Coefficient of Performance for the motor's operation based on application. COP value depends on the end temperature of the refrigeration process. The COP values to use for refrigeration analysis are 1.3 for freezers and 2.5 for coolers<sup>380</sup>. For HVAC, use the EER value from install spec sheet and the conversion COP = EER/3.412.

#### D.1.1.5.2. Demand Savings

$$kW_{HVAC \ reduction} = (kW_{base} - kW_{ECM}) \times CF \times (1 + \frac{1}{COP})$$
$$kW_{Refrigeration \ reduction} = (kW_{base} - kW_{ECM}) \times DC \times CF \times (1 + \frac{1}{COP})$$

Where:

CF = Coincidence Factor, use values from Table D-2 for HVAC applications; default value of 1.0 for refrigeration applications<sup>381</sup>

DC = Duty cycle, only use a value of 0.94 if the application of the motor being replaced is for a freezer refrigeration. This is because the freezer will complete four 20-min defrost cycles per day where the evaporator fan will not be used. Use a value of 1 if the application is for a cooler refrigeration of HVAC.

<sup>&</sup>lt;sup>379</sup> http://www.ecw.org/sites/default/files/230-1.pdf

<sup>&</sup>lt;sup>380</sup> PSC of Wisconsin, Focus on Energy Evaluation, Business Programs: Deemed Savings Manual V1.0, pp. 4-103 -4-106.

<sup>&</sup>lt;sup>381</sup> CF set to 1.0 for refrigeration applications based on annual run-time assumption of 8,760 hours

| Building Type     | Coincidence<br>Factor |
|-------------------|-----------------------|
| Assembly          | 0.82                  |
| College           | 0.84                  |
| Fast Food         | 0.78                  |
| Full Menu         | 0.85                  |
| Grocery           | 0.90                  |
| Health Clinic     | 0.85                  |
| Large Office      | 0.84                  |
| Lodging           | 0.77                  |
| Religious Worship | 0.82                  |
| Retail            | 0.88                  |
| School            | 0.71                  |
| Small Office      | 0.84                  |

Table D-2: Commercial Coincidence Factors by Building Type<sup>382</sup>

# D.1.1.6. Incremental Cost

Incremental cost by end-use type is \$177.<sup>383</sup>

## D.1.1.7. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure was not implemented in Energy Smart programs. As a result, savings are calculated using ENERGY STAR default values. If this measure is added to Energy Smart programs, the evaluation should include a review of actual efficiency levels and costs of units purchased by New Orleans business and updates for applicable codes.

<sup>&</sup>lt;sup>382</sup> Values for Assembly and Religious Worship building types developed using an adjustment factor derived through a comparison of average CFs for College/University and Assembly/Religious Worship building types from the Texas state Technical Reference Manual. College/University was selected as a reference building type due to average alignment with Assembly/Religious worship building types in other TRMs, inclusion of a summer session, and increased evening usage.

<sup>&</sup>lt;sup>383</sup> Difference in the fully installed cost (\$468) for ECM motor and controller, listed in Work Paper PGE3PREF126, "ECM for Walk-In Evaporator with Fan Controller," June 20,2012, and the measure cost specified in 4.6.6 (\$291)

# **D.1.2. Premium Efficiency Motors**

# D.1.2.1. Measure Description

Currently a wide variety of NEMA premium efficiency motors from 1-500 HP are available. Deemed values for demand and energy savings associated with this measure must be for motors with an equivalent operating period (hours x Load Factor) over 1,000 hours.

# D.1.2.2. Baseline and Efficiency Standards

# D.1.2.2.1. Replace on Burnout

The EISA 2007 Sec 313 adopted the new federal standard and required that electric motors that are manufactured and sold in the United States meet the new standard by December 19, 2010. The standards can also be found in sections 431.25(c)-(f) of the Code of Federal Regulations (10 CFR Part 431).

With these changes, any 1-500 HP motor bearing the "NEMA Premium" trademark will align with national energy efficiency standards and legislation. The Federal Energy Management Program (FEMP) has already adopted NEMA MG 1-2006 Revision 1 2007 in its Designated Product List for federal customers.

In addition to the new standards for 200-500 HP motors, additional motors in the 1-200 HP range are now included in the NEMA Premium standard. These new motors are referred to as "General Purpose Electric Motors (Subtype II)". These additional types of motors include:

- U-Frame Motors
- Design C Motors
- Close-coupled pump motors
- Footless motors
- Vertical solid shaft normal thrust (tested in a horizontal configuration)
- 8-pole motors
- All poly-phase motors with voltages up to 600 volts other than 230/460 volts (230/460-volt motors are covered by EPAct-92)

# D.1.2.2.2. Early Retirement

The baseline for early retirement projects is the nameplate efficiency of the existing motor to be replaced, if known. If the nameplate is illegible and the in-situ efficiency cannot be determined, then the baseline should be based on the minimum efficiency allowed under the Federal Energy Policy Act of 1992 (EPAct), as listed in Table D-4.

NEMA Premium Efficiency motor levels continue to be industry standard for minimumefficiency levels. The savings calculations assume that the minimum motor efficiency for both replace on burnout and early retirement projects exceeds that listed in Table D-3.

For early retirement, the maximum age of an eligible piece of equipment is capped at the point at which it is expected that 75 percent of the equipment has failed. Where the age of the unit exceeds the 75 percent failure age, ROB savings should be applied. This cap prevents early retirement savings from being applied to projects where the age of the equipment greatly exceeds the estimated useful life of the measure.

| le re | <b>N</b> baseline, Open Motors |        |        | <b>n</b> bas | seline, Closed M | lotors |
|-------|--------------------------------|--------|--------|--------------|------------------|--------|
| hp    | 6-Pole                         | 4-Pole | 2-Pole | 6-Pole       | 4-Pole           | 2-Pole |
| 1     | 82.5                           | 85.5   | 77.0   | 82.5         | 85.5             | 77.0   |
| 1.5   | 86.5                           | 86.5   | 84.0   | 87.5         | 86.5             | 84.0   |
| 2     | 87.5                           | 86.5   | 85.5   | 87.5         | 86.5             | 85.5   |
| 3     | 88.5                           | 89.5   | 85.5   | 89.5         | 89.5             | 86.5   |
| 5     | 89.5                           | 89.5   | 86.5   | 89.5         | 89.5             | 88.5   |
| 7.5   | 90.2                           | 91.0   | 88.5   | 91.0         | 91.7             | 89.5   |
| 10    | 91.7                           | 91.7   | 89.5   | 91.0         | 91.7             | 90.2   |
| 15    | 91.7                           | 93.0   | 90.2   | 91.7         | 92.4             | 91.0   |
| 20    | 92.4                           | 93.0   | 91.0   | 91.7         | 93.0             | 91.0   |
| 25    | 93.0                           | 93.6   | 91.7   | 93.0         | 93.6             | 91.7   |
| 30    | 93.6                           | 94.1   | 91.7   | 93.0         | 93.6             | 91.7   |
| 40    | 94.1                           | 94.1   | 92.4   | 94.1         | 94.1             | 92.4   |
| 50    | 94.1                           | 94.5   | 93.0   | 94.1         | 94.5             | 93.0   |
| 60    | 94.5                           | 95.0   | 93.6   | 94.5         | 95.0             | 93.6   |
| 75    | 94.5                           | 95.0   | 93.6   | 94.5         | 95.4             | 94.1   |
| 100   | 95.0                           | 95.4   | 93.6   | 95.0         | 95.4             | 94.1   |
| 125   | 95.0                           | 95.4   | 94.1   | 95.0         | 95.4             | 95.0   |
| 150   | 95.4                           | 95.8   | 94.1   | 95.8         | 95.8             | 95.0   |
| 200   | 95.4                           | 95.8   | 95.0   | 95.8         | 96.2             | 95.4   |
| 250   | 94.5                           | 95.4   | 94.5   | 95.0         | 95.0             | 95.4   |
| 300   | 94.5                           | 95.4   | 95.0   | 95.0         | 95.4             | 95.4   |
| 350   | 94.5                           | 95.4   | 95.0   | 95.0         | 95.4             | 95.4   |
| 400   | n/a                            | 95.4   | 95.4   | n/a          | 95.4             | 95.4   |
| 450   | n/a                            | 95.8   | 95.8   | n/a          | 95.4             | 95.4   |
| 500   | n/a                            | 95.8   | 95.8   | n/a          | 95.8             | 95.4   |

Table D-3: Premium Efficiency Motors – Replace on Burnout Baseline<sup>384</sup>

<sup>&</sup>lt;sup>384</sup> Federal Standards for Electric Motors, Table 1: Full Load Efficiencies for Standard Electric Motors, <u>http://www1.eere.energy.gov/buildings/appliance\_standards/product.aspx/productid/50</u>. Accessed June 2013.

Electronically Commutated Motors for Refrigeration and HVAC

| hn  | <b>N</b> baseline, Open Motors |        |        | n <sub>bas</sub> | seline, Closed M | lotors |
|-----|--------------------------------|--------|--------|------------------|------------------|--------|
| hp  | 6-Pole                         | 4-Pole | 2-Pole | 6-Pole           | 4-Pole           | 2-Pole |
| 1   | 80.0                           | 82.5   | 75.5   | 80.0             | 82.5             | 75.5   |
| 1.5 | 84.0                           | 84.0   | 82.5   | 85.5             | 84.0             | 82.5   |
| 2   | 85.5                           | 84.0   | 84.0   | 86.5             | 84.0             | 84.0   |
| 3   | 86.5                           | 86.5   | 84.0   | 87.5             | 87.5             | 85.5   |
| 5   | 87.5                           | 87.5   | 85.5   | 87.5             | 87.5             | 87.5   |
| 7.5 | 88.5                           | 88.5   | 87.5   | 89.5             | 89.5             | 88.5   |
| 10  | 90.2                           | 89.5   | 88.5   | 89.5             | 89.5             | 89.5   |
| 15  | 90.2                           | 91.0   | 89.5   | 90.2             | 91.0             | 90.2   |
| 20  | 91.0                           | 91.0   | 90.2   | 90.2             | 91.0             | 90.2   |
| 25  | 91.7                           | 91.7   | 91.0   | 91.7             | 92.4             | 91.0   |
| 30  | 92.4                           | 92.4   | 91.0   | 91.7             | 92.4             | 91.0   |
| 40  | 93.0                           | 93.0   | 91.7   | 93.0             | 93.0             | 91.7   |
| 50  | 93.0                           | 93.0   | 92.4   | 93.0             | 93.0             | 92.4   |
| 60  | 93.6                           | 93.6   | 93.0   | 93.6             | 93.6             | 93.0   |
| 75  | 93.6                           | 94.1   | 93.0   | 93.6             | 94.1             | 93.0   |
| 100 | 94.1                           | 94.1   | 93.0   | 94.1             | 94.5             | 93.6   |
| 125 | 94.1                           | 94.5   | 93.6   | 94.1             | 94.5             | 94.5   |
| 150 | 94.5                           | 95.0   | 93.6   | 95.0             | 95.0             | 94.5   |
| 200 | 94.5                           | 95.0   | 94.5   | 95.0             | 95.0             | 95.0   |
| 250 | 94.5                           | 95.4   | 94.5   | 95.0             | 95.0             | 95.4   |
| 300 | 94.5                           | 95.4   | 95.0   | 95.0             | 95.4             | 95.4   |
| 350 | 94.5                           | 95.4   | 95.0   | 95.0             | 95.4             | 95.4   |
| 400 | n/a                            | 95.4   | 95.4   | n/a              | 95.4             | 95.4   |
| 450 | n/a                            | 95.8   | 95.8   | n/a              | 95.4             | 95.4   |
| 500 | n/a                            | 95.8   | 95.8   | n/a              | 95.8             | 95.4   |

Table D-4: Premium Efficiency Motors – Early Retirement Baseline<sup>385</sup>

# D.1.2.3. Estimated Useful Life (EUL)

According to DEER 2014, the estimated useful life (EUL) is 15 years.

# D.1.2.4. Calculation of Deemed Savings

Actual motor operating hours are expected to be used to calculate savings. Every effort should be made to capture the estimated operating hours. Short and/or long-term metering can be used to verify estimates. If metering is not possible, interviews with facility operators and review of operations logs should be conducted to obtain an estimate of

<sup>&</sup>lt;sup>385</sup> Federal Standards for Electric Motor Efficiency from the Federal Energy Policy Act of 1992 (EPACT). <u>http://www1.eere.energy.gov/manufacturing/tech\_assistance/pdfs/e-pact92.pdf</u>. Accessed June 2013.

actual operating hours. If there is not sufficient information to accurately estimate operating hours, then the annual operating hours in Table D-5 or Table D-9.

| Building Type            | Load Factor <sup>386</sup> | HVAC Fan Hours <sup>387</sup> |
|--------------------------|----------------------------|-------------------------------|
| College/ University      |                            | 4,581                         |
| Fast Food Restaurant     |                            | 6,702                         |
| Full Menu Restaurant     |                            | 5,246                         |
| Grocery Store            |                            | 6,389                         |
| Health Clinic            | 0.75                       | 7,243                         |
| Lodging                  | 0.75                       | 4,067                         |
| Large Office (>30k SqFt) |                            | 4,414                         |
| Small Office (≤30k SqFt) |                            | 3,998                         |
| Retail                   |                            | 5,538                         |
| School                   |                            | 4,165                         |

Table D-5: Premium Efficiency Motors – Operating Hours, Load Factor (HVAC)

Table D-6: Premium Efficiency Motors – Operating Hours, Load Factor (Non-HVAC)

| Induction                | Load                  | Hours <sup>389</sup> |       |        |                       |                    |       |  |
|--------------------------|-----------------------|----------------------|-------|--------|-----------------------|--------------------|-------|--|
| Industrial<br>Processing | Factor <sup>388</sup> | Chem                 | Paper | Metals | Petroleum<br>Refinery | Food<br>Production | Other |  |
| 1-5 hp                   | 0.54                  | 4,082                | 3,997 | 4,377  | 1,582                 | 3,829              | 2,283 |  |
| 6-20 hp                  | 0.51                  | 4,910                | 4,634 | 4,140  | 1,944                 | 3,949              | 3,043 |  |
| 21-50 hp                 | 0.60                  | 4,873                | 5,481 | 4,854  | 3,025                 | 4,927              | 3,530 |  |
| 51-100 hp                | 0.54                  | 5,853                | 6,741 | 6,698  | 3,763                 | 5,524              | 4,732 |  |
| 101-200 hp               | 0.75                  | 5,868                | 6,669 | 7,362  | 4,170                 | 5,055              | 4,174 |  |
| 201-500 hp               |                       | 5,474                | 6,975 | 7,114  | 5,311                 | 3,711              | 5,396 |  |
| 501-1,000 hp             | 0.58                  | 7,495                | 7,255 | 7,750  | 5,934                 | 5,260              | 8,157 |  |
| >1,000 hp                |                       | 7,693                | 8,294 | 7,198  | 6,859                 | 6,240              | 2,601 |  |

<sup>&</sup>lt;sup>386</sup> Itron 2004-2005 DEER Update Study, Dec 2005; Table 3-25. Accessed May

 $<sup>2013.</sup>http://www.deeresources.com/deer2005/downloads/DEER2005UpdateFinalReport\_ItronVersion.pdf.$ 

<sup>&</sup>lt;sup>387</sup> Fan schedule operating hours taken as the average of operating hours from the Connecticut, Maine, and Pennsylvania Technical Reference Manuals: CL&P and UI Program Savings Documentation for 2008 Program Year, Connecticut Lighting & Power Company; Efficiency Maine Technical Reference User Manual No. 2007-1; Pennsylvania Utility Commission Technical Reference Manual June 2012.

<sup>&</sup>lt;sup>388</sup> United States Industrial Electric Motor Systems Market Opportunities Assessment, Dec 2002; Table 1-19. Accessed May 2013. www1.eere.energy.gov/manufacturing/tech\_assistance/pdfs/mTRMkt.pdf

<sup>&</sup>lt;sup>389</sup> United States Industrial Electric Motor Systems Market Opportunities Assessment, Dec 2002; Table 1-15. Accessed May 2013. www1.eere.energy.gov/manufacturing/tech\_assistance/pdfs/mTRMkt.pdf

# D.1.2.4.1. Measure/Technology Review

Premium efficiency motors are a mature technology and a wealth of information exists on the measure. A summary of the key resources is included in Table D-7.

Table D-7: Premium Efficiency Motors- Review of Motor Measure Information

| Resource                        | Notes                                                                       |  |  |  |
|---------------------------------|-----------------------------------------------------------------------------|--|--|--|
| PG&E 2006 <sup>390</sup>        | Savings for common motor retrofits                                          |  |  |  |
| Xcel Energy 2006 <sup>391</sup> | Program level savings estimates for high-efficiency motors                  |  |  |  |
| DEER 2014 <sup>392</sup>        | Savings and cost for common motor retrofit                                  |  |  |  |
| KEMA 2010 <sup>393</sup>        | Motor savings included in comprehensive potential study                     |  |  |  |
| CEE <sup>394</sup>              | Industrial motor efficiency initiative                                      |  |  |  |
| RTF <sup>395</sup>              | Savings for common motor retrofit                                           |  |  |  |
| ITP <sup>396</sup>              | Savings for common motor retrofit                                           |  |  |  |
| NPCC 2010 <sup>397</sup>        | Market information and overview of savings potential                        |  |  |  |
| NEMA 2009 <sup>398</sup>        | Minimum efficiency level for premium efficiency motors                      |  |  |  |
| MotorMaster+ <sup>399</sup>     | Comprehensive resource of motor efficiencies and tools to calculate savings |  |  |  |
| PacifiCorp 2009 <sup>400</sup>  | Motor savings included in comprehensive potential study                     |  |  |  |

Deemed electric motor demand and energy savings should be calculated by the following formulas:

<sup>399</sup> MotorMaster+. 2010.

<sup>&</sup>lt;sup>390</sup> Pacific Gas & Electric (PG&E). 2006. 2006 Motors Unit Savings Workpapers.V14.

<sup>&</sup>lt;sup>391</sup> Xcel Energy. 2006. 2007/2008/2009 Triennial Plan Minnesota Natural Gas and Electric Conversation Improvement Program.

<sup>&</sup>lt;sup>392</sup> Consortium of Energy Efficiency. Commercial Lighting Program. <u>http://library.cee1.org/content/commercial-lighting-qualifying-products-lists</u>

<sup>&</sup>lt;sup>393</sup> KEMA. 2010. *Measurement Manual*. Prepared for Tennessee Valley Authority.

<sup>&</sup>lt;sup>394</sup> Consortium for Energy Efficiency. 2010. Industrial Motors & Motor Systems. <u>http://library.cee1.org/content/cee-2012-summary-member-programs-motors-motor-systems</u>

<sup>&</sup>lt;sup>395</sup> Regional Technical Forum (RTF). <u>http://rtf.nwcouncil.org/measures/</u>

<sup>&</sup>lt;sup>396</sup> Industrial Technologies Program <a href="http://www1.eere.energy.gov/industry/">http://www1.eere.energy.gov/industry/</a>

<sup>&</sup>lt;sup>397</sup> Northwest Power and Conservation Council (NPCC). 2010. *The Sixth Northwest Electric Power and Conservation Plan.* 

<sup>&</sup>lt;sup>398</sup> National Electrical Manufacturers Association (NEMA). 2009. *Motors and Generators. NEMA* MG 1-2009.

https://www1.eere.energy.gov/manufacturing/tech\_assistance/software\_motormaster.html

<sup>&</sup>lt;sup>400</sup> PacifiCorp. 2009. *FinAnswer Express Market Characterization and Program Enhancements Utah Service Territory.* 

# D.1.2.4.2. Replace on Burnout (ROB)

 $kWh_{savings} = Rated \ Horsepower \ \times \ Conversion \ Factor \ \times \ LF \ \times \left(\frac{1}{\eta_{baseline}} - \frac{1}{\eta_{post}}\right) \times hours$   $kW_{reduction} = Rated \ Horsepower \ \times \ Conversion \ Factor \ \times \ LF \ \times \left(\frac{1}{\eta_{baseline}} - \frac{1}{\eta_{post}}\right) \times \ CF$ 

Where:

Rated HorsePower = Nameplate horsepower data of the motor

*Conversion Factor* = 0.746 kW/hp

LF = Estimated load factor for the motor; if load factor is not available, deemed load factors in Table D-5 or Table D-9 can be used.

 $\eta_{baseline}$ = Efficiencies listed in Table D-3 should be used (in the case of rewound motors, in situ efficiency may be reduced by a percentage as found in Table D-9)

 $\eta_{post}$ = Efficiency of the newly installed motor

*Hours*= Estimated annual operating hours for the motor; if unavailable, annual operating hours in Table D-5 or Table D-9 be used.

CF = Coincidence Factor = 0.74<sup>401</sup>

# D.1.2.4.3. Early Retirement (ER)

Annual kWh and kW savings must be calculated separately for two time periods:

- 1. The estimated remaining life (RUL, see Table D-8) of the equipment that is being removed, designated the first N years, and
- 2. Years EUL N through EUL, where EUL is 15 years.

<sup>&</sup>lt;sup>401</sup> Itron 2004-2005 DEER Update Study, Dec 2005; Table 3-25.

http://www.deeresources.com/deer2005/downloads/DEER2005UpdateFinalReport\_ItronVersion.pdf Accessed May 2013.

Electronically Commutated Motors for Refrigeration and HVAC

| Table D-8: Premium Efficiency Motors – Remaining Useful Life (RUL) of Replaced |
|--------------------------------------------------------------------------------|
| Systems <sup>402,403</sup>                                                     |

| Age of<br>Replaced<br>System (Years) | RUL<br>(Years) |
|--------------------------------------|----------------|
| 5                                    | 10.0           |
| 6                                    | 9.1            |
| 7                                    | 8.2            |
| 8                                    | 7.3            |
| 9                                    | 6.5            |
| 10                                   | 5.7            |
| 11                                   | 5.0            |
| 12                                   | 4.4            |
| 13                                   | 3.8            |
| 14                                   | 3.3            |
| 15                                   | 2.8            |
| 16                                   | 2.5            |
| 17                                   | 2.2            |
| 18                                   | 1.9            |
| 19                                   | 0.0            |

For the first N years:

$$kWh_{savings} = Rated \ Horsepower \ \times \ Conversion \ Factor \ \times \ LF \ \times \left(\frac{1}{\eta_{baseline}} - \frac{1}{\eta_{post}}\right) \times hours$$

$$kW_{reduction} = Rated \ Horsepower \ \times \ Conversion \ Factor \ \times \ LF \ \times \left(\frac{1}{\eta_{baseline}} - \frac{1}{\eta_{post}}\right) \times \ CF$$

Where:

*Rated HorsePower* = Nameplate horsepower data of the motor

*Conversion Factor* = 0.746 kW/hp

LF = Estimated load factor for the motor; if load factor is not available, deemed load factors in Table D-5 can be used

<sup>&</sup>lt;sup>402</sup> Because the motor EUL is 15 years, it is consistent for use with the RUL determined using the Weibull distribution offered in the DOE's Life Cycle Cost Analysis Spreadsheet, "lcc\_cuac\_hourly.xls".

http://www1.eere.energy.gov/buildings/appliance standards/standards test procedures.html.

<sup>&</sup>lt;sup>403</sup> Use of the early retirement baseline is capped at 18 years, representing the age at which 75 percent of existing equipment is expected to have failed. Systems older than 18 years should use the ROB baseline.

 $\eta_{baseline}$ = In situ efficiency of the baseline motor; if unavailable, efficiencies listed in Table D-4 can be used (in the case of rewound motors, in situ efficiency may be reduced by a percentage as found in Table D-9).

 $\eta_{post}$ =Efficiency of the newly installed motor

*Hours*= Estimated annual operating hours for the motor; if unavailable, annual operational hours in Table D-5 can be used

CF = Coincidence Factor = 0.74<sup>404</sup>

 Table D-9: Rewound Motor Efficiency Reduction Factors<sup>405</sup>

| Motor Horsepower | Efficiency<br>Reduction<br>Factor |  |
|------------------|-----------------------------------|--|
| <40              | 0.01                              |  |
| ≥40              | 0.005                             |  |

For Years EUL - N through EUL:

Savings should be calculated exactly as they are for replace on burnout projects, referred to as  $kWh_{SavingsROB}$ .

Total lifetime savings for early retirement projects are then determined by adding the savings calculated under the two preceding equations as follows:

Lifetime kWh savings for Early Retirement Projects =  $(kWh_{savingsRUL} \times RUL) + [kWh_{savingsROB} \times (EUL - RUL)]$ 

Where:

*RUL*= The Remaining Useful Life of the equipment, in years, see Table D-8.

*EUL* = The Estimated Useful Life of the equipment, deemed at 15 years

<sup>&</sup>lt;sup>404</sup> Itron 2004-2005 DEER Update Study, Dec 2005; Table 3-25.

http://www.deeresources.com/deer2005/downloads/DEER2005UpdateFinalReport\_ItronVersion.pdf. Accessed May 2013.

<sup>&</sup>lt;sup>405</sup> U.S. DOE, Preliminary Technical Support Document, "Energy Efficiency Program for Commercial Equipment: Energy Conservation Standards for Electric Motors, 2.7.2 Impact of Repair on Efficiency." July 23, 2012. <u>http://www1.eere.energy.gov/buildings/appliance\_standards/product.aspx/productid/50</u>. Download TSD at: <u>http://www1.eere.energy.gov/buildings/appliance\_standards/pdfs/em\_preanalysis\_tsdallchapters.pdf</u>.

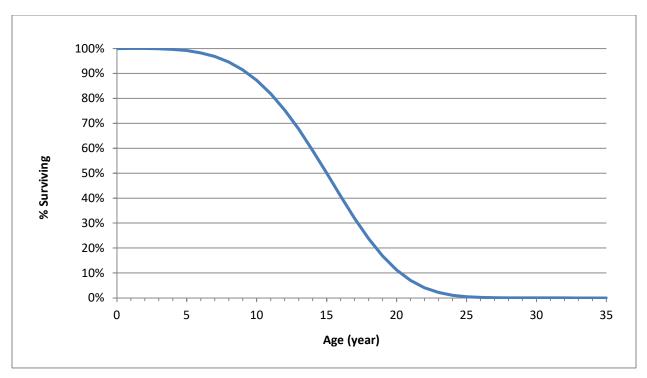



Figure D-1: Survival Function for Premium Efficiency Motors<sup>406</sup>

The method used for estimating the RUL of a replaced system uses the age of the existing system to re-estimate the survival function shown in Figure D-1. The age of the system being replaced is found on the horizontal axis and the corresponding percentage of surviving systems is determined from the chart. The surviving percentage value is then divided in half, creating a new percentage. Then the age (year) that corresponds to this new percentage is read from the chart. RUL is estimated as the difference between that age and the current age of the system being replaced.

<sup>&</sup>lt;sup>406</sup> Source: Weibull distribution based on the Life Cycle Cost Analysis Spreadsheet, "lcc\_cuac\_hourly.xls". http://www1.eere.energy.gov/buildings/appliance\_standards/standards\_test\_procedures.html.

## D.1.2.5. Incremental Cost

| Motor Horsepower | Incremental<br>Cost |
|------------------|---------------------|
| 5                | \$918               |
| 7.5              | \$918               |
| 10               | \$918               |
| 15               | \$918               |
| 20               | \$933               |
| 25               | \$1,012             |
| 30               | \$1,091             |
| 40               | \$1,300             |
| 50               | \$1,497             |
| 60               | \$1,796             |
| 75               | \$1,943             |
| 100              | \$2,389             |
| 125              | \$3,087             |
| 150              | \$3,784             |
| 200              | \$4,555             |
| 250              | \$4,655             |
| 300              | \$4,755             |
| 350              | \$4,855             |
| 400              | \$4,955             |
| 450              | \$5,055             |
| 500              | \$5,155             |

Table D-10: Motor Incremental Cost by Size<sup>407</sup>

#### D.1.2.6. Future Studies

In Energy Smart and other utility portfolios, this is typically a low-volume measure. Highsaving motor applications are more commonly found in custom applications. As a result, the TPE does not advise funding future measure research, and recommend that the measure receive updated only when applicable codes or standards warrant it.

<sup>&</sup>lt;sup>407</sup> Comprehensive Process and Impact Evaluation of the (Xcel Energy) Colorado Motor and Drive Efficiency Program, FINAL, March 28, 2011, TetraTech

Electronically Commutated Motors for Refrigeration and HVAC

#### D.2. Commercial Water Heating

#### D.2.1. Water Heater Replacement

#### D.2.1.1. Measure Description

This measure involves:

- The replacement of electric water heaters in commercial buildings by high efficiency electric resistance water heaters
- The replacement of electric water heaters in commercial buildings by heat pump water heaters
- The replacement of small (< 12 kW) electric water heaters in commercial buildings by electric tankless water heaters

Commercial water heater savings are measured per location and are calculated for new construction or replace-on-burnout. Storage tank models and tankless models, utilizing electricity are eligible.

#### D.2.1.2. Baseline and Efficiency Standards

The baseline standards for IECC 2009 are detailed in Table D-11.

Table D-11: Commercial Water Heaters – Water Heater Performance Requirements

| Equipment<br>Type | Size Category<br>(Input)     | Subcategory<br>or Rating<br>Condition | Performance<br>Required <sup>408,409</sup> | Test Procedure         |
|-------------------|------------------------------|---------------------------------------|--------------------------------------------|------------------------|
| Water             | ≤ 12 kW                      | Resistance                            | IECC 2009: 0.97 - 0.00132V,<br>EF          | DOE 10 CFR Part<br>430 |
| heaters,          | > 12 kW                      |                                       | 1.73V + 155, SL (Btu/hr)                   | ANSI Z21.10.3          |
| electric          | ≤ 24 amps and ≤ 250<br>volts | Heat Pump                             | 0.93 - 0.00132V, EF                        | DOE 10 CFR Part<br>430 |

For smaller water heaters where energy factor (EF) is used, EF takes into account the overall efficiency, including combustion efficiency and standby loss (SL). Regulated by DOE as "residential water heaters", these smaller water heaters manufactured on or after April 16, 2015 must comply with the amended standards found in the Code of Federal Regulations, 10 CFR 430.32(d), detailed in Table D-12.

<sup>&</sup>lt;sup>408</sup> Energy factor (EF) and thermal efficiency (Et) are minimum requirements. In the EF equation, V is the rated volume in gallons.

<sup>&</sup>lt;sup>409</sup> Standby loss (SL) is the maximum Btu/hr based on a nominal 70°F temperature difference between stored water and ambient requirements. In the SL equation, Q is the nameplate input rate in Btu/hr. In the SL equation for electric and gas water heaters and boilers, V is the rated volume in gallons.

# Table D-12: Small Commercial Water Heaters – Standards and their Compliance Dates410

| Product Class            | Energy Factor as of<br>April 16, 2015                                                   |
|--------------------------|-----------------------------------------------------------------------------------------|
| Electric Water<br>Heater | For Vs < 55 gallons:<br>0.960 – (0.0003V)<br>For Vs > 55 gallons:<br>2.057 – (0.00113V) |

For larger water heaters, thermal efficiency (Et) is used and does not factor into SL; however, a limitation on SL is noted.

The savings calculations consider the minimum water heater efficiency requirements listed in Table D-11 to be the baseline.

# D.2.1.3. Estimated Useful Life (EUL)

The estimated useful life (EUL) of this measure is dependent on the type of water heating. According to DEER 2014, the following measure lifetimes should be applied.<sup>411</sup>

- 10 years for Heat Pump Water Heater (HPWH)
- 15 years for High Efficiency Commercial Storage Water Heater
- 20 years for Commercial Tankless Water Heater

# D.2.1.4. Deemed Savings Values

Program staff should endeavor to collect unit-specific information to support energy savings calculations. However, if such data is not available the tables below may be used. The assumptions are as follows:

- Electric Resistant Water Heating:
  - Assume full facility load met by a series of 50-gallon units
  - Resulting baseline EF is .945
  - Efficient EF is .98
- Heat Pump Water Heating:
  - Assume full facility load met by a series of 200-gallon units
  - Resulting baseline EF is 2.00
  - o Efficient EF is 2.20

<sup>&</sup>lt;sup>410</sup> Where V is the rated storage volume, which equals the water storage capacity of a water heater (in gallons), as certified by the manufacturer.

<sup>&</sup>lt;sup>411</sup> http://www.deeresources.com/files/deer2008exante/downloads/EUL\_Summary\_10-1-08.xls

| Building Type     | Annual Hot<br>Water / 1,000 ft. <sup>2</sup> | Average ft. <sup>2</sup> | kWh<br>Savings | kW Savings |
|-------------------|----------------------------------------------|--------------------------|----------------|------------|
| Convenience Store | 4,255                                        | 2,800                    | 50             | 0.0057     |
| Education         | 6,746                                        | 45,000                   | 1,267          | 0.1446     |
| Grocery           | 646                                          | 21,300                   | 57             | 0.0065     |
| Health            | 22,734                                       | 72,000                   | 6,829          | 0.7796     |
| Large Office      | 1,686                                        | 95,000                   | 668            | 0.0763     |
| Large Retail      | 1,254                                        | 80,000                   | 419            | 0.0478     |
| Lodging           | 27,399                                       | 76,500                   | 8,745          | 0.9983     |
| Nursing           | 28,279                                       | 72,000                   | 8,495          | 0.9697     |
| Restaurant        | 41,224                                       | 3,850                    | 662            | 0.0756     |
| Small Office      | 1,428                                        | 6,000                    | 36             | 0.0041     |
| Small Retail      | 5,660                                        | 6,400                    | 151            | 0.0172     |
| Warehouse         | 1,148                                        | 14,000                   | 67             | 0.0076     |
| Other Commercial  | 3,652                                        | 4,000                    | 61             | 0.0070     |

Table D-13: Deemed Savings: Electric Resistant Water Heaters

Table D-14: Deemed Savings: Heat Pump Water Heaters

| Building Type     | Annual Hot<br>Water / 1,000 ft. <sup>2</sup> | Average ft. <sup>2</sup> | kWh<br>Savings | kW Savings |
|-------------------|----------------------------------------------|--------------------------|----------------|------------|
| Convenience Store | 4,255                                        | 2,800                    | 60             | 0.0068     |
| Education         | 6,746                                        | 45,000                   | 1,523          | 0.1739     |
| Grocery           | 646                                          | 21,300                   | 69             | 0.0079     |
| Health            | 22,734                                       | 72,000                   | 8,214          | 0.9376     |
| Large Office      | 1,686                                        | 95,000                   | 804            | 0.0917     |
| Large Retail      | 1,254                                        | 80,000                   | 503            | 0.0575     |
| Lodging           | 27,399                                       | 76,500                   | 10,518         | 1.2007     |
| Nursing           | 28,279                                       | 72,000                   | 10,217         | 1.1663     |
| Restaurant        | 41,224                                       | 3,850                    | 796            | 0.0909     |
| Small Office      | 1,428                                        | 6,000                    | 43             | 0.0049     |
| Small Retail      | 5,660                                        | 6,400                    | 182            | 0.0207     |
| Warehouse         | 1,148                                        | 14,000                   | 81             | 0.0092     |
| Other Commercial  | 3,652                                        | 4,000                    | 73             | 0.0084     |

# D.2.1.5. Calculation of Deemed Savings

Typically, two types of ratings exist for water heaters: energy factor (EF) for smaller units, and thermal efficiency (Et) for larger water heaters. Large heat pump water heaters may also be rated by a third method, coefficient of performance (COP), which is the ratio of heat energy output to electrical energy input and is analogous to thermal efficiency. EF includes standby losses, while Et and COP only consider the amount of energy required

to heat the water. Therefore, in the formulas below, the baseline and energy efficiency measure may be compared for each type of water heater.

The electricity savings for this measure are highly dependent on the estimated hot water consumption, which varies significantly by building type. The following tables list estimated hot water consumption for various building types by number of units, occupants, or building size.

| Building Type     | Annual Hot Water<br>Consumption Per<br>Gallon of Rated<br>Capacity |
|-------------------|--------------------------------------------------------------------|
| Convenience Store | 489                                                                |
| Education         | 526                                                                |
| Grocery           | 489                                                                |
| Health            | 730                                                                |
| Large Office      | 474                                                                |
| Large Retail      | 489                                                                |
| Lodging           | 663                                                                |
| Nursing           | 623                                                                |
| Restaurant        | 577                                                                |
| Small Office      | 474                                                                |
| Small Retail      | 489                                                                |
| Warehouse         | 316                                                                |
| Other Commercial  | 316                                                                |

 Table D-15: Hot Water Requirements by Building Type and System Capacity<sup>412</sup>

Table D-16 converts the values from Table D-15 into per-1,000 square feet value based on the same CBECS 2012 data.

<sup>&</sup>lt;sup>412</sup> Methodology based on TPE analysis. Annual hot water usage in gallons based on CBECS (2012) and RECS (2009) consumption data of West South Central (removed outliers of 1,000 kBtuh or less) to calculate hot water usage. Annual hot water gallons per tank size gallons based on the tank sizing methodology found in ASHRAE 2011 HVAC Applications. Chapter 50 Service Water Heating. Demand assumptions (gallons per day) for each building type based on ASHRAE Chapter 50 and to LBNL White Paper. LBL-37398 Technology Data Characterizing Water Heating in Commercial Buildings: Application to End Use Forecasting. Assumes hot water heater efficiency of 80.

| Building Type     | Annual Hot Water<br>Consumption Per<br>1,000 square feet |
|-------------------|----------------------------------------------------------|
| Convenience Store | 4,255                                                    |
| Education         | 6,746                                                    |
| Grocery           | 646                                                      |
| Health            | 22,734                                                   |
| Large Office      | 1,686                                                    |
| Large Retail      | 1,254                                                    |
| Lodging           | 27,399                                                   |
| Nursing           | 28,279                                                   |
| Restaurant        | 41,224                                                   |
| Small Office      | 1,428                                                    |
| Small Retail      | 5,660                                                    |
| Warehouse         | 1,148                                                    |
| Other Commercial  | 3,652                                                    |

Table D-16: Hot Water Requirements by Building Size413

#### D.2.1.5.1. Small Electric Storage Water Heaters

As small ( $\leq$  12 kW) electric water heaters are typically rated by EF, this section of this measure includes both higher-efficiency resistance water heaters and small ( $\leq$  24 amps and  $\leq$  250 volts) heat pump water heaters. Deemed annual energy savings for small electric water heater replacements are calculated by formulas as follows:

$$kWh_{Savings} = \frac{\rho \times C_p \times V \times (T_{SetPoint} - T_{Supply}) \times (EF_{pre} - EF_{post})}{3,412 Btu/kWh}$$

Where:

 $\rho$  = Water density = 8.33 lb/gal

 $C_p$  = Specific heat of water = 1 BTU/lb.·°F

V = Average annual hot water use (gallons). See for Table D-15 and Table D-16

estimates of water consumption.

 $T_{SetPoint}$  = Water heater set point (default value = 120°F)

<sup>&</sup>lt;sup>413</sup> This is a conversion of the capacity values to a per-square foot value based on average building size in the CBECS.

 $T_{Supply}$  = Average New Orleans area supply water temperature, 74.8°F<sup>414</sup>

 $EF_{pre}$  = Calculated energy factor of existing water heater, based on the water heater tank volume; Table D-11.

 $EF_{post}$  = Energy Factor of replacement water heater (taken from nameplate); the replacement water heater may be either a high efficiency electric storage water heater or a heat pump water heater

*Conversion Factor* = 3,412 Btu/kWh

Deemed demand savings for small electric water heater replacements are calculated by formula as follows:

$$kW_{reduction} = \frac{\rho \times C_p \times V \times (T_{SetPoint} - T_{Supply}) \times (EF_{pre} - EF_{post})}{3,412 Btu/kWh} \times 1/24 \times 1/365$$

Where all variables are the same as in the energy equation and the average hourly ratio is a best estimate of peak coincidence for commercial hot water heater replacements.<sup>415</sup>

# D.2.1.5.2. Large Electric Storage Water Heaters

Large (> 12 kW) electric resistance water heaters can be replaced with heat pump water heaters.

For replacement of large electric resistance water heaters with a heat pump water heater, deemed annual energy savings are calculated by the following formula:

$$kWh_{Savings} = \frac{\rho \times C_p \times GPD \times \left(T_{SetPoint} - T_{Supply}\right) \times \left(\frac{1}{E_{t,base}} - \frac{1}{COP_{post}}\right) \times Days/Year}{3,412 Btu/kWh}$$

Where:

 $\rho$  = Water density = 8.33 lb/gal

 $C_p$  = Specific heat of water = 1 BTU/lb·°F

V = Average daily hot water use (gallons). See Table D-15 and Table D-16 for estimates of water consumption

 $T_{SetPoint}$  = Water heater set point (default value = 120°F)

<sup>&</sup>lt;sup>414</sup> Calculated using area groundwater data. See Section **Error! Reference source not found.**.

<sup>&</sup>lt;sup>415</sup> For replacement with high-efficiency electric storage water heaters and tankless water heaters, the 1/24 peak coincidence factor accurately reflects that improvements in the efficiency of electric resistance storage water heaters are driven almost entirely by reductions in storage losses (conversion efficiency, RE, is close to 1), which are distributed evenly throughout the day.

 $T_{Supply}$  = Average New Orleans area supply water temperature, 74.8°F

 $E_{t,base} = .98$ 

*COP*<sub>post</sub> = Coefficient of performance of new heat pump water heater

# D.2.1.5.3. Demand Savings

Deemed demand savings for replacement of large electric resistance water heaters with a heat pump water heater are calculated by the following formula:

$$kW_{reduction} = \frac{\rho \times C_p \times GPD \times (T_{SetPoint} - T_{Supply}) \times (EF_{pre} - EF_{post})}{3,412 Btu/kWh} \times 1/24$$

Where all variables are the same as in the energy equation and the 1/24 ratio is a best estimate of peak coincidence for commercial hot water heater replacements.

## D.2.1.5.4. Incremental Cost

The incremental cost for heat pump water heaters are as follows<sup>416</sup>:

- 50 Gallon: \$1,050
- 80 Gallon: \$1,050
- 100 Gallon: \$1,950

# D.2.1.1. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure was not implemented in Energy Smart programs. As a result, savings are calculated using ENERGY STAR default values. If this measure is added to Energy Smart programs, the evaluation should include a review of actual efficiency levels and costs of units purchased by New Orleans businesses and updates for applicable codes.

Current DHW load estimates are based off of CBECS data for the West South region. If there is significant participation, we recommend updating with actual participant loads. Further, a study of commercial DHW setpoints would be warranted.

<sup>&</sup>lt;sup>416</sup> Cost information is based upon data from "2010-2012 WA017 Ex Ante Measure Cost Study Draft Report", Itron, February 28, 2014. See "NR HW Heater\_WA017\_MCS Results Matrix - Volume I.xls" for more information.

## **D.2.2. Commercial Faucet Aerators**

## D.2.2.1. Measure Description

This measure consists of installing low-flow faucet aerators in commercial facilities which reduce water usage and save energy associated with heating the water.

# D.2.2.2. Baseline and Efficiency Standards

The savings values for low-flow faucet aerators are for the retrofit of existing operational faucet aerators with a flow rate of 2.2 gallons per minute or higher. Facilities that use both gas and electric water heaters are eligible for this measure.

The baseline faucet aerators are assumed to have a flow rate of 2.2 gallons per minute.<sup>417</sup> To qualify for this measure, the flow rate of installed low-flow faucet aerators must be at most 1.5 gallon per minute.<sup>418</sup>

# D.2.2.3. Estimated Useful Life (EUL)

The average lifetime of this measure is 10 years, according to DEER 2014.

## D.2.2.4. Deemed Savings

Table D-17 through Table D-19 present the default savings for 1.5, 1.0, and 0.5 GPM aerators, respectively. The results are presented by facility type, with the "unknown" category being an average of the listed facility types.

| Building Type          | Days/Year | Minutes/Day | kWh Savings | kW Savings |
|------------------------|-----------|-------------|-------------|------------|
| Hospital, Nursing home | 365       | 3           | 86          | 0.0071     |
| Dormitory              | 274       | 30          | 648         | 0.0946     |
| Multifamily            | 365       | 3           | 86          | 0.0071     |
| Lodging                | 365       | 3           | 86          | 0.0047     |
| Commercial             | 250       | 30          | 591         | 0.1892     |
| School                 | 200       | 30          | 473         | 0.1183     |
| Unknown                | 303       | 17          | 329         | 0.0702     |

Table D-17: Faucet Aerator Deemed Savings – 1.5 GPM

<sup>&</sup>lt;sup>417</sup> Maximum flow rate federal standard for lavatories and aerators set in Federal Energy Policy Act of 1992 and codified at 2.2 GPM at 60 psi in 10CFR430.32.

<sup>&</sup>lt;sup>418</sup> "High-Efficiency Lavatory Faucet Specification." WaterSense. EPA. October 1, 2007. <u>http://www.epa.gov/watersense/partners/faucets\_final.html</u>

| Building Type          | Days/Year | Minutes/Day | kWh Savings | kW Savings |
|------------------------|-----------|-------------|-------------|------------|
| Hospital, Nursing home | 365       | 3           | 148         | 0.0122     |
| Dormitory              | 274       | 30          | 1,111       | 0.1622     |
| Multifamily            | 365       | 3           | 148         | 0.0122     |
| Lodging                | 365       | 3           | 148         | 0.0081     |
| Commercial             | 250       | 30          | 1,014       | 0.3244     |
| School                 | 200       | 30          | 811         | 0.2028     |
| Unknown                | 303       | 17          | 563         | 0.1203     |

Table D-18: Faucet Aerator Deemed Savings – 1.0 GPM

Table D-19: Faucet Aerator Deemed Savings – 0.5 GPM

| Building Type          | Days/Year | Minutes/Day | kWh Savings | kW Savings |
|------------------------|-----------|-------------|-------------|------------|
| Hospital, Nursing home | 365       | 3           | 210         | 0.0172     |
| Dormitory              | 274       | 30          | 1,574       | 0.2298     |
| Multifamily            | 365       | 3           | 210         | 0.0172     |
| Lodging                | 365       | 3           | 210         | 0.0115     |
| Commercial             | 250       | 30          | 1,436       | 0.4596     |
| School                 | 200       | 30          | 1,149       | 0.2873     |
| Unknown                | 303       | 17          | 798         | 0.1704     |

## D.2.2.5. Calculation of Deemed Savings

Annual kWh electric and peak kW savings can be calculated using the following equations:

$$kWh \ Savings = \frac{\rho \times C_P \times U \times (F_B - F_P) \times (T_H - T_{Supply}) \times \frac{1}{E_t} \times Days/Year}{3,412 \ Btu/kWh}$$
$$kW_{reduction} = \frac{\rho \times C_P \times U \times (F_B - F_P) \times (T_H - T_{Supply}) \times \frac{1}{E_t} \times P}{3,412 \ Btu/kWh}$$

| Parameter           | Description                                                                                              | Value                                                |
|---------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| F <sub>B</sub>      | Average baseline flow rate of aerator (GPM)                                                              | 2.2                                                  |
| $F_P$               | Average post measure flow rate of aerator (GPM)                                                          | ≤1.5                                                 |
|                     | Annual Building type operating days for the applications:                                                |                                                      |
|                     | 1.Hospital, Nursing home                                                                                 | 365                                                  |
|                     | 2. Dormitory                                                                                             | 274 <sup>419</sup>                                   |
| Days/Year           | 3. Multifamily                                                                                           | 365                                                  |
|                     | 4. Lodging                                                                                               | 365                                                  |
|                     | 5. Commercial                                                                                            | 250                                                  |
|                     | 6. School                                                                                                | 200                                                  |
| T <sub>supply</sub> | Average supply (cold) water temperature (°F)                                                             | 74.8                                                 |
| $T_{\rm H}$         | Average mixed water (after aerator) temperature (°F)                                                     | 120 <sup>420</sup>                                   |
|                     | Baseline water usage duration, following applications                                                    |                                                      |
|                     | 1. Hospital, Nursing home                                                                                | 3 min/day/unit                                       |
|                     | 2. Dormitory                                                                                             | 30 min/day/unit                                      |
| U                   | 3. Multifamily                                                                                           | 3 min/day/unit                                       |
|                     | 4. Lodging                                                                                               | 3 min/day/unit                                       |
|                     | 5. Commercial                                                                                            | 30 min/day/unit                                      |
|                     | 6. School                                                                                                | 30 min/day/unit                                      |
| ρ                   | Unit conversion: 8.33 pounds/gallon                                                                      | 8.33                                                 |
| Cp                  | Heat capacity of water - 1 Btu/lb. <sup>o</sup> F                                                        | 1                                                    |
| Et                  | Thermal Efficiency of water heater                                                                       | Default Values: 0.98 for<br>electric resistance, 2.2 |
|                     | Hourly water consumption during peak period as a fraction of average daily consumption for applications: | (COP) for heat pump                                  |
|                     | 1. Hospital, Nursing home                                                                                | 0.03                                                 |
|                     | 2. Dormitory                                                                                             | 0.04                                                 |
|                     | 3. Multifamily                                                                                           | 0.03                                                 |
|                     | 4. Lodging                                                                                               | 0.02                                                 |
|                     | 5. Commercial                                                                                            | 0.08                                                 |
|                     | 6. School                                                                                                | 0.05                                                 |

Table D-20: Commercial Aerator Savings Parameters

Example: The following is an electric example calculation for a 1.0 GPM aerator replacement for a school using the previous equations and information. Example electric

<sup>&</sup>lt;sup>419</sup> Dormitories with few occupants in the summer:  $365 \times (9/12) = 274$ .

<sup>&</sup>lt;sup>420</sup> Calculated based on area groundwater temps.

savings are based on heating water with a conventional electric resistance storage tank water heater.

# $\Delta kWh = [8.33 \ x \ 30minday \ x \ (2.2-1.0) \ GPM \ x \ (120-74.8^{\circ}F) \ x \ (1/.98) \ * \\ 200 dayyear]/3412 \ Btu/kWh \\ = 811 \ kWh$

# $\Delta kW = [8.33 \ x \ 30 \ minday \ x \ (2.2-1.0) \ GPM \ x \ (120-74.8^{\circ}\text{F}) \ x \ (1/.98) \ x \ .05]/3412$ Btu/kWh $= 0.202 \ kW$

# D.2.2.6. Incremental Cost

Program-actual costs should be used where available. If not available, the incremental cost of a faucet aerator is \$8.00<sup>421</sup>.

# D.2.2.1. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure was not implemented in Energy Smart programs. As a result, savings are calculated using ENERGY STAR default values. If this measure is added to Energy Smart programs, the evaluation should include a review of actual efficiency levels and costs of units purchased by New Orleans businesses and updates for applicable codes.

If there is significant participation, we recommend updating with actual participant loads. Further, a study of commercial DHW setpoints would be warranted.

<sup>&</sup>lt;sup>421</sup> Direct-install price per faucet assumes cost of aerator and install time. (2011, Market research average of \$3 and assess and install time of \$5 (20min @ \$15/hr)

## D.2.3. Commercial Low-Flow Showerheads

# D.2.3.1. Measure Description

This measure consists of removing existing showerheads and installing low-flow showerheads at the following commercial building types: hospitals and nursing homes, lodging facilities, commercial facilities (offices or other commercial buildings in which showers are provided for employees), fitness centers, and schools.<sup>422</sup>

# D.2.3.2. Baseline and Efficiency Standards

The savings values for low-flow showerheads are for the retrofit of existing operational showerheads with a flow rate of 2.5 gallons per minute (GPM) or higher.<sup>423</sup> Facilities must have electric water heating to qualify for this measure.

The baseline showerhead has an average flow rate of 2.5 GPM based on the current DOE standard. To qualify for the deemed savings, replacement showerheads must have a flow rate of 2.0 GPM or less.<sup>424</sup>

Existing showerheads that have been defaced so as to make the flow rating illegible are not eligible for replacement. Low flow shower heads that are easily tampered with should not be used. Removed showerheads shall be collected by the contractor and held for possible inspection by the utility until all inspections for invoiced installations have been completed.

<sup>&</sup>lt;sup>422</sup> This measure draws from multiple sources, including the residential low flow showerhead measure and commercial faucet aerator measure. Information specific to hot water use in commercial market sectors was drawn from CLEAResult, Inc. draft white paper: *Work Papers for Low Flow Shower Heads with Gas or Electric Water Heaters: Savings Calculation Methodology for Application in Arkansas Energy Efficiency Programs*, February 2014.

<sup>&</sup>lt;sup>423</sup> 10 CFR Part 430, Energy Conservation Program for Consumer Products: Test Procedures and Certification and Enforcement Requirements for Plumbing Products; and Certification and Enforcement Requirements for Residential Appliances; Final Rule, March 1998. Online. Available:

 $http://www.regulations.gov/\#! documentDetail; D= {\sf EERE-2006-TP-0086-0003}.$ 

<sup>&</sup>lt;sup>424</sup> The U.S. Environmental Protection Agency (EPA) WaterSense Program has a thorough specification for showerheads that meet a maximum flow rate of 2.0 gpm. The specification is available on the EPA website at: www.epa.gov/WaterSense/partners/showerhead\_spec.html

Table D-21: Low-Flow Showerhead – Baseline and Efficiency Standards

| Measure             | New Showerhead<br>Flow Rate <sup>425</sup> (GPM) | Existing Showerhead<br>Baseline Flow Rate (GPM) |
|---------------------|--------------------------------------------------|-------------------------------------------------|
| 2.0 GPM showerhead  | 2.0                                              | 2.5                                             |
| 1.75 GPM showerhead | 1.75                                             | 2.5                                             |
| 1.5 GPM showerhead  | 1.5                                              | 2.5                                             |

The U.S. Environmental Protection Agency (EPA) WaterSense Program has implemented efficiency standards for showerheads requiring a maximum flow rate of 2.0 GPM<sup>426</sup>.

# D.2.3.3. Estimated Useful Life (EUL)

The average lifetime of this measure is 10 years, according to DEER 2014.

# D.2.3.1. Deemed Savings

Table D-22 through Table D-24 present the default savings for 1.5, 1.0, and 0.5 GPM aerators, respectively. The results are presented by facility type, with the "unknown" category being an average of the listed facility types. For the "unknown" facility type, the values are the average of all other facilities excluding Fitness Center; this facility is a high outlier in savings and the TPE has opted to exclude it from the "unknown" category due to the risk of this facility skewing results.

| Building Type                          | Hot Water<br>Reduction | kWh Savings | kW Savings |
|----------------------------------------|------------------------|-------------|------------|
| Hospital / Nursing home                | 232                    | 26.11       | 0.7844     |
| Hospitality                            | 326                    | 36.67       | 0.7345     |
| Commercial (General) - Employee Shower | 253                    | 28.46       | 2.2798     |
| Fitness Center                         | 5203                   | 584.96      | 46.8656    |
| Schools                                | 344                    | 38.72       | 1.9390     |
| Unknown                                | 288.75                 | 32.49       | 1.4642     |

Table D-22: Showerhead Deemed Savings – 2.0 GPM

<sup>&</sup>lt;sup>425</sup> All flow rate requirements listed here are the rated flow of the showerhead measured at 80 pounds per square inch of pressure (psi).

<sup>&</sup>lt;sup>426</sup> <u>http://www1.eere.energy.gov/femp/program/waterefficiency\_bmp7.html.</u>

| Building Type                          | Hot Water<br>Reduction | kWh Savings | kW Savings |
|----------------------------------------|------------------------|-------------|------------|
| Hospital / Nursing home                | 348                    | 39.16       | 1.1766     |
| Hospitality                            | 489                    | 55.01       | 1.1017     |
| Commercial (General) - Employee Shower | 380                    | 42.68       | 3.4197     |
| Fitness Center                         | 7,804                  | 877.44      | 70.2984    |
| Schools                                | 517                    | 58.09       | 2.9085     |
| Unknown                                | 433.5                  | 48.73       | 2.1963     |

Table D-23: Showerhead Deemed Savings – 1.75 GPM

Table D-24: Showerhead Deemed Savings – 1.5 GPM

| Building Type                          | Hot Water<br>Reduction | kWh Savings | kW Savings |
|----------------------------------------|------------------------|-------------|------------|
| Hospital / Nursing home                | 464                    | 52.22       | 1.5688     |
| Hospitality                            | 652                    | 73.34       | 1.4690     |
| Commercial (General) - Employee Shower | 506                    | 56.91       | 4.5596     |
| Fitness Center                         | 10,405                 | 1169.93     | 93.7312    |
| Schools                                | 689                    | 77.45       | 3.8780     |
| Unknown                                | 577.75                 | 64.98       | 2.9284     |

# D.2.3.2. Calculation of Deemed Savings

Energy and demand savings are estimated as functions of the reduction in daily water use ( $\Delta V$ ) attributable to installation of low flow showerheads in a given commercial building type. Reduction in water use and deemed savings calculations make use of the data provided by building type in Table D-25 and the New Orleans average water main temperature, 74.8.

Table D-25: Showers per Day (per Showerhead) and Days of Operation by Building

| Building Type         | Showers/<br>Day | Days/Year |
|-----------------------|-----------------|-----------|
| Hospital/Nursing home | 0.89            | 365       |
| Hospitality           | 1.25            | 365       |
| Commercial            | 0.97            | 250       |
| Fitness Center        | 19.94           | 365       |
| School                | 1.32            | 200       |

Туре

# D.2.3.3. Estimated Hot Water Usage Reduction

Reduction in annual hot water usage is estimated based on the typical duration of a shower and the expected number of showers per year for an installed showerhead in a given facility.

Reduction in daily hot water consumption is estimated on a per-showerhead basis using the following formula:

$$\Delta V = U \times N \times (Q_B - Q_P) \times F_{HW}$$

Where:

 $\Delta V$  = Reduction in daily hot water use in gallons per day (GPD)

U = Typical shower duration of 7.8 (minutes/shower)

N = Number of showers per day (per showerhead); (N) is a function of the commercial building type, values for N are provided in Table D-27.

 $Q_B$  = Baseline showerhead flow rate, 2.5 GPM

 $Q_P$  = Flow rate of installed showerhead (in GPM)

 $F_{HW}$  = Hot Water Fraction (share of water flowing through showerhead from the water heater, %)

The fraction of hot water is a function of the inlet water temperature ( $T_{supply}$ ) the temperature of water from the hot water heater ( $T_{HW}$  = 120 °F), and the desired temperature at the showerhead ( $T_{mixed}$  = 105 °F).

Reduction in daily hot water usage is provided for reference in Table D-26.

Table D-26: Reduction in Daily Hot Water Usage,  $\Delta V$  (GPD)

|                                         | Building Type              |             |                                                 |                |         |
|-----------------------------------------|----------------------------|-------------|-------------------------------------------------|----------------|---------|
| Flow Rate of<br>installed<br>showerhead | Hospital /<br>Nursing home | Hospitality | Commercial<br>(General) -<br>Employee<br>Shower | Fitness Center | Schools |
| 2.0 GPM                                 | 232                        | 326         | 253                                             | 5,203          | 344     |
| 1.75 GPM                                | 348                        | 489         | 380                                             | 7,804          | 517     |
| 1.5 GPM                                 | 464                        | 652         | 506                                             | 10,405         | 689     |

#### D.2.3.3.1. Energy Savings

The deemed energy savings are calculated as follows:

$$kWh_{savings} = \frac{\rho \times C_P \times \Delta V \times (T_{HW} - T_{Supply}) \times (\frac{1}{E_t})}{Conversion Factor}$$

Where:

 $\rho$  = Water density = 8.33 lb/gallon

 $C_P$  = Specific heat of water = 1 Btu/lb·°F

 $\Delta V$  = gallons of hot water saved per day (GPD, calculated above identified in Table D-26)

 $T_{HW}$  = Temperature to which water is heated in the water heater, 120°F

 $T_{Supply}$  = Average inlet water temperature (water mains temperature), 74.8.

 $E_t$  = Thermal efficiency of water heater (or in the case of heat pump water heaters, COP); if unknown, use 0.98 as a default for electric resistance water heaters, 2.2 for heat pump water heaters<sup>427</sup>

*Conversion Factor* = 3,412 Btu/kWh for electric water heating or 100,000 Btu/therm for gas water heating

#### D.2.3.3.2. Demand Savings

The deemed demand savings are calculated as follows:

$$kW_{reduction} = \frac{\rho \times C_P \times \Delta V \times (T_{HW} - T_{Supply}) \times (\frac{1}{E_t})}{Conversion \ Factor} \ x \ P$$

Where:

All inputs are the same as described in the Energy Savings Equation and

P = electric peak coincidence factors, as provided for each building type in Table D-27.<sup>428</sup>

#### D.2.3.3.3. Parameters for Annual Energy and Peak Demand Savings Calculations

<sup>&</sup>lt;sup>427</sup> Default values based on median recovery efficiency of commercial water heaters by fuel type in the AHRI database as cited in previous iterations of the AR TRM. Online: available at <a href="http://cafs.ahrinet.org/gama\_cafs/sdpsearch/search.jsp?table=CWH">http://cafs.ahrinet.org/gama\_cafs/sdpsearch/search.jsp?table=CWH</a>.

<sup>&</sup>lt;sup>428</sup> For all building types except 24-Hour Fitness Centers, derived from *ASHRAE Handbook 2011. HVAC Applications*. American Society of Heating Refrigeration and Air Conditioning Engineers, Inc. (ASHRAE) 2011. ASHRAE, Inc., Atlanta, GA. The peak factor is the ratio of the gallons of hot water used during the peak times of 3pm to 6pm, to the total amount of hot water used during the day. 24-Hour Fitness Center is assigned the same value as Commercial.

| Parameter           | Description                                                                  | Value |
|---------------------|------------------------------------------------------------------------------|-------|
| U                   | Baseline shower duration <sup>429</sup> (min/shower)                         | 7.8   |
| Ν                   | Number of showers per day per showerhead <sup>430</sup>                      |       |
|                     | 1. Hospital, Nursing Home                                                    | 0.89  |
|                     | 2. Lodging                                                                   | 1.25  |
|                     | 3. Commercial                                                                | 0.97  |
|                     | 4. 24-Hour Fitness Center                                                    | 19.94 |
|                     | 5. Schools                                                                   | 1.32  |
| $Q_B$               | Average baseline flow rate of showerhead (GPM)                               | 2.5   |
| $Q_P$               | Flow rate of installed showerhead (GPM)                                      | ≤ 2.0 |
| $F_{HW}$            | Share of water flowing through showerhead coming from the                    |       |
|                     | water heater (%)                                                             | 66.9  |
| ρ                   | Density of water (lb./gal)                                                   | 8.33  |
| Ср                  | Heat capacity of water (Btu/lb <sup>o</sup> F)                               | 1     |
| $T_{HW}$            | Temperature to which water is heated by the water heater (°F) <sup>431</sup> | 120   |
| T <sub>supply</sub> | Average supply (cold) water temperature (PF)                                 | 74.8  |
| Et                  | Thermal Efficiency of hot water heater:                                      |       |
|                     | Conventional Electric Storage Water Heater                                   | 0.98  |
|                     | <ul> <li>Heat Pump Water Heater (COP)</li> </ul>                             | 2.2   |
|                     | Gas Storage Water Heater                                                     | 0.80  |
| Days/year           | Annual building type operating days for the applications: <sup>432</sup>     |       |
|                     | 1. Hospital, Nursing Home                                                    | 365   |
|                     | 2. Lodging                                                                   | 365   |
|                     | 3. Commercial                                                                | 250   |
|                     | 4. 24-Hour Fitness Center                                                    | 365   |
|                     | 5. School                                                                    | 200   |

Table D-27: Parameters for Annual Energy and Peak Demand Savings Calculations

<sup>&</sup>lt;sup>429</sup> Hendron, R., & Engebrech, C. 2010, "*Building America Research Benchmark Definition, Updated December* 2009, Technical Report NREL/TP-550-47246, January. National Renewable Energy Laboratory The average shower duration taken from Table 12, p. 20.

<sup>&</sup>lt;sup>430</sup> Primary source is Northwest Power and Conservation Council ProCost V2.3. The number of showers per day per showerhead is back-calculated for hospitals and nursing homes, lodging and commercial building types, coefficients from annual minutes per showerhead estimates. N = (Minutes/year) x (year/days) x (Shower/minutes) = Showers/day. For 24-hour fitness centers, minutes per year were taken from informal telephone survey of Fitness Centers in the Northwest, conducted by Northwest Power and Conservation Council Regional Technical Forum staff in June, 2013. The estimate for schools is derived from Water consumption from Planning and Management Consultants, Ltd., Aquacraft, Inc. and John Olaf Nelson, Water Resources Management. "*Commercial and Institutional End Uses of Water*," American Water Works Association Research Foundation, 2000.

| Parameter | Description                 | Value |
|-----------|-----------------------------|-------|
| Р         | Peak Factor: <sup>433</sup> | 0.03  |
|           | 1. Hospital, Nursing Home   | 0.02  |
|           | 2. Lodging                  | 0.08  |
|           | 3. Commercial               | 0.08  |
|           | 4. 24-Hour Fitness Center   | 0.05  |
|           | 5. School                   |       |

# D.2.3.4. Incremental Cost

Program-actual costs should be used where available. If not available, the incremental cost of a low flow showerhead is \$12.00<sup>434</sup>.

# D.2.3.1. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure was not implemented in Energy Smart programs. As a result, savings are calculated using ENERGY STAR default values. If this measure is added to Energy Smart programs, the evaluation should include a review of actual efficiency levels and costs of units purchased by New Orleans business and updates for applicable codes.

If there is significant participation, we recommend updating with actual participant loads. Further, a study of commercial DHW setpoints would be warranted.

<sup>&</sup>lt;sup>431</sup> ASHRAE Handbook 2011. HVAC Applications. American Society of Heating Refrigeration and Air Conditioning Engineers, Inc. (ASHRAE), Inc., Atlanta, GA.

<sup>&</sup>lt;sup>432</sup> All values except 24-Hour Fitness Center from Osman , S. & Koomey, J. Lawrence Berkeley National Laboratory 1995. *Technology Data Characterizing Water Heating in Commercial Buildings: Application to End-Use Forecasting.* December 1995. Value for 24-Hour Fitness Center based on observation.

<sup>&</sup>lt;sup>433</sup> Derived from *ASHRAE Handbook 2011. HVAC Applications*. American Society of Heating Refrigeration and Air Conditioning Engineers, Inc. (ASHRAE) 2011. ASHRAE, Inc., Atlanta, GA. The peak factor is the ratio of the gallons of hot water used during the peak times of 3 pm to 6pm, to the total amount of hot water used during the day.

<sup>&</sup>lt;sup>434</sup> Direct-install price per showerhead assumes cost of showerhead (Market research average of \$7 and assess and install time of \$5 (20min @ \$15/hr)

# D.2.4. Commercial Water Heater Pipe Insulation

# D.2.4.1. Measure Description

This measure consists of installing water heater pipe insulation exceeding the IECC mandated standard (0.5-inch of insulation that delivers an R-value of at least 3.7 per inch) over at least the first 8 feet of exposed pipe in small commercial settings. Water heaters plumbed with heat traps or automatic-circulating systems are not eligible to receive incentives for this measure.<sup>435</sup>

# D.2.4.2. Baseline and Efficiency Standards

Baseline insulation is R = 1.85 sq. ft. h °F/Btu, the mandated standard since IECC 2000.

# D.2.4.3. Estimated Useful Life (EUL)

The estimated useful life (EUL) of this measure is the remaining service life of the water heater. If unknown, use one-third of the life of an electric resistant water heater, rounded down. This is a measure life of 4 years.<sup>436</sup>

# D.2.4.4. Deemed Savings Values

The TPE assume three feet of R-3 insulation in providing an estimate of per-project savings. Program administrators are encouraged to incorporate facility-specific inputs when possible. Deemed savings are:

- 112 kWh;
- .0128 kW

# D.2.4.5. Calculation of Deemed Savings

# D.2.4.5.1. Energy Savings

$$kWh_{savings} = (U_{pre} - U_{post}) \times A \times (T_{Pipe} - T_{ambient}) \times \left(\frac{1}{E_t}\right) \times \frac{Hours_{Total}}{Conversion \ Factor}$$

Where:

 $U_{pre}$ = 1/(2.03<sup>437</sup>) = 0.49 BTU/h sq. ft. degree F  $U_{post}$ = 1/(2.03+ $R_{Insulation}$ )

<sup>&</sup>lt;sup>435</sup> A survey of several large online home-improvement retailers shows three general classes of commercially available pipe insulation: one around R-2.3 (typically 5/8" thick foam), another around R-3 (typically 1/2" thick rubber) and lastly high-end insulation in the R-6 to R-7 range (1" thick rubber).

<sup>&</sup>lt;sup>436</sup> To see water heater EUL, go to Section D.2.1.3.

<sup>&</sup>lt;sup>437</sup> 2.03 is the R-value representing the film coefficients between water and the inside of the pipe and between the surface and air. *Mark's Standard Handbook for Mechanical Engineers, 8th edition*.

 $R_{Insulation}$  = R-value of installed insulation

A = Surface area in square feet ( $\pi DL$ ) with L (length) and D pipe diameter in feet

 $T_{Pipe}(^{\circ}F) =$  Average temperature of the pipe. Default value = 90 °F (average temperature of pipe between water heater and the wall)

 $T_{ambient}(^{\circ}F) = 68.78^{\circ}F$  (New Orleans TMY3 average hourly temperature)

*Et* = Thermal efficiency (or in the case of heat pump water heaters, COP); if unknown, use 0.98 as a default for electric water heaters, 2.2 for a heat pump water heater.<sup>438</sup>

 $Hours_{Total} = 8,760 \text{ hr per year}^{439,440}$ 

*Conversion Factor* = 3,412 Btu/kWh for electric water heating or 100,000 Btu/Therm for gas water heating.

For example, deemed savings for water heater pipe insulation with an R-value of 3 installed on an electric water heater in New Orleans would be:

 $kWh_{savings} = (0.49 - 0.20) \times 2.1 \times (90 - 74.8) \times \left(\frac{1}{0.98}\right) \times \frac{8,760}{3,412} = 24.3 \ kWh/yr$ 

## D.2.4.5.2. Demand Savings

Peak demand savings for hot water heaters installed in conditioned space can be calculated using the following formula for electric demand savings:

$$kW_{reduction} = \left(U_{pre} - U_{post}\right) \times A \times \left(T_{Pipe} - T_{ambientMAX}\right) \times \left(\frac{1}{E_t}\right) \times \frac{1}{3,412 Btu/kWh}$$

Where:

 $U_{pre} = 1/(2.03) = 0.49 \text{ BTU/h sq. ft. degree F}$  $U_{post} = 1/(2.03 + R_{Insulation})$ 

 $R_{Insulation}$  = R-value of installed insulation

<sup>&</sup>lt;sup>438</sup> Default values based on median recovery efficiency of residential water heaters by fuel type in the AHRI database, at <u>https://www.ahridirectory.org/ahridirectory/pages/rwh/defaultSearch.aspx</u>

<sup>&</sup>lt;sup>439</sup> Ontario Energy's Measures and Assumptions for Demand Side Management (DSM) Planning www.ontarioenergyboard.ca/OEB/ Documents/EB-2008-0346/Navigant\_Appendix\_C\_substantiation\_sheet\_20090429.pdf

<sup>&</sup>lt;sup>440</sup> New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs Residential, Multi-Family, and Commercial/Industrial Measures

http://www3.dps.ny.gov/W/PSCWeb.nsf/96f0fec0b45a3c6485257688006a701a/06f2fee55575bd8a852576e4006f 9af7/\$FILE/TechManualNYRevised10-15-10.pdf

A = Surface area in square feet ( $\pi DL$ ) with L (length) and D pipe diameter in feet

 $T_{Pipe}(^{\circ}F)$  = Average temperature of the pipe. Default value = 90 °F (average temperature of pipe between water heater and the wall)

 $T_{ambientMAX}(^{\circ}F) =$ For water heaters installed in unconditioned basements, use an average ambient temperature of 68.78°F; for water heaters inside the thermal envelope, use an average ambient temperature of 78 °F

Et = Thermal efficiency (or in the case of heat pump water heaters, COP); if unknown, use 0.98 as a default for electric water heaters, 2.2 for a heat pump water heater.

# D.2.4.6. Incremental Cost

The incremental cost of a Water Heater Pipe Insulation is equal to the full installed cost. If the cost is unknown, use \$4.45 for  $\frac{3}{4}$ " pipe and \$4.15 for  $\frac{1}{2}$ " pipe per linear foot of insulation<sup>441</sup>.

# D.2.4.1. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure was not implemented in Energy Smart programs. As a result, savings are calculated using ENERGY STAR default values. If this measure is added to Energy Smart programs, the evaluation should include a review of actual efficiency levels and costs of units purchased by New Orleans businesses and updates for applicable codes.

<sup>&</sup>lt;sup>441</sup> Illinois TRM

#### D.3. HVAC

#### D.3.1. Packaged Terminal AC/HP (PTAC/PTHP) Equipment

#### D.3.1.1. Measure Description

This measure requires the installation of a PTAC or PTHP. AHRI Test Standard 310/380-2004 defines a PTAC or PTHP as "a wall sleeve and a separate non-encased combination of heating and cooling assemblies specified by the manufacturer and intended for mounting through the wall. It includes refrigeration components, separable outdoor louvers, forced ventilation, and heating availability by purchaser's choice of, at least, hot water, steam, or electrical resistance heat." These definitions are consistent with federal code (10 CFR Part 431.92).

PTAC/PTHP equipment is available in standard and non-standard sizes. Standard size refers to PTAC/PTHP equipment with wall sleeve dimensions having an external opening greater than or equal to 16 inches high or greater than or equal to 42 inches wide, and a cross-sectional area greater than or equal to 670 square inches. Non-standard size refers to PTAC/PTHP equipment with existing wall sleeve dimensions having an external wall opening of less than 16 inches high or less than 42 inches wide, and a cross-sectional area less than 670 square inches.

## D.3.1.2. Baseline and Efficiency Standards

The baseline for units that are used in new construction or are replaced on burnout is the current federal minimum standard,<sup>442</sup> which went into effect September 30, 2012 for standard sized units and September 30, 2010 for non-standard sized units (Table D-28).

<sup>&</sup>lt;sup>442</sup> 2010 U.S. Code: Title 42, Chapter 77, Subchapter III, Part A-1, Section 6313.

| Equipment Type | Size Category | Capacity (Btu/h) | Minimum Efficiency 443     |
|----------------|---------------|------------------|----------------------------|
|                |               | < 7,000          | EER = 11.7                 |
|                | Standard      | 7,000 – 15,000   | EER = 13.8 – (0.300 x CAP) |
| PTAC           |               | > 15,000         | EER = 9.3                  |
| 1 Inte         |               | < 7,000          | EER = 9.4                  |
|                | Non-Standard  | 7,000 – 15,000   | EER = 10.9 – (0.213 x CAP) |
|                |               | > 15,000         | EER = 7.7                  |
|                |               | < 7.000          | EER = 11.9                 |
|                | Standard      | < 7,000          | COP = 3.3                  |
|                |               | 7,000 – 15,000   | EER = 14.0 - (0.300 x CAP) |
|                |               |                  | COP = 3.7 – (0.052 x CAP)  |
|                |               | > 15 000         | EER = 9.5                  |
| PTHP           |               | > 15,000         | COP = 2.9                  |
|                |               | < 7,000          | EER = 9.3                  |
|                |               | < 7,000          | COP = 2.7                  |
|                | Non-Standard  | 7,000 – 15,000   | EER = 10.8 – (0.213 x CAP) |
|                | ivon-standard | 7,000 - 15,000   | COP = 2.9 – (0.026 x CAP)  |
|                |               | > 15,000         | EER = 7.6                  |
|                |               | × 13,000         | COP = 2.5                  |

Table D-28: PTAC/PTHP Equipment – Baseline Efficiency Levels

# D.3.1.3. Estimated Useful Life (EUL)

The estimated useful life of the measure is 10 years, in accordance with the DOE's Packaged Terminal Air Conditioners and Heat Pumps Energy Conservation Standard Technical Support Document.<sup>444</sup>

# D.3.1.4. Deemed Savings Values

For the deemed savings values, the TPE assume a Standard size category, and a capacity of 11,000 BTU (midpoint of the central size category) and a 12 EER/11 HSPF system.

<sup>&</sup>lt;sup>443</sup> "Cap" refers to cooling capacity in thousand Btu/h.

<sup>&</sup>lt;sup>444</sup> U.S. DOE, Technical Support Document: "*Packaged Terminal Air Conditioners and Heat Pumps*, *3.2.7 Equipment Lifetime*". <u>http://www1.eere.energy.gov/buildings/appliance\_standards/product.aspx/productid/45</u>.

| Building Type        | kWh | kW     |
|----------------------|-----|--------|
| Fast Food            | 311 | 0.102  |
| Grocery              | 200 | 0.118  |
| Health Clinic        | 260 | 0.111  |
| Large Office         | 194 | 0.110  |
| Lodging              | 274 | 0.101  |
| Full Menu Restaurant | 262 | 0.111  |
| Retail               | 418 | 0.115  |
| School               | 305 | 0.093  |
| Small Office         | 270 | 0.110  |
| University           | 198 | 0.110  |
| Unknown              | 269 | 0.1082 |

Table D-29: Deemed Savings by Building Type - PTAC

Table D-30: Deemed Savings by Building Type - PTHP

| Building Type        | kWh | kW    |
|----------------------|-----|-------|
| Fast Food            | 293 | 0.087 |
| Grocery              | 186 | 0.100 |
| Health Clinic        | 234 | 0.095 |
| Large Office         | 206 | 0.094 |
| Lodging              | 276 | 0.086 |
| Full Menu Restaurant | 240 | 0.095 |
| Retail               | 409 | 0.098 |
| School               | 274 | 0.079 |
| Small Office         | 256 | 0.094 |
| University           | 231 | 0.094 |
| Unknown              | 257 | 0.920 |

# D.3.1.5. Calculation of Deemed Savings

Deemed peak demand and annual energy savings for PTAC/PTHP equipment should be calculated using the following formulas:

$$kW_{Savings} = CAP_{C} \times \frac{1 \ kW}{1,000 \ W} \times \left(\frac{1}{\eta_{base}} - \frac{1}{\eta_{post}}\right) \times CF$$
$$kWh_{Savings,PTAC} = CAP_{C} \times \frac{1 \ kW}{1,000 \ W} \times EFLH_{C} \times \left(\frac{1}{\eta_{base}} - \frac{1}{\eta_{post}}\right)$$
$$kWh_{Savings,PTHP,C} = CAP_{C} \times \frac{1 \ kW}{1,000 \ W} \times EFLH_{C} \times \left(\frac{1}{\eta_{base,C}} - \frac{1}{\eta_{post,C}}\right)$$

$$kWh_{Savings,PTHP,H} = CAP_{H} \times \frac{1 \ kWh}{3,412 \ \text{BTU}} \times EFLH_{H} \times \left(\frac{1}{\eta_{base,H}} - \frac{1}{\eta_{post,H}}\right)$$

Where,

 $CAP_{c}$  = Rated equipment cooling capacity of the new unit (BTU/hr.)

 $CAP_{H}$  = Rated equipment heating capacity of the new unit (BTU/hr.)

 $\eta base$ , = Baseline energy efficiency rating of the baseline cooling equipment (EER)

 $\eta post$ , = Nameplate energy efficiency rating of the installed cooling equipment (EER)

 $\eta post$ , = Nameplate energy efficiency rating of the installed heating equipment (COP)

Note: heating efficiencies expressed as a heating seasonal performance factor (HSPF) will need to be converted to a coefficient of performance (COP) using the following equation:

$$COP = HSPF \div 3.412$$

*3,412* = Constant to convert from BTU/hr. to kWh

CF= Coincidence factor (Table D-32)

 $EFLH_c$  = Equivalent full-load hours for cooling (Table D-31)

 $EFLH_h$  = Equivalent full-load hours for heating (Table D-31)

| Building Type        | <b>EFLH</b> c | EFLH <sub>H</sub> |
|----------------------|---------------|-------------------|
| Fast Food            | 2,375         | 272               |
| Grocery              | 1,526         | 153               |
| Health Clinic        | 1,989         | 115               |
| Large Office         | 1,483         | 392               |
| Lodging              | 2,095         | 409               |
| Full Menu Restaurant | 1,997         | 166               |
| Retail               | 3,191         | 513               |
| School               | 2,329         | 140               |
| Small Office         | 2,060         | 255               |
| University           | 1,510         | 604               |

Table D-31: Equivalent Full-Load Hours by Building Type

| Building Type        | Coincidence Factor |
|----------------------|--------------------|
| Fast Food            | 0.78               |
| Grocery              | 0.90               |
| Health Clinic        | 0.85               |
| Large Office         | 0.84               |
| Lodging              | 0.77               |
| Full Menu Restaurant | 0.85               |
| Retail               | 0.88               |
| School               | 0.71               |
| Small Office         | 0.84               |
| College              | 0.84               |

Table D-32: Commercial Coincidence Factors by Building Type<sup>445</sup>

# D.3.1.6. Incremental Cost

The incremental cost for this equipment is \$84/ton<sup>446</sup>. The average tonnage is assumed to be .92 if unknown, resulting in an incremental cost of \$77.

# D.3.1.7. Future Studies

Though eligible for Energy Smart, this measure has had little-to-no participation. Until such time as participation produces a minimum of 500,000 kWh in a program year, it is recommended that updates be limited to those needed to reflect code changes.

If this threshold is met, we recommend focusing M&V to update EFLH estimates.

<sup>&</sup>lt;sup>445</sup> Values for Assembly and Religious Worship building types developed using an adjustment factor derived through a comparison of average CFs for College/University and Assembly/Religious Worship building types from the Texas state Technical Reference Manual. College/University was selected as a reference building type due to average alignment with Assembly/Religious worship building types in other TRMs, inclusion of a summer session, and increased evening usage.

<sup>&</sup>lt;sup>446</sup> DEER 2014.

# D.3.2. Unitary and Split System AC/HP Equipment

## D.3.2.1. Measure Description

This measure requires the installation of packaged or split system air conditioners (AC) or heat pumps (HP), excluding PTACs/PTHPs. Unitary or split system ACs/HPs consist of one or more factory-made assemblies that normally include an evaporator or cooling coil(s), compressor(s), and condenser(s). They provide the function of air cooling, and may include the functions of air heating, air circulation, air cleaning, dehumidifying, or humidifying.

# D.3.2.2. Baseline and Efficiency Standards

The baseline for units that are used in new construction or are replaced on burnout is the current federal minimum standard,<sup>447</sup> which went into effect January 1, 2010 (Table D-33).

As of January 1, 2015, split system heat pumps < 65,000 Btu/h must comply with 10 CFR 430.32(c)(3) for Residential Central Air Conditioners and Heat Pumps. Split systems are not explicitly covered by originally specified federal standard 10 CFR 431.97 for Commercial package air condition and heating equipment. Split system air conditioners are not affected because the existing SEER and HSPF values remain unchanged.

| Equipment Type        | Capacity<br>(Btu/h) | Heating Section<br>Type | Sub-Category          | Minimum<br>Efficiency |
|-----------------------|---------------------|-------------------------|-----------------------|-----------------------|
|                       |                     | All                     | Split System & Single | 11.2 EER              |
|                       | < 65,000            | All                     | Package               | 13.0 SEER             |
|                       | ≥ 65,000 &          | Electric Resistance (or | Split System & Single | 11.2 EER              |
|                       | <135,000            | none)                   | Package               | 11.4 IEER             |
|                       | ≥ 65,000 &          | All other               | Split System & Single | 11.0 EER              |
|                       | <135,000            | All other               | Package               | 11.2 IEER             |
|                       | ≥ 135,000 &         | Electric Resistance (or | Split System & Single | 11.0 EER              |
| Air Conditioners, Air | <240,000            | none)                   | Package               | 11.2 IEER             |
| Cooled                | ≥ 135,000 &         | All other               | Split System & Single | 10.8 EER              |
|                       | <240,000            | All other               | Package               | 11.0 SEER             |
|                       | ≥ 240,000 &         | Electric Resistance (or | Split System & Single | 10.0 EER              |
|                       | <760,000            | none)                   | Package               | 10.1 IEER             |
|                       | ≥ 240,000 &         | All other               | Split System & Single | 9.8 EER               |
|                       | <760,000            | All other               | Package               | 9.9 IEER              |
|                       | ≥ 760,000           | Electric Resistance (or | Split System & Single | 9.7 EER               |
|                       | ≥ 700,000           | none)                   | Package               | 9.8 SEER              |

Table D-33: Unitary AC/HP Equipment – Baseline Efficiency Levels<sup>448</sup>

<sup>&</sup>lt;sup>447</sup> 2010 U.S. Code: Title 42, Chapter 77, Subchapter III, Part A-1, Section 6313.

<sup>&</sup>lt;sup>448</sup> IECC 2012, Table C403.2.3(1) & C403.2.3(2); full-load efficiencies consistent with ASHRAE 90.1-2010, Table 6.8.1A & 6.8.1B and compliant with the federal standard.

|                          | > 760 000              | All other                        | Split System & Single            | 9.5 EER                 |
|--------------------------|------------------------|----------------------------------|----------------------------------|-------------------------|
|                          | ≥ 760,000              | All other                        | Package                          | 9.6 IEER                |
|                          |                        | A 11                             | Split System & Single            | 12.1 EER                |
|                          | < 65,000               | All                              | Package                          | 12.3 IEER               |
|                          | ≥ 65,000 &             | Electric Resistance (or          | Split System & Single            | 11.5 EER                |
|                          | <135,000               | none)                            | Package                          | 11.7 IEER               |
|                          | ≥ 65,000 &             |                                  | Split System & Single            | 11.3 EER                |
| Air Conditioners,        | <135,000               | All other                        | Package                          | 11.5 IEER               |
| Water and                | ≥ 135,000 &            | Electric Resistance (or          | Split System & Single            | 11.0 EER                |
| Evaporatively            | <240,000               | none)                            | Package                          | 11.2 IEER               |
| Cooled <sup>351</sup>    | ≥ 135,000 &            |                                  | Split System & Single            | 10.8 EER                |
|                          | <240,000               | All other                        | Package                          | 11.0 IEER               |
|                          | > 240.000              | Electric Resistance (or          | Split System & Single            | 11.0 EER                |
|                          | ≥ 240,000              | none)                            | Package                          | 11.1 IEER               |
|                          | > 240.000              |                                  | Split System & Single            | 10.8 EER                |
|                          | ≥ 240,000              | All other                        | Package                          | 10.9 SEER               |
|                          |                        |                                  |                                  | 11.2 EER <sup>352</sup> |
|                          |                        |                                  | Single Package                   | 13.0 SEER               |
|                          |                        |                                  | Single Deckage (hefere           | 11.2 EER <sup>353</sup> |
|                          | < 65,000               | All                              | Single Package (before 1/1/2015) |                         |
|                          |                        |                                  |                                  | 13.0 SEER               |
|                          |                        |                                  | Single Package (after            | 11.8 EER <sup>355</sup> |
|                          |                        |                                  | 1/1/2015) <sup>354</sup>         | 14.0 SEER               |
|                          | ≥65,000 &<br><135,000  | Electric Resistance (or none)    | Split System & Single<br>Package | 11.0 EER                |
|                          |                        |                                  |                                  | 11.2 IEER               |
|                          | ≥65,000 &<br><135,000  | All other                        | Split System & Single<br>Package | 10.8 EER                |
| Heat Pumps, Air          |                        |                                  |                                  | 11.0 IEER               |
| Cooled (Cooling<br>Mode) | ≥135,000 &<br><240,000 | Electric Resistance (or none)    | Split System & Single<br>Package | 10.6 EER                |
|                          | <240,000               | none)                            | Fackage                          | 10.7 IEER               |
|                          | ≥135,000 &<br><240,000 | All other                        | Split System & Single<br>Package | 10.4 EER                |
|                          | ~2+0,000               |                                  | Гискирс                          | 10.5 IEER               |
|                          | ≥240,000               | Electric Resistance (or<br>none) | Split System & Single<br>Package | 9.5 EER                 |
|                          |                        |                                  | rackage                          | 9.6 IEER                |
|                          |                        |                                  |                                  |                         |
|                          | ≥240,000               | All other                        | Split System & Single<br>Package | 9.3 EER                 |
|                          |                        |                                  |                                  | 9.4 IEER                |

| Heat Pumps, Air<br>Cooled (Heating<br>Mode) ≥65,000 &<br><135,000 ≥135,000 |          | N/A                                               | Single Package                      | 7.7 HSPF |
|----------------------------------------------------------------------------|----------|---------------------------------------------------|-------------------------------------|----------|
|                                                                            | <65,000  |                                                   | Single Package (before<br>1/1/2015) | 7.7 HSPF |
|                                                                            |          | Single Package (after<br>1/1/2015) <sup>356</sup> | 8.2 HSPF                            |          |
|                                                                            |          | N/A                                               | Split System & Single<br>Package    | 3.3 COP  |
|                                                                            | ≥135,000 | N/A                                               | Split System & Single<br>Package    | 3.2 COP  |

# D.3.2.3. Estimated Useful Life (EUL)

According to the DEER 2014, the EUL for this measure is 15 years.

# D.3.2.1. Deemed Savings Values

This measure has significant variability in equipment capacity and thus a per-unit savings value is not likely to be usable by program administrators. Due to this we present savings in a per-ton basis, assuming 15 SEER, 12.5 EER, and 9.0 HSPF (where applicable.

| Building Type        | kWh/Ton | kW/Ton |
|----------------------|---------|--------|
| Fast Food            | 645     | 0.2117 |
| Grocery              | 414     | 0.2443 |
| Health Clinic        | 540     | 0.2307 |
| Large Office         | 403     | 0.2280 |
| Lodging              | 569     | 0.2090 |
| Full Menu Restaurant | 542     | 0.2307 |
| Retail               | 866     | 0.2389 |
| School               | 632     | 0.1927 |
| Small Office         | 559     | 0.2280 |
| University           | 410     | 0.2280 |
| Unknown              | 558     | 0.2242 |

Table D-34: Deemed Savings by Building Type - AC

| Building Type        | kWh/Ton | kW/Ton |
|----------------------|---------|--------|
| Fast Food            | 680     | 0.2117 |
| Grocery              | 434     | 0.2443 |
| Health Clinic        | 555     | 0.2307 |
| Large Office         | 454     | 0.2280 |
| Lodging              | 622     | 0.2090 |
| Full Menu Restaurant | 564     | 0.2307 |
| Retail               | 933     | 0.2389 |
| School               | 650     | 0.1927 |
| Small Office         | 592     | 0.2280 |
| University           | 488     | 0.2280 |
| Unknown              | 597     | 0.2242 |

Table D-35: Deemed Savings by Building Type – Heat Pump

## D.3.2.2. Calculated Deemed Savings

Deemed peak demand and annual energy savings for unitary AC and HP equipment should be calculated as shown below. Note that these savings calculations are different depending on whether the measure is replace-on-burnout or early retirement.

$$kW_{Savings} = CAP \times \frac{1 \ kW}{1,000 \ W} \times \left(\frac{1}{\eta_{base}} - \frac{1}{\eta_{post}}\right) \times CF$$
$$kWh_{Savings,AC} = CAP \times \frac{1 \ kW}{1,000 \ W} \times EFLH_C \times \left(\frac{1}{\eta_{base}} - \frac{1}{\eta_{post}}\right)$$
$$kWh_{Savings,HP} = CAP \times \frac{1 \ kW}{1,000 \ W} \times \left[\left(\frac{EFLH_C}{\eta_{base,AC}} + \frac{EFLH_H}{\eta_{base,HP}}\right) - \left(\frac{EFLH_C}{\eta_{post,AC}} + \frac{EFLH_H}{\eta_{post,HP}}\right)\right]$$

Where,

*CAP* = Rated equipment cooling capacity of the new unit (BTU/hr)

 $\eta_{base,AC/HP}$  = Baseline energy efficiency rating of the cooling/heating equipment (Table D-33)

 $\eta_{post,AC/HP}$  = Nameplate energy efficiency rating of the installed cooling/heating equipment

Note: Use EER for kW savings calculations and SEER/IEER and HSPF for kWh savings calculations.

CF = Coincidence factor (

Table D-37)

EFLH<sub>c</sub> = Equivalent full-load hours for cooling (Table D-36)

 $EFLH_h = Equivalent full-load hours for heating (Table D-36)$ 

| Building Type        | <b>EFLH</b> c | EFLHH |
|----------------------|---------------|-------|
| Fast Food            | 2,375         | 272   |
| Grocery              | 1,526         | 153   |
| Health Clinic        | 1,989         | 115   |
| Large Office         | 1,483         | 392   |
| Lodging              | 2,095         | 409   |
| Full Menu Restaurant | 1,997         | 166   |
| Retail               | 3,191         | 513   |
| School               | 2,329         | 140   |
| Small Office         | 2,060         | 255   |
| University           | 1,510         | 604   |

Table D-36: Equivalent Full-Load Hours by building type

Table D-37: Commercial Coincidence Factors by Building Type<sup>449</sup>

| Building Type        | Coincidence Factor |
|----------------------|--------------------|
| Fast Food            | 0.78               |
| Grocery              | 0.90               |
| Health Clinic        | 0.85               |
| Large Office         | 0.84               |
| Lodging              | 0.77               |
| Full Menu Restaurant | 0.85               |
| Retail               | 0.88               |
| School               | 0.71               |
| Small Office         | 0.84               |
| College              | 0.84               |

# D.3.2.3. Incremental Cost

Incremental cost is detailed in Table D-38 below.

<sup>&</sup>lt;sup>449</sup> Values for Assembly and Religious Worship building types developed using an adjustment factor derived through a comparison of average CFs for College/University and Assembly/Religious Worship building types from the Texas state Technical Reference Manual. College/University was selected as a reference building type due to average alignment with Assembly/Religious worship building types in other TRMs, inclusion of a summer session, and increased evening usage.

| Capacity                | Cost Per Ton per 1.0 SEER<br>above 14.0 |
|-------------------------|-----------------------------------------|
| 65,000 Btuh or less     | \$82                                    |
| 65,000 to 240,000 Btuh  | \$48                                    |
| 240,000 to 760,000 Btuh | \$180                                   |
| 760,000 Btuh or more    | \$181                                   |

| Table D-38: Unitary AC Incremental Cost | Table D-38 | Unitary AC | Incremental Cost |
|-----------------------------------------|------------|------------|------------------|
|-----------------------------------------|------------|------------|------------------|

# D.3.2.1. Future Studies

Though eligible for Energy Smart, this measure has had little-to-no participation. Until such time as participation produces a minimum of 500,000 kWh in a program year, it is recommended that updates be limited to those needed to reflect code changes.

If this threshold is met, we recommend focusing M&V to update EFLH estimates.

## D.3.3. Air- and Water-Cooled Chillers

# D.3.3.1. Measure Description

This measure requires the installation of any air-cooled or water-cooled chilling package, referred to as a chiller. AHRI Test Standard 550/590-2003 defines a water-chilling package as "a factory-made and prefabricated assembly of one or more compressor, condensers, and evaporators, with interconnections and accessories, designed for the purpose of cooling water. It is a machine specifically designed to make use of a vapor compression refrigeration cycle to remove heat from water and reject the heat to a cooling medium, usually air or water."

The most common applications are for larger cooling loads (e.g., 50 to 100 tons and greater). Chiller types include centrifugal, rotary, screw, scroll, reciprocating, and gas absorption. Absorption chillers are subject to a different AHRI test standard and not reviewed as part of this analysis. When a water-cooled chiller is replacing an air-cooled chiller, the additional auxiliary electrical loads for the condenser water pump and the cooling tower fan have to be considered. Thus, a penalty factor is necessary as a downward adjustment to account for the peak demand and energy savings.

To qualify, the chiller must serve an HVAC load. Chillers used as part of industrial processes require custom analysis.

# D.3.3.2. Baseline and Efficiency Standards

The baseline for units that are used in new construction or are replaced on burnout is the current state minimum standard<sup>450</sup> (Table D-39). Two different paths are proposed by IECC 2009. Path A involves installing a chiller that optimizes demand savings (optimizes EER) whereas Path B involves optimizing total energy savings (optimizes IPLV). If the design path is unknown, use Path A efficiencies or deemed savings values.

<sup>450</sup> IECC 2009

Air- & Water-Cooled Chillers

|                                                        |                 |                           | Pat              | h A             | Pat              | h B             |
|--------------------------------------------------------|-----------------|---------------------------|------------------|-----------------|------------------|-----------------|
| Equipment<br>Type                                      | Chiller Type    | Capacity (Tons)           | IPLV<br>(kW/TON) | EER<br>(kW/Ton) | IPLV<br>(kW/TON) | EER<br>(kW/Ton) |
| Air Cooled                                             | All             | <150                      | 0.960            | 1.255           | 0.960            | 1.255           |
| All Cooled                                             | All             | <u>&gt;</u> 150           | 0.941            | 1.255           | 0.941            | 1.255           |
|                                                        |                 | < 75                      | 0.630            | 0.780           | 0.600            | 0.800           |
| Rotary/<br>Water Cooled Screw/Scroll/<br>Reciprocating | ,,              | <u>&gt;</u> 75 and < 150  | 0.615            | 0.775           | 0.586            | 0.790           |
|                                                        |                 | <u>&gt;</u> 150 and < 300 | 0.580            | 0.680           | 0.540            | 0.718           |
|                                                        | <u>&gt;</u> 300 | 0.540                     | 0.620            | 0.490           | 0.639            |                 |
|                                                        |                 |                           | 0.596            | 0.634           | 0.450            | 0.639           |
| Water Cooled                                           | Centrifugal     | <u>&gt;</u> 300 and < 600 | 0.549            | 0.576           | 0.400            | 0.600           |
|                                                        |                 | <u>&gt;</u> 600           | 0.539            | 0.570           | 0.400            | 0.590           |

Table D-39: Chillers – Baseline Efficiency Levels for Chilled Water Packages<sup>451</sup>

# D.3.3.3. Estimated Useful Life (EUL)

For high-efficiency chillers, according to the DEER 2014, the estimated useful life (EUL) is 20 years.

# D.3.3.4. Deemed Savings Values

This measure has significant variability in equipment capacity and thus a per-unit savings value is not likely to be usable by program administrators. Due to this we present savings in a per-ton basis, assuming IECC 2009 efficiencies are the baseline, and the proposed efficiencies are 10% better than the federal minimum EER and IPLV values<sup>452,453</sup>.

<sup>&</sup>lt;sup>451</sup> The values in the table reflect IECC 2009, Table 503.2.3(7).

<sup>&</sup>lt;sup>452</sup> https://www.energy.gov/eere/femp/purchasing-energy-efficient-air-cooled-electric-chillers

<sup>&</sup>lt;sup>453</sup> https://www.energy.gov/eere/femp/purchasing-energy-efficient-water-cooled-electric-chillers

|                      | <b>O</b> om o oith a | Pat                 | h A                | Path                | В                  |
|----------------------|----------------------|---------------------|--------------------|---------------------|--------------------|
| Building Type        | Capacity<br>(Tons)   | Energy<br>(kWh/Ton) | Demand<br>(kW/Ton) | Energy<br>(kWh/Ton) | Demand<br>(kW/Ton) |
| Fast Food            | <150                 | 408                 | 0.169              | 658                 | 0.110              |
| Fast Food            | > 150                | 403                 | 0.177              | 642                 | 0.110              |
| Crocony              | <150                 | 262                 | 0.195              | 423                 | 0.127              |
| Grocery              | > 150                | 259                 | 0.204              | 413                 | 0.127              |
| Health Clinic        | <150                 | 341                 | 0.184              | 551                 | 0.120              |
| Health Cillic        | > 150                | 338                 | 0.192              | 538                 | 0.120              |
| Large Office         | <150                 | 255                 | 0.182              | 411                 | 0.119              |
| Large Office         | > 150                | 252                 | 0.190              | 401                 | 0.119              |
| Lodging              | <150                 | 360                 | 0.167              | 580                 | 0.109              |
| Lodging              | > 150                | 356                 | 0.174              | 566                 | 0.109              |
| Full Menu Restaurant | <150                 | 343                 | 0.184              | 553                 | 0.120              |
|                      | > 150                | 339                 | 0.192              | 540                 | 0.120              |
| Retail               | <150                 | 548                 | 0.191              | 884                 | 0.125              |
| Ketali               | > 150                | 542                 | 0.199              | 863                 | 0.125              |
| School               | <150                 | 400                 | 0.154              | 645                 | 0.101              |
| School               | > 150                | 395                 | 0.161              | 630                 | 0.101              |
| Small Office         | <150                 | 354                 | 0.182              | 570                 | 0.119              |
| Sinai Office         | > 150                | 350                 | 0.190              | 557                 | 0.119              |
| University           | <150                 | 259                 | 0.182              | 418                 | 0.119              |
| Oniversity           | > 150                | 256                 | 0.190              | 408                 | 0.119              |

Table D-40: Deemed Savings – Air-Cooled Chillers

|                       |                 | Path A              |                    | Path B              |                    |
|-----------------------|-----------------|---------------------|--------------------|---------------------|--------------------|
| Building Type         | Capacity (Tons) | Energy<br>(kWh/Ton) | Demand<br>(kW/Ton) | Energy<br>(kWh/Ton) | Demand<br>(kW/Ton) |
|                       | < 75            | 214                 | 0.092              | 356                 | 0.076              |
| <b>-</b> . <b>-</b> . | > 75 and < 150  | 264                 | 0.099              | 344                 | 0.090              |
| Fast Food             | > 150 and < 300 | 223                 | 0.073              | 342                 | 0.083              |
|                       | > 300           | 192                 | 0.073              | 319                 | 0.060              |
|                       | < 75            | 137                 | 0.106              | 229                 | 0.088              |
|                       | > 75 and < 150  | 169                 | 0.114              | 221                 | 0.104              |
| Grocery               | > 150 and < 300 | 143                 | 0.085              | 220                 | 0.095              |
|                       | > 300           | 124                 | 0.084              | 205                 | 0.069              |
|                       | < 75            | 179                 | 0.100              | 298                 | 0.083              |
|                       | > 75 and < 150  | 221                 | 0.108              | 288                 | 0.098              |
| Health Clinic         | > 150 and < 300 | 187                 | 0.080              | 286                 | 0.090              |
|                       | > 300           | 161                 | 0.079              | 268                 | 0.065              |
|                       | < 75            | 133                 | 0.099              | 200                 | 0.082              |
|                       | > 75 and < 150  | 165                 | 0.107              | 215                 | 0.097              |
| Large Office          | > 150 and < 300 | 139                 | 0.079              | 213                 | 0.089              |
|                       | > 300           | 120                 | 0.079              | 199                 | 0.064              |
|                       | < 75            | 189                 | 0.091              | 314                 | 0.075              |
|                       | > 75 and < 150  | 233                 | 0.091              | 304                 | 0.089              |
| Lodging               | > 150 and < 300 | 197                 | 0.072              | 302                 | 0.082              |
|                       | > 300           | 170                 | 0.072              | 282                 | 0.059              |
|                       | < 75            | 180                 | 0.100              | 300                 | 0.083              |
|                       | > 75 and < 150  | 222                 | 0.108              | 290                 | 0.098              |
| Full Menu Restaurant  | > 150 and < 300 | 188                 | 0.080              | 288                 | 0.090              |
|                       | > 300           | 162                 | 0.079              | 269                 | 0.065              |
|                       | < 75            | 287                 | 0.103              | 479                 | 0.086              |
|                       | > 75 and < 150  | 354                 | 0.112              | 463                 | 0.101              |
| Retail                | > 150 and < 300 | 300                 | 0.083              | 460                 | 0.093              |
|                       | > 300           | 258                 | 0.082              | 429                 | 0.067              |
|                       | < 75            | 210                 | 0.083              | 349                 | 0.070              |
|                       | > 75 and < 150  | 259                 | 0.090              | 338                 | 0.082              |
| School                | > 150 and < 300 | 219                 | 0.067              | 335                 | 0.075              |
| Ī                     | > 300           | 189                 | 0.066              | 313                 | 0.054              |
|                       | < 75            | 185                 | 0.099              | 309                 | 0.082              |
|                       | > 75 and < 150  | 229                 | 0.107              | 299                 | 0.097              |
| Small Office          | > 150 and < 300 | 194                 | 0.079              | 297                 | 0.089              |
|                       | > 300           | 167                 | 0.079              | 277                 | 0.064              |
|                       | < 75            | 136                 | 0.099              | 227                 | 0.082              |
|                       | > 75 and < 150  | 168                 | 0.107              | 219                 | 0.097              |
| University            | > 150 and < 300 | 142                 | 0.079              | 217                 | 0.089              |
|                       | > 300           | 122                 | 0.079              | 203                 | 0.064              |

Table D-41: Deemed Savings – Water-Cooled Chillers – Positive Displacement<sup>454</sup>

<sup>454</sup> Rotary/Screw/Scroll/Reciprocating

|                      |                 | Patl                | hΑ                 | Pat                 | h B                |
|----------------------|-----------------|---------------------|--------------------|---------------------|--------------------|
| Building Type        | САР             | Energy<br>(kWh/Ton) | Demand<br>(kW/Ton) | Energy<br>(kWh/Ton) | Demand<br>(kW/Ton) |
|                      | < 300           | 240                 | 0.066              | 171                 | 0.032              |
| Fast Food            | > 300 and < 600 | 214                 | 0.056              | 127                 | 0.054              |
|                      | > 600           | 211                 | 0.051              | 138                 | 0.050              |
|                      | < 300           | 154                 | 0.077              | 110                 | 0.036              |
| Grocery              | > 300 and < 600 | 137                 | 0.065              | 82                  | 0.062              |
|                      | > 600           | 136                 | 0.059              | 89                  | 0.057              |
|                      | < 300           | 201                 | 0.072              | 143                 | 0.034              |
| Health Clinic        | > 300 and < 600 | 179                 | 0.061              | 106                 | 0.059              |
|                      | > 600           | 177                 | 0.056              | 115                 | 0.054              |
|                      | < 300           | 150                 | 0.071              | 107                 | 0.034              |
| Large Office         | > 300 and < 600 | 133                 | 0.060              | 79                  | 0.058              |
|                      | > 600           | 132                 | 0.055              | 86                  | 0.053              |
|                      | < 300           | 212                 | 0.065              | 151                 | 0.031              |
| Lodging              | > 300 and < 600 | 189                 | 0.055              | 112                 | 0.053              |
|                      | > 600           | 186                 | 0.051              | 122                 | 0.049              |
|                      | < 300           | 202                 | 0.072              | 144                 | 0.034              |
| Full Menu Restaurant | > 300 and < 600 | 180                 | 0.061              | 107                 | 0.059              |
|                      | > 600           | 178                 | 0.056              | 116                 | 0.054              |
|                      | < 300           | 322                 | 0.075              | 230                 | 0.036              |
| Retail               | > 300 and < 600 | 287                 | 0.063              | 171                 | 0.061              |
|                      | > 600           | 284                 | 0.058              | 185                 | 0.056              |
|                      | < 300           | 235                 | 0.060              | 168                 | 0.029              |
| School               | > 300 and < 600 | 210                 | 0.051              | 125                 | 0.049              |
|                      | > 600           | 207                 | 0.047              | 135                 | 0.045              |
|                      | < 300           | 208                 | 0.071              | 148                 | 0.034              |
| Small Office         | > 300 and < 600 | 185                 | 0.060              | 110                 | 0.058              |
|                      | > 600           | 183                 | 0.055              | 119                 | 0.053              |
|                      | < 300           | 153                 | 0.071              | 109                 | 0.034              |
| University           | > 300 and < 600 | 136                 | 0.060              | 81                  | 0.058              |
|                      | > 600           | 134                 | 0.055              | 88                  | 0.053              |

Table D-42: Deemed Savings – Water-Cooled Chillers – Centrifugal

## D.3.3.5. Calculation of Deemed Savings

Deemed peak demand and annual energy savings for chillers should be calculated using the following formulas:

$$kW_{Savings} = CAP \times (\eta_{base} - \eta_{post}) \times CF$$
$$kWh_{savings} = CAP \times EFLH_C \times (\eta_{base} - \eta_{post})$$

Where:

Air- & Water-Cooled Chillers

*CAP* = Rated equipment cooling capacity of the new unit (Tons)

 $\eta_{base}$  = Baseline energy efficiency rating of the baseline cooling equipment (kW/ton or EER converted to kW/ton)

 $\eta_{post}$ = Nameplate energy efficiency rating of the installed cooling equipment (kW/ton)

Note: use full-load efficiency (in units of kW/ton) for kW savings calculations and IPLV (in units of kW/ton) for kWh savings calculations. Cooling efficiencies expressed as an EER will need to be converted to kW/ton using the following equation:

$$\frac{kW}{Ton} = \frac{12}{EER}$$

CF= Coincidence factor ()

 $EFLH_c$  = Equivalent full-load hours for cooling (Table D-43)

 $EFLH_h$  = Equivalent full-load hours for heating (Table D-44)

Table D-43: Equivalent Full-Load Hours by Building type

| Building Type        | <b>EFLH</b> c | EFLH <sub>H</sub> |
|----------------------|---------------|-------------------|
| Fast Food            | 2,375         | 272               |
| Grocery              | 1,526         | 153               |
| Health Clinic        | 1,989         | 115               |
| Large Office         | 1,483         | 392               |
| Lodging              | 2,095         | 409               |
| Full Menu Restaurant | 1,997         | 166               |
| Retail               | 3,191         | 513               |
| School               | 2,329         | 140               |
| Small Office         | 2,060         | 255               |
| University           | 1,510         | 604               |

| Building Type        | Coincidence Factor |
|----------------------|--------------------|
| Fast Food            | 0.78               |
| Grocery              | 0.90               |
| Health Clinic        | 0.85               |
| Large Office         | 0.84               |
| Lodging              | 0.77               |
| Full Menu Restaurant | 0.85               |
| Retail               | 0.88               |
| School               | 0.71               |
| Small Office         | 0.84               |
| College              | 0.84               |

## D.3.3.6. Incremental Cost

Incremental cost is detailed in Table D-45 below.

| Table D-45: Chiller Incremental | Cost |
|---------------------------------|------|
|---------------------------------|------|

| Equipment Type                 | Capacity             | Cost Per Ton             |
|--------------------------------|----------------------|--------------------------|
| Air-cooled                     | All capacities       | \$127/ton <sup>455</sup> |
| Water-cooled – reciprocating   | All capacities       | \$22/ton <sup>456</sup>  |
|                                | < 150 tons           | \$351/ton <sup>457</sup> |
| Water-cooled – rotary & scroll | >=150 and < 300 tons | \$127/ton                |
|                                | >= 300 tons          | \$87/ton                 |

# D.3.3.7. Future Studies

This is a low-volume, high-savings measure. The TPE recommends that chiller projects be flagged for IPMVP Option C or D analysis when they occur.

<sup>&</sup>lt;sup>455</sup> 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Cost Values and Summary Documentation", California Public Utilities Commission, December 16, 2008. Calculated as the simple average of screw and reciprocating air-cooled chiller incremental costs from DEER2008. This assumes that baseline shift from IECC 2012 to IECC 2015 carries the same incremental costs. Values should be verified during evaluation

<sup>&</sup>lt;sup>456</sup> 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Cost Values and Summary Documentation"

<sup>&</sup>lt;sup>457</sup> Incremental costs for water-cooled, positive displacement (rotary screw and scroll) from the W017 Itron California Measure Cost Study, accessed via http://www.energydataweb.com/cpuc/search.aspx. The data is provided in a file named "MCS Results Matrix – Volume I".

# D.3.4.1. Measure Description

This measure applies to central air conditioners and heat pumps. An AC tune-up, in general terms, involves checking, adjusting and resetting the equipment to factory conditions, such that it operates closer to the performance level of a new unit. For this measure, the service technician must complete the following tasks according to industry best practices:

- Inspect and clean condenser, evaporator coils, and blower.
- Inspect refrigerant level and adjust to manufacturer specifications.
- Measure the static pressure across the cooling coil to verify adequate system airflow and adjust to manufacturer specifications.
- Inspect, clean, or change air filters.
- Calibrate thermostat on/off setpoints based on building occupancy.
- Tighten all electrical connections, and measure voltage and current on motors.
- Lubricate all moving parts, including motor and fan bearings.
- Inspect and clean the condensate drain.
- Inspect controls of the system to ensure proper and safe operation. Check the starting cycle of the equipment to assure the system starts, operates, and shuts off properly.
- Provide documentation showing completion of the above checklist to the utility or the utility's representative.

## D.3.4.2. Baseline and Efficiency Standards

The baseline is a system with demonstrated imbalances of refrigerant charge.

After the tune-up, the equipment must meet airflow and refrigerant charge requirements. To ensure the greatest savings when conducting tune-up services, the eligibility minimum requirement for airflow is the manufacturer specified design flow rate, or 350 CFM/ton, if unknown. Also, the refrigerant charge must be within +/- 3 degrees of target sub-cooling for units with thermal expansion valves (TXV) and +/- 5 degrees of target super heat for units with fixed orifices or a capillary.

The efficiency standard, or efficiency after the tune-up, is assumed to be the manufacturer specified energy efficiency ratio (EER) of the existing central air conditioner or heat pump. The efficiency improvement resulting from the refrigerant charge adjustment depends on the pre-adjustment refrigerant charge.

# D.3.4.3. Estimated Useful Life (EUL)

According to DEER 2014, the estimated useful life (EUL) for refrigerant charge correction is 10 years.

# D.3.4.1. Deemed Savings Values

This measure has significant variability in equipment capacity and thus a per-unit savings value is not likely to be usable by program administrators. Due to this we present savings in a per-ton basis. Savings assume a 15% efficiency loss.

Table D-46: Deemed Savings by Building Type – Commercial AC Tune-up

| Building Type | kWh/Ton | kW/Ton |
|---------------|---------|--------|
| Fast Food     | 457     | 0.1502 |
| Grocery       | 294     | 0.1733 |
| Health Clinic | 383     | 0.1636 |
| Large Office  | 285     | 0.1617 |
| Lodging       | 403     | 0.1482 |
| Full Menu     | 384     | 0.1636 |
| Restaurant    | 0.100   |        |
| Retail        | 614     | 0.1694 |
| School        | 448     | 0.1367 |
| Small Office  | 397     | 0.1617 |
| University    | 291     | 0.1617 |
| Unknown       | 396     | 0.159  |

Table D-47: Deemed Savings by Building Type – Commercial Heat Pump Tune-up

| Building Type           | kWh/Ton | kW/Ton |
|-------------------------|---------|--------|
| Fast Food               | 538     | 0.1529 |
| Grocery                 | 340     | 0.1765 |
| Health Clinic           | 420     | 0.1667 |
| Large Office            | 395     | 0.1647 |
| Lodging                 | 519     | 0.151  |
| Full Menu<br>Restaurant | 436     | 0.1667 |
| Retail                  | 761     | 0.1725 |
| School                  | 494     | 0.1392 |
| Small Office            | 471     | 0.1647 |
| University              | 456     | 0.1647 |
| Unknown                 | 483     | 0.162  |

#### D.3.4.2. Calculation of Deemed Savings

Deemed peak demand and annual energy savings for unitary AC/HP tune-up should be calculated using the following formulas:

$$kW_{savings,C} = CAP_{C} \times \frac{1 \ kW}{1,000 \ W} \times \left(\frac{1}{EER_{pre}} - \frac{1}{EER_{post}}\right) \times CF$$

$$kWh_{savings,C} = CAP_{C} \times \frac{1 \ kW}{1,000 \ W} \times EFLH_{C} \times \left(\frac{1}{EER_{pre}} - \frac{1}{EER_{post}}\right)$$

$$kWh_{savings,H} = CAP_{H} \times \frac{1 \ kW}{1,000 \ W} \times EFLH_{H} \times \left(\frac{1}{HSPF_{pre}} - \frac{1}{HSPF_{post}}\right)$$

$$kWh_{savings,AC} = kWh_{savings,C}$$

$$kWh_{savings,HP} = kWh_{savings,C} + kWh_{savings,H}$$

Where,

CAP<sub>c</sub>= Rated equipment cooling capacity (BTU/hr.)

 $CAP_h$  = Rated equipment heating capacity (BTU/hr.)

*EER*<sub>pre</sub>= Adjusted efficiency of the equipment for cooling before tune-up (BTU/watt-hr)

*EER*<sub>post</sub>= Nameplate efficiency of the existing equipment for cooling; if unknown, use default EER value (BTU/watt-hr) Table D-50 and Table D-51.

Note: Site measurements may be substituted for  $EER_{pre}$  and  $EER_{post}$ , providing that the measurements are taken on the same site visit and under similar operating conditions using reliable, industry accepted techniques. If onsite measurements are used to measure savings for measures other than refrigerant charge, then the implementer should use an EUL of three years.

HSPF<sub>pre</sub> = Efficiency of the equipment for heating before tune-up (BTU/watt-hr)

*HSPF<sub>post</sub>* = Nameplate efficiency of the existing equipment for heating; if unknown, use default HSPF value from Table D-52 (BTU/watt-hr)

*CF* = Coincidence factor (Table D-54)

*EFLH*<sup>c</sup> = Equivalent full-load hours for cooling (Table D-53)

 $EFLH_h$  = Equivalent full-load hours for heating (Table D-53)

The adjusted *EER*<sub>pre</sub> can be calculated using the following equation:

$$EER_{pre} = (1 - EL) * EER_{post}$$

Where,

EL = Efficiency Loss (Fixed Orifice: Table D-48; TXV: Table D-49) determined by averaging reported efficiency losses from multiple studies.<sup>458,459,460,461,462</sup> Interpolation of the efficiency loss values presented is allowed. Extrapolation is not allowed.

Using the COP, HSPF and ERR can be calculated by multiplying the COP by 3.413.

Table D-48: Efficiency Loss Percentage by Refrigerant Charge Level (Fixed Orifice)

| % Charged       | EL   |
|-----------------|------|
| <u>&lt;</u> 70  | 0.37 |
| 75              | 0.29 |
| 80              | 0.20 |
| 85              | 0.15 |
| 90              | 0.10 |
| 95              | 0.05 |
| 100             | 0.00 |
| <u>&gt;</u> 120 | 0.03 |

Table D-49: Efficiency Loss Percentage by Refrigerant Charge Level (TXV)

| % Charged       | EL   |
|-----------------|------|
| <u>&lt;</u> 70  | 0.12 |
| 75              | 0.09 |
| 80              | 0.07 |
| 85              | 0.06 |
| 90              | 0.05 |
| 95              | 0.03 |
| 100             | 0.00 |
| <u>&gt;</u> 120 | 0.04 |

<sup>&</sup>lt;sup>458</sup> Architectural Energy Corporation, managed by New Buildings Institute. "Small HVAC System Design Guide." Prepared for the California Energy Commission. October 2003. Figure 11.

<sup>&</sup>lt;sup>459</sup> Davis Energy Group. "HVAC Energy Efficiency Maintenance Study," California Measurement Advisory Council (CALMAC). December 29, 2010. Figure 14.

<sup>&</sup>lt;sup>460</sup> Proctor Engineering Group. "Innovative Peak Load Reduction Program CheckMe! Commercial and Residential AC Tune-Up Project." California Energy Commission. November 6, 2003. Table 6-3.

<sup>&</sup>lt;sup>461</sup> Proctor Engineering Group. PEG Tune-Up Calculations spreadsheet.

<sup>&</sup>lt;sup>462</sup> Pennsylvania Technical Reference Manual (TRM). June 2012. Measure 3.3.2, Table 3-96.

| Size Category (BTU/hr.)           | EER (BTU/watt-hr) <sup>464</sup> |
|-----------------------------------|----------------------------------|
| 11.8                              | 11.8                             |
| < 65,000                          | 11.0                             |
| <u>&gt;</u> 65,000 and < 135,000  | 10.8                             |
| <u>&gt;</u> 135,000 and < 240,000 | 9.8                              |
| <u>&gt;</u> 240,000 and < 760,000 | 9.5                              |

Table D-50: Default Air Conditioner EER per Size Category<sup>463</sup>

Table D-51: Default Heat Pump EER per Size Category<sup>465</sup>

| Size Category (BTU/hr.)           | EER (BTU/watt-hr) |
|-----------------------------------|-------------------|
| < 65,000                          | 11.8              |
| <u>&gt;</u> 65,000 and < 135,000  | 10.8              |
| <u>&gt;</u> 135,000 and < 240,000 | 10.4              |
| <u>&gt;</u> 240,000               | 9.3               |

 $HSPF_{pre} = (HSPF_{post}) \times (1 - M)^{age}$ 

Where,

*HSPF*<sub>post</sub>= HSPF of pre-tune up equipment when new (use nameplate or default value from Table D-52)

M = Maintenance factor<sup>466</sup>, use 0.01 if annual maintenance conducted or 0.03 if maintenance is seldom

*Age* = Age of equipment in years, up to a maximum of 20 years, use a default of 10 years if unknown.

<sup>&</sup>lt;sup>463</sup> Code specified SEER or EER value from 2013 Addenda to ASHRAE 90.1-2010 (efficiency value effective January 1, 2015 for units < 65,000 Btu/hr and prior to January 1, 2010 for units  $\geq 65,000$  Btu/hr).

<sup>&</sup>lt;sup>463</sup> Code specified SEER or EER value from ASHRAE 90.1-2010 (efficiency value effective January 1, 2015

<sup>&</sup>lt;sup>464</sup> SEER values converted to EER using EER = -0.02 x SEER<sup>2</sup> + 1.12 x SEER. National Renewable Energy Laboratory (NREL). "Building America House Simulation Protocols." U.S. DOE. Revised October 2010. http://www.nrel.gov/docs/fy11osti/49246.pdf.

<sup>&</sup>lt;sup>465</sup> Code specified SEER or EER value from 2013 Addenda to ASHRAE 90.1-2010 (efficiency value effective January 1, 2015 for units < 65,000 Btu/hr and prior to January 1, 2010 for units > 65,000 Btu/hr).

<sup>&</sup>lt;sup>466</sup> "Building America House Simulation Protocols." U.S. DOE. Revised October 2010. Table 32. Page 40. http://www.nrel.gov/docs/fy11osti/49246.pdf.

| Size<br>Category<br>(BTU/hr.) | Subcategory or Rating<br>Condition | Default<br>HSPF <sup>468</sup> |
|-------------------------------|------------------------------------|--------------------------------|
| < 65,000                      | Split System 8.2                   |                                |
| < 03,000                      | Single Package                     | 8.0                            |
| ≥ 65,000 and <<br>135,000     | 47°F db/43°F wb<br>Outdoor Air     | 11.3                           |
| 155,000                       | 17°F db/15°F wb Outdoor Air        | 7.7                            |
| <u>&gt;</u> 135,000           | 47°F db/43°F wb<br>Outdoor Air     | 10.9                           |
|                               | 17°F db/15°F wb Outdoor Air        | 7.0                            |

Table D-52: Default Heat Pump HSPF per Size Category<sup>467</sup>

Table D-53: Equivalent Full-Load Hours by Building Type

| Building Type        | <b>EFLH</b> c | EFLH <sub>H</sub> |
|----------------------|---------------|-------------------|
| Fast Food            | 2,375         | 272               |
| Grocery              | 1,526         | 153               |
| Health Clinic        | 1,989         | 115               |
| Large Office         | 1,483         | 392               |
| Lodging              | 2,095         | 409               |
| Full Menu Restaurant | 1,997         | 166               |
| Retail               | 3,191         | 513               |
| School               | 2,329         | 140               |
| Small Office         | 2,060         | 255               |
| University           | 1,510         | 604               |

Table D-54: Commercial Coincidence Factors by Building Type<sup>469</sup>

| Building Type | Coincidence Factor |
|---------------|--------------------|
| Fast Food     | 0.78               |
| Grocery       | 0.90               |
| Health Clinic | 0.85               |
| Large Office  | 0.84               |

<sup>&</sup>lt;sup>467</sup> Code specified HSPF or COP value from 2013 Addenda to ASHRAE 90.1-2010 (efficiency value effective January 1, 2015 for units < 65,000 Btu/hr and prior to January 1, 2010 for units > 65,000 Btu/hr).

<sup>&</sup>lt;sup>468</sup> COP values converted to HSPF using COP=HSPF÷3.412

<sup>&</sup>lt;sup>469</sup> Values for Assembly and Religious Worship building types developed using an adjustment factor derived through a comparison of average CFs for College/University and Assembly/Religious Worship building types from the Texas state Technical Reference Manual. College/University was selected as a reference building type due to average alignment with Assembly/Religious worship building types in other TRMs, inclusion of a summer session, and increased evening usage.

| Lodging              | 0.77 |
|----------------------|------|
| Full Menu Restaurant | 0.85 |
| Retail               | 0.88 |
| School               | 0.71 |
| Small Office         | 0.84 |
| College              | 0.84 |

## D.3.4.3. Incremental Cost

Program-actual costs should be used. If not available, use \$35/ton<sup>470</sup>.

#### D.3.4.4. Future Studies

The incremental cost value is very sensitive to labor costs, and as such a New Orleansspecific cost study should be conducted to revise this value. Further, due to past realization rate issues with residential AC tune-up, if this offering is expanded to the commercial sector the TPE strongly recommends a whole-program billing analysis to support savings estimates.

<sup>&</sup>lt;sup>470</sup> Act on Energy Commercial Technical Reference Manual No. 2010-4

# D.3.5. Guest Room Energy Management (GREM) Controls

# D.3.5.1. Measure Description

Packaged terminal heat pumps (PTHP) and packaged terminal air conditioners (PTAC) are commonly installed in the hospitality industry to provide heating and cooling of individual guest rooms. Occupancy-based PTHP/PTAC controllers are a combination of a control unit and occupancy sensor that operate in conjunction with each other to provide occupancy-controlled heating and/or cooling. The control unit plugs into a wall socket and the PTHP/PTAC plugs into the control unit. The control unit is operated by an occupancy sensor that is mounted in the room and turns the PTHP/PTAC on and off. The most common application for occupancy-based PTHP/PTAC controls is hotel rooms.

To qualify for savings, equipment must have a setback of at least 5 degrees Fahrenheit. Setbacks greater than 8 degrees Fahrenheit are not recommended due to occupant comfort considerations.

# D.3.5.2. Baseline and Efficiency Standards

There is no code requirement for installation of GREM systems. The baseline configuration is a PTAC/PTHP with a manually controlled thermostat.

# D.3.5.3. Estimated Useful Life (EUL)

The average lifetime of this measure is eight years, in accordance with DEER 2014.

# D.3.5.4. Calculation of Deemed Savings

Estimated gross annual energy savings is 355kWh/unit, based on numbers reported by Xcel Energy and scaled appropriately based on New Orleans weather data. There is no peak demand savings associated with this measure. As these savings estimates are based on a single reference, it is recommended that New Orleans work with early program participants to conduct actual pre- and post-measurement of energy use to verify the accuracy of these values.

## D.3.5.5. Incremental Cost

The incremental cost is the difference between a GREM system and a manual thermostat, \$260<sup>471</sup>.

# D.3.5.1. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure was not implemented in Energy Smart programs. As a result, savings are calculated using default

<sup>&</sup>lt;sup>471</sup> DEER 2014 value for energy management systems

values from other programs. If this measure is added to Energy Smart programs, the evaluation should include a metering study to support occupancy estimates.

### D.3.6. Demand Control Ventilation

### D.3.6.1. Measure Description

Commercial Demand Controlled Ventilation (DCV) entails installing  $CO_2$  sensors within occupied zones in a commercial building in order to optimize the amount of outside air supplied to the space. This reduces energy use for space conditioning by reducing the amount of air supplied during unoccupied times. Furthermore, maintaining appropriate airflow can improve occupant health and productivity by ensuring adequate ventilation for pollutant and odor removal, as well as preventing excessive buildup of  $CO_2^{472}$ .

### D.3.6.2. Baseline and Efficiency Standards

The baseline for this measure was modeled as a prototypical building for 7 different building types that would most benefit from installing DCV due to their high occupancy density as well as significant variability in occupancy patterns. These models were also modified to calculate separate savings for buildings with Gas heat and Air Conditioning, as well as buildings with Heat Pumps. This measure is also only appropriate for retrofit applications. The efficiency standard for this measure, in accordance with IECC 2009, is that DCV is "*required for spaces larger than 500 ft*<sup>2</sup> . . . and with an average occupant load of 40 people per 1000 ft<sup>2</sup> of floor area". Thus, savings cannot be claimed for new construction in spaces that meet this minimum criterion unless the space is exempt in accordance with the exemptions listed in section  $503.2.5^{473}$ .

### D.3.6.3. Estimated Useful Life (EUL)

The EUL for this product is taken to be the life of a typical  $CO_2$  sensor. This was determined to be 15 years<sup>474</sup>.

#### D.3.6.4. Deemed Savings Values

The deemed savings values were calculated using DEER prototypical commercial building energy models in eQUEST. Occupant densities were modified in accordance with the DOE prototype buildings<sup>475</sup>, and the standard airflow rate per person was input as 15 CFM. For the deemed savings values, the DEER Models assumed a minimum

<sup>&</sup>lt;sup>472</sup> D. P. Wyon. "Indoor Environmental Effects on Productivity." (1996). Johnson Controls Inc. Accessed September 5, 2018 from:

<sup>310404371</sup>\_Indoor\_environmental\_effects\_on\_productivity\_Proceedings\_of\_IAQ\_1996\_Paths\_to\_better\_building \_environments

<sup>473</sup> IECC 2009 DCV Requirements https://up.codes/viewer/pennsylvania/iecc-2009/chapter/5/commercial-energyefficiency#503.2.5.1

<sup>&</sup>lt;sup>474</sup> "Datasheet: K-30 Sensor." (2015). Accessed September 5, 2018 from:

http://co2meters.com/Documentation/Datasheets/DS30-01%20-%20K30.pdf

<sup>&</sup>lt;sup>475</sup> "Commercial Prototype Building Models." U.S. Department of Energy & Pacific Northwest National Laboratory. Accessed August 27, 2018 from: https://www.energycodes.gov/development/commercial/prototype\_models

airflow of 0.40 CFM per ft<sup>2</sup>, a COP of 3.5 for cooling and heating, and a furnace efficiency of 82%. These parameters can be found in the table below.

| Building<br>Type               | Building Zones (ft^2)                                                                                | Occupant<br>Density<br>(ft^2/Person) | Airflow<br>Requirement<br>(cfm/person) | Notes                                                    |
|--------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------------------------|
| Small Office<br>General        | Office: 122,500 Conference:<br>7,000 Restroom: 8,750 Lobby:<br>7,500 Other: 29,250 Total:<br>175,000 | 180                                  |                                        |                                                          |
| Small Office<br>Densely Filled | Office: 122,500 Conference:<br>7,000 Restroom: 8,750 Lobby:<br>7,500 Other: 29,250 Total:<br>175,000 | 90                                   |                                        | Divided baseline by half                                 |
| Retail Stand-<br>Alone         | Retail: 6,400 Storage: 1,600<br>Total: 8,000                                                         | 67                                   | - 15                                   | Storage space left at<br>original occupancy<br>density   |
| Primary<br>School (K-6)        | Classroom: 31,500 Dining:<br>7,500 Gym: 7,500 Kitchen:<br>3,500 Total: 50,000                        | 40                                   | 15                                     | Office/Gym space densities unchanged                     |
| Secondary<br>School (7-12)     | Classroom: 31,500 Dining:<br>7,500 Gym: 7,500 Kitchen:<br>3,500 Total: 50,000                        | 28.5                                 |                                        |                                                          |
| Restaurant                     | Dining: 2,000 Kitchen: 1,200<br>Lobby: 600, Restroom: 200<br>Total: 4,000                            | 25                                   |                                        | Kitchen and Bathroom<br>density and airflow<br>unchanged |
| Assembly                       | Auditorium: 33,235 Office:<br>765 Total: 34,000                                                      | 50                                   |                                        | DEER Default                                             |

Table D-55: Occupant Density by Building Type

Table D-56: Deemed Savings by Building Type – PTAC

| Building Type                 | kWh/Ton | kW/Ton  |
|-------------------------------|---------|---------|
| Small Office General          | 35.1    | -0.0228 |
| Small Office Densely Occupied | 68.4    | -0.0633 |
| Retail Stand-Alone            | 135.9   | 0.0315  |
| Primary School (K-6)          | 50.0    | 0.0325  |
| Secondary School (7-12)       | 48.2    | 0.0243  |
| Restaurant                    | 128.6   | 0.0136  |
| Assembly                      | 168.5   | 0.0323  |

Table D-57: Deemed Savings by Building Type - PTHP

|  |  | Building Type | kWh/Ton | kW/Ton |
|--|--|---------------|---------|--------|
|--|--|---------------|---------|--------|

| Small Office General          | 40.8  | -0.0229 |
|-------------------------------|-------|---------|
| Small Office Densely Occupied | 83.3  | -0.0459 |
| Retail Stand-Alone            | 190.1 | 0.2313  |
| Primary School (K-6)          | 86.4  | 0.0414  |
| Secondary School (7-12)       | 85.9  | 0.0301  |
| Restaurant                    | 205.1 | 0.0129  |
| Assembly                      | 288.0 | 0.0339  |

#### D.3.6.5. Calculation of Deemed Savings

Deemed peak demand and annual energy savings for DCV in systems with Packaged Terminal Air Conditioning (PTAC) and Packaged Terminal Heat Pump (PTHP) should be calculated using the following equations. The energy savings are given as kWh/Ton and the demand savings are given in kW/Ton. This tonnage is the rated capacity of the HVAC equipment serving the DCV space(s) within the applicant's building(s).

$$kW_{Savings,PTAC} = CAP \times \frac{kW}{Ton}$$
$$kW_{Savings,PTHP} = \frac{CAPC + CAPH}{2} \times \frac{kW}{Ton}$$
$$kWh_{Savings,PTAC} = CAP \times \frac{kWh}{Ton}$$
$$kWh_{Savings,PTHP} = \frac{CAPC + CAPH}{2} \times \frac{kWh}{Ton}$$

Where,

CAP = Rated equipment cooling capacity of the AC unit (Ton.)

CAPC = Rated equipment cooling capacity of the heat pump (Ton.)

*CAPH* = Rated equipment heating capacity of the heat pump (Ton.)

*Note:* If the equipment's rated capacity is not given in tons, one can use the conversion factors of 12,000 BTU/hr per ton or 3.517 kW per ton.

### D.3.6.6. Incremental Cost

The incremental cost for this equipment is  $600^{476}$  to  $1,200^{477}$  installed cost in retrofits and an incremental cost of CO<sub>2</sub> sensors being 200 - 260 per sensor for new construction.

<sup>&</sup>lt;sup>476</sup> "Demand Control Ventilation." NJ Green Building Manual. 2011. Accessed September 4, 2018 from http://greenmanual.rutgers.edu/newcommercial/strategies/demandcontrolventilation.pdf

<sup>&</sup>lt;sup>477</sup> "Demand Control Ventilation." FPL Technical Primer. Accessed September 4, 2018 from https://www.fpl.com/business/pdf/dcv-primer.pdf

### D.3.7. Commercial Smart Thermostats

### D.3.7.1. Measure Description

This measure consists of replacing a manually operated or programmable thermostat with an ENERGY STAR®-certified<sup>478</sup> smart thermostat. If the thermostat is not ENERGY STAR®-certified, it must have the following features<sup>479</sup>:

- 1. Automatic scheduling.
- 2. Occupancy sensing (set "on" as a default).
- 3. For buildings with a heat pump, smart thermostats must be capable of controlling heat pumps to minimize the use of backup electric resistance heat.
- 4. Ability to adjust settings remotely via a smart phone or online in the absence of connectivity to the thermostat service provider, retaining the ability for the facility to:
  - a. View the room temperature,
  - b. View and adjust the set temperature, and
  - c. Switch between off, heating and cooling.
- 5. Have a static temperature accuracy  $\leq \pm 2.0$  °F
- Have network standby average power consumption of ≤3.0 W average (including all equipment necessary to establish connectivity to the service provider's cloud, except those that can reasonably be expected to be present in the home, such as Wi-Fi routers and smart phones.)
- 7. Enter network standby after ≤ 5.0 minutes from user interaction (on device, remote or occupancy detection)
- 8. The following capabilities may be enabled through the connected thermostat (CT) device, CT service or any combination of the two. The CT product shall maintain these capabilities through subsequent firmware and software changes:
  - a. Ability for consumers to set and modify a schedule.

<sup>&</sup>lt;sup>478</sup> ENERGY STAR's qualified products list for smart thermostats: <u>https://data.energystar.gov/dataset/ENERGY-</u> <u>STAR-Certified-Connected-Thermostats/7p2p-wkbf</u>

<sup>&</sup>lt;sup>479</sup> ENERGY STAR Smart Thermostat Specification::

https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Program%20Requirements%20for%20Conne cted%20Thermostats%20Version%201.0\_0.pdf

- b. Provide feedback to occupants about the energy impact of their choice of settings.
- c. Provide access to information relevant to their HVAC energy consumption, e.g. HVAC run time.

# D.3.7.2. Baseline & Efficiency Standard

For retrofit projects, the baseline is the preexisting thermostat equipment configuration. For new construction projects, program administrators should assume a programmable thermostat as baseline (in accordance with IECC 2009).

## D.3.7.3. Estimated Useful Life (EUL)

The effective useful life (EUL) for this measure is 11 years.<sup>480</sup>

### D.3.7.4. Calculation of Deemed Savings

Deemed savings are based off of a percent reduction of annual use compared to the equivalent full-load cooling and heating consumption for the facility. Savings are calculated as:

$$kWh \ Savings = Capacity(C) \times \frac{1}{SEER \times 1000} \times EFLH_C \times Savings\%_C + Capacity(H) \times \frac{1}{HSPF \times 1000} \times EFLH_H \times Savings\%_H$$

Where,

Capacity(C) = Cooling capacity (BTU)

SEER = Efficiency of controlled AC. Use current code requirements if nameplate actual is not available.

1000 = unit conversion

EFLH(C) = Equivalent Full Load Cooling Hours. See Table D-58.

Capacity(H) = Heating capacity (BTU)

HSPF = Heating Efficiency of controlled HVAC system. Use current code requirements if nameplate actual is not available.

EFLH(H) = Equivalent Full Load Heating Hours. See Table D-58.

Savings%(C) = Annual percent cooling savings

Savings%(H) = Annual percent heating savings

Capacity should be collected as part of the project application.

<sup>&</sup>lt;sup>480</sup> DEER 2014 EUL tables

| Building Type        | <b>EFLH</b> c | EFLHH |
|----------------------|---------------|-------|
| Fast Food            | 2,375         | 272   |
| Grocery              | 1,526         | 153   |
| Health Clinic        | 1,989         | 115   |
| Large Office         | 1,483         | 392   |
| Lodging              | 2,095         | 409   |
| Full Menu Restaurant | 1,997         | 166   |
| Retail               | 3,191         | 513   |
| School               | 2,329         | 140   |
| Small Office         | 2,060         | 255   |
| University           | 1,510         | 604   |

Table D-58: Equivalent Full-Load Hours by Building Type

Table D-59 summarizes the annual percent savings for heating and cooling by baseline thermostat. Savings for natural gas are presented so as to allow program administrators to quantify the full benefit from installation of a smart thermostat in a facility with electric cooling and natural gas space heating.

| <b>D</b> and the m  | Baseline                            |                                           |  |  |
|---------------------|-------------------------------------|-------------------------------------------|--|--|
| System              | Manual<br>Thermostat <sup>481</sup> | Programmable<br>Thermostat <sup>482</sup> |  |  |
| Electric Cooling    | 5%                                  | 3%                                        |  |  |
| Electric Heating    | 4%                                  | 2%                                        |  |  |
| Natural Gas Heating | 5%                                  | 2%                                        |  |  |

Table D-59: Savings Percent by Baseline Type

http://www.michigan.gov/documents/mpsc/Cl\_Programmable\_TStats\_MEMD\_6\_15\_15\_491808\_7.pdf

<sup>&</sup>lt;sup>481</sup> The savings percentages claimed for manual thermostats include the savings associated with upgrading from manual thermostats to programmable thermostats, which a 2015 MEMD study reported as about 3% savings for gas customers and 2% savings for electric customers.

<sup>&</sup>lt;sup>482</sup> CLEAResult's "Guide to Smart Thermostats" reports the ranges of savings measured in recent residential evaluations, relative to a baseline that blended programmable and manual thermostats: 10–13% for gas savings; 14–18% for electric cooling savings; and 6–13% for electric heating. This finding is extrapolated to commercial facilities in this analysis. savings.https://www.clearesult.com/insights/whitepapers/guide-to-smart-thermostats

### D.3.7.5. Sample Calculation

For example, assume a small retail facility using an air source heat pump. The equipment is 60,000 BTU in capacity with efficiencies of 13 SEER and 7.7 HSPF. The associated EFLH values are 3,191 for cooling and 513 for heating. The facility uses a manual thermostat in the baseline configuration. The savings for this project would be:

Cooling Savings = 
$$60,000 \times \frac{1}{13 \times 1000} \times 3,191 \times 5\% = 736 \, kWh$$
  
Heating Savings =  $60,000 \times \frac{1}{7.7 \times 1000} \times 513 \times 4\% = 160 \, kWh$ 

There are too many possible facility and equipment configuration combinations to provide pre-determined deemed savings. Program administrators should follow the algorithm specified above.

## D.3.7.6. Incremental Cost

Actual measure cost should be used where available. If not available, the incremental cost of installing a smart thermostat is \$154<sup>483</sup> for new construction and \$208<sup>484</sup> for retrofit.

## D.3.7.7. Future Studies

Current savings estimates for this measure cite existing studies from other climate zones. This measure should receive a detailed impact evaluation once sufficient participation has occurred. The impact evaluation of this measure is recommended to be completed during the 2021 program year, allowing for a full year of post-retrofit billing data to be collected from 2020 program participants.

<sup>&</sup>lt;sup>483</sup> From NEEP's 2016 Incremental Cost Study: http://www.neep.org/incremental-cost-emerging-technology-0, table 3-13 found range of incremental costs to be \$80-195 (with baseline as \$54 and using Nest/Ecobee at \$249). NEEP's more recent list of home energy management systems products (http://neep.org/initiatives/high-efficiency-products/home-energy-management-systems) shows a straight average of 68 products at \$210 for the cost of the smart thermostat, bringing the incremental cost assuming \$54 for baseline down to \$154.

### D.4. Refrigeration

### D.4.1. Commercial Variable Refrigerant Flow Systems

#### D.4.1.1. Measure Description

This measure entails the installation of a variable refrigerant flow (VRF) multi-split heat pump system. There are numerous configurations of VRF systems. This chapter covers the two most common configurations in the market:

- Air-cooled VRF heat pumps; and
- Water-cooled VRF heat pumps.

#### D.4.1.2. Baseline and Efficiency Standards

The baseline for units that are used in new construction or are replaced on burnout is shown in Table D-33. The format of the baseline table is taken from ASHRAE 90.1-2010 Table 6.8.1J Electrically Operated Variable Refrigerant Flow Air-to-Air and Applied Heat Pumps – Minimum Efficiency Requirements. This minimum efficiency requirement is based on applied heat pump baseline from Table 6.8.1B from ASHRAE 90.1-2010 where air-cooled VRF system with electric resistance heating references the baseline of applied heat pump with electric resistance heating and VRF with heat recovery with applied heat pump with all other heating types. However, water-cooled VRF baseline was stipulated in ASHRAE 90.1-2010. The current state building energy code is ASHRAE 90.1-2007 and the minimum baseline for applied heat pump from ASHRAE 90.1-2007 to 90.1-2010 didn't change, therefore the table from ASHRAE 90.1-2010 is applicable with an exception of air-cooled VRF system rated for 17F dry-bulb and 43F wet-bulb temperature which must comply the federal minimum standard<sup>485</sup> for heat pumps, which went into effect January 1, 2010.

<sup>&</sup>lt;sup>485</sup> 2013 U.S. Code: Title 10, Chapter 2, Subchapter D, Part 431, Subpart F, Table 1 to Page 431.97; Minimum Cooling Efficiency Standards for Air-Conditioning and Heating Equipment

| Equipment<br>Type                                   | Cooling<br>Capacity<br>(Btu/h) | Heating Section Type                                                 | Sub-Category                                                         | Minimum<br>Efficiency |
|-----------------------------------------------------|--------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------|
|                                                     | < 65,000                       | All                                                                  | VRF Multi-split System                                               | 13 SEER               |
|                                                     | > <5 000 8                     |                                                                      | VRF Multi-split System                                               | 11.0 EER              |
| ≥65,000 &<br><135,000 Electric Resistance (or none) |                                | VRF Multi-split System<br>with Heat Recovery                         | 10.8 EER                                                             |                       |
| VRF, Air Cooled                                     | ≥135,000 &                     |                                                                      | VRF Multi-split System                                               | 10.6 EER              |
| (Cooling Mode)                                      | <240,000 &                     | Electric Resistance (or none)                                        | VRF Multi-split System<br>with Heat Recovery                         | 10.4 EER              |
|                                                     | VRF Multi-split System         |                                                                      | 9.5 EER                                                              |                       |
|                                                     | ≥240,000                       | Electric Resistance (or none)                                        | VRF Multi-split System<br>with Heat Recovery                         | 9.3 EER               |
|                                                     |                                |                                                                      | VRF Multi-split system,<br>86°F entering water                       | 12.0 EER              |
|                                                     | < 65,000 All                   | VRF Multi-split system<br>with Heat Recovery, 86°F<br>entering water | 11.8 EER                                                             |                       |
| VRF, Water                                          | ≥65,000 &                      |                                                                      | VRF Multi-split system,<br>86°F entering water                       | 12.0 EER              |
| Cooled (Cooling<br>Mode)                            |                                | All                                                                  | VRF Multi-split system<br>with Heat Recovery, 86°F<br>entering water | 11.8 EER              |
|                                                     |                                |                                                                      | VRF Multi-split system,<br>86°F entering water                       | 10.0 EER              |
|                                                     | ≥135,000 All                   |                                                                      | VRF Multi-split system<br>with Heat Recovery, 86°F<br>entering water | 9.8 EER               |
|                                                     | < 65,000                       | All                                                                  | VRF Multi-split system                                               | 7.7 HSPF              |
| VRF, Air Cooled<br>(Heating Mode)                   | ≥65,000 &<br><135,000          | All                                                                  | VRF Multi-split system                                               | 3.3 COP               |
|                                                     | ≥135,000                       | All                                                                  | VRF Multi-split system                                               | 3.2 COP               |
| VRF, Water<br>Cooled (Heating                       | <135,000                       | All                                                                  | VRF Multi-split system,<br>68°F entering water                       | 4.2 COP               |
| Mode)                                               | ≥135,000                       | All                                                                  | VRF Multi-split system,<br>68°F entering water                       | 3.9 COP               |

Table D-60: VRF Heat Pump System– Baseline Efficiency Standards

# D.4.1.3. Estimated Useful Life (EUL)

The typical VRF system is a type of heat pump and the same 15-year EUL from DEER 2016 for commercial heat pumps applies to this measure.

# D.4.1.4. Deemed Savings Values

This measure has significant variability in equipment efficiency based on system type and equipment capacity and thus we present savings on a per-ton basis. The measure

efficiency is based on the average unit efficiency of all AHRI-certified VRF units<sup>486</sup> in the US market at three different cooling capacity bins.

The following tables present per-ton deemed savings.

| Building Type        | Cooling Capacity (tons) | VRF Multi-split System |        | VRF Multi-split System<br>with Heat Recovery |        |
|----------------------|-------------------------|------------------------|--------|----------------------------------------------|--------|
|                      |                         | kWh/Ton                | kW/Ton | kWh/Ton                                      | kW/Ton |
|                      | < 11.25                 | 615                    | 0.1898 | 415                                          | 0.1257 |
| Fast Food            | >=11.25 & < 20.00       | 240                    | 0.0685 | 283                                          | 0.0845 |
| rast roou            | >= 20.00                | 300                    | 0.0935 | 237                                          | 0.0746 |
|                      | < 11.25                 | 392                    | 0.2190 | 264                                          | 0.1451 |
| Grocery              | >=11.25 & < 20.00       | 152                    | 0.0790 | 180                                          | 0.0975 |
| Glocely              | >= 20.00                | 191                    | 0.1078 | 152                                          | 0.0861 |
|                      | < 11.25                 | 500                    | 0.2068 | 334                                          | 0.1370 |
| Health Clinic        | >=11.25 & < 20.00       | 188                    | 0.0746 | 227                                          | 0.0921 |
|                      | >= 20.00                | 245                    | 0.1018 | 195                                          | 0.0813 |
|                      | < 11.25                 | 415                    | 0.2044 | 286                                          | 0.1354 |
| Large Office         | >=11.25 & < 20.00       | 176                    | 0.0737 | 198                                          | 0.0910 |
|                      | >= 20.00                | 200                    | 0.1006 | 156                                          | 0.0804 |
| Lodging              | < 11.25                 | 566                    | 0.1873 | 386                                          | 0.1241 |
|                      | >=11.25 & < 20.00       | 232                    | 0.0676 | 266                                          | 0.0835 |
|                      | >= 20.00                | 274                    | 0.0923 | 215                                          | 0.0737 |
| Full Menu Restaurant | < 11.25                 | 509                    | 0.2068 | 342                                          | 0.1370 |
|                      | >=11.25 & < 20.00       | 195                    | 0.0746 | 232                                          | 0.0921 |
|                      | >= 20.00                | 249                    | 0.1018 | 197                                          | 0.0813 |
| Retail               | < 11.25                 | 847                    | 0.2141 | 575                                          | 0.1419 |
|                      | >=11.25 & < 20.00       | 340                    | 0.0773 | 395                                          | 0.0954 |
|                      | >= 20.00                | 411                    | 0.1054 | 324                                          | 0.0842 |
|                      | < 11.25                 | 586                    | 0.1727 | 392                                          | 0.1145 |
| School               | >=11.25 & < 20.00       | 221                    | 0.0623 | 266                                          | 0.0770 |
|                      | >= 20.00                | 287                    | 0.0851 | 228                                          | 0.0679 |
|                      | < 11.25                 | 536                    | 0.2044 | 362                                          | 0.1354 |
| Small Office         | >=11.25 & < 20.00       | 211                    | 0.0737 | 248                                          | 0.0910 |
|                      | >= 20.00                | 261                    | 0.1006 | 206                                          | 0.0804 |
|                      | < 11.25                 | 450                    | 0.2044 | 315                                          | 0.1354 |
| University           | >=11.25 & < 20.00       | 203                    | 0.0737 | 222                                          | 0.0910 |
| ·                    | >= 20.00                | 215                    | 0.1006 | 167                                          | 0.0804 |
|                      | < 11.25                 | 541                    | 0.2009 | 367                                          | 0.1332 |
| Unknown              | >=11.25 & < 20.00       | 216                    | 0.0725 | 252                                          | 0.0895 |
|                      | >= 20.00                | 263                    | 0.0990 | 208                                          | 0.0790 |

Table D-61: Deemed Savings by Building Type – VRF Air-Cooled Heat Pumps

<sup>&</sup>lt;sup>486</sup> 7,974 certified product information pulled from AHRI database on 7/1/2019; AHRI Directory of Certified Product Performance, https://www.ahridirectory.org/NewSearch?programId=72&searchTypeId=3

| Building Type           | Cooling Capacity | ling Capacity VRF Multi-split System |        | VRF Multi-split System with<br>Heat Recovery |        |
|-------------------------|------------------|--------------------------------------|--------|----------------------------------------------|--------|
|                         | (10115)          | kWh/Ton                              | kW/Ton | kWh/Ton                                      | kW/Ton |
|                         | < 5.42           | 484                                  | 0.1443 | N/A                                          | N/A    |
| Fast Food               | >=5.42 & < 11.25 | 509                                  | 0.1552 | 506                                          | 0.1527 |
|                         | >= 11.25         | 716                                  | 0.2191 | 751                                          | 0.2319 |
|                         | < 5.42           | 307                                  | 0.1666 | N/A                                          | N/A    |
| Grocery                 | >=5.42 & < 11.25 | 324                                  | 0.1791 | 322                                          | 0.1762 |
|                         | >= 11.25         | 456                                  | 0.2528 | 479                                          | 0.2676 |
|                         | < 5.42           | 387                                  | 0.1573 | N/A                                          | N/A    |
| Health Clinic           | >=5.42 & < 11.25 | 411                                  | 0.1692 | 407                                          | 0.1664 |
|                         | >= 11.25         | 579                                  | 0.2388 | 610                                          | 0.2528 |
|                         | < 5.42           | 338                                  | 0.1554 | N/A                                          | N/A    |
| Large Office            | >=5.42 & < 11.25 | 347                                  | 0.1672 | 349                                          | 0.1645 |
| _                       | >= 11.25         | 486                                  | 0.2360 | 505                                          | 0.2498 |
| Lodging                 | < 5.42           | 454                                  | 0.1425 | N/A                                          | N/A    |
|                         | >=5.42 & < 11.25 | 471                                  | 0.1532 | 472                                          | 0.1508 |
|                         | >= 11.25         | 661                                  | 0.2163 | 690                                          | 0.2290 |
| Full Menu<br>Restaurant | < 5.42           | 396                                  | 0.1573 | N/A                                          | N/A    |
|                         | >=5.42 & < 11.25 | 419                                  | 0.1692 | 416                                          | 0.1664 |
|                         | >= 11.25         | 591                                  | 0.2388 | 621                                          | 0.2528 |
| Retail                  | < 5.42           | 674                                  | 0.1629 | N/A                                          | N/A    |
|                         | >=5.42 & < 11.25 | 703                                  | 0.1751 | 702                                          | 0.1723 |
|                         | >= 11.25         | 988                                  | 0.2472 | 1,033                                        | 0.2617 |
|                         | < 5.42           | 454                                  | 0.1314 | N/A                                          | N/A    |
| School                  | >=5.42 & < 11.25 | 482                                  | 0.1413 | 477                                          | 0.1390 |
|                         | >= 11.25         | 679                                  | 0.1995 | 715                                          | 0.2111 |
|                         | < 5.42           | 422                                  | 0.1554 | N/A                                          | N/A    |
| Small Office            | >=5.42 & < 11.25 | 444                                  | 0.1672 | 442                                          | 0.1645 |
|                         | >= 11.25         | 624                                  | 0.2360 | 654                                          | 0.2498 |
|                         | < 5.42           | 377                                  | 0.1554 | N/A                                          | N/A    |
| University              | >=5.42 & < 11.25 | 381                                  | 0.1672 | 387                                          | 0.1645 |
| /                       | >= 11.25         | 532                                  | 0.2360 | 548                                          | 0.2498 |
|                         | < 5.42           | 429                                  | 0.1529 | N/A                                          | N/A    |
| Unknown                 | >=5.42 & < 11.25 | 449                                  | 0.1644 | 448                                          | 0.1617 |
|                         | >= 11.25         | 631                                  | 0.2321 | 661                                          | 0.2456 |

Table D-62: Deemed Savings by Building Type – VRF Water Cooled Heat Pump

## D.4.1.5. Calculated Deemed Savings

Deemed peak demand and annual energy savings for unitary AC and HP equipment should be calculated as shown below.

$$\begin{split} kW_{Savings} &= CAP \times \frac{1 \ kW}{1,000 \ W} \times \left(\frac{1}{\eta_{base,Cooling}} - \frac{1}{\eta_{post,Cooling}}\right) \times CF\\ kWh_{Savings} &= CAP \times \frac{1 \ kW}{1,000 \ W}\\ &\times \left[ \left(\frac{EFLH_C}{\eta_{base,Cooling}} + \frac{EFLH_H}{\eta_{base,Heating} \times 3.413}\right) - \left(\frac{EFLH_C}{\eta_{post,Cooling}} + \frac{EFLH_H}{\eta_{post,Heating} \times 3.413}\right) \right] \end{split}$$

Where,

*CAP* = Rated equipment cooling capacity of the new unit (BTU/hr)

 $\eta_{base,Cooling/Heating}$  = Baseline energy efficiency rating of the cooling/heating equipment (*Table D-33*), EER for cooling and COP for heating

 $\eta_{post,Cooling/Heating}$  = Nameplate energy efficiency rating of the installed cooling/heating equipment (Table D-63), EER for cooling and COP for heating

CF = Coincidence factor (Table D-37)

 $EFLH_{c}$  = Equivalent full-load hours for cooling (Table D-36)

 $EFLH_h = Equivalent full-load hours for heating (Table D-36)$ 

3.413 = kW to Btu/hr Conversion applied to heating COP to heating EER

| Equipment<br>Type    | Cooling<br>Capacity<br>Category<br>(Btu/h) | Cooling<br>Capacity<br>(Btu/h)               | Sub-Category                                 | Average<br>Cooling<br>Efficiency<br>(EER) | Average<br>Heating<br>Efficiency<br>(COP) |
|----------------------|--------------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------------|-------------------------------------------|
|                      | < 65,000                                   | 65,000                                       | All                                          | N/A <sup>488</sup>                        | N/A <sup>368</sup>                        |
|                      | ≥65,000 &                                  |                                              | VRF Multi-split System                       | 12.5                                      | 3.8                                       |
|                      | <135,000 4 100,000                         | VRF Multi-split System<br>with Heat Recovery | 12.6                                         | 3.7                                       |                                           |
| VRF, Air             | ≥135,000 &                                 |                                              | VRF Multi-split System                       | 11.5                                      | 3.6                                       |
| Cooled               | <240,000 187,500                           | VRF Multi-split System<br>with Heat Recovery | 11.5                                         | 3.5                                       |                                           |
|                      | ≥240,000 240,000                           | VRF Multi-split System                       | 10.5                                         | 3.4                                       |                                           |
|                      |                                            | 240,000                                      | VRF Multi-split System<br>with Heat Recovery | 10                                        | 3.3                                       |
|                      |                                            |                                              | VRF Multi-split system                       | 14.7                                      | 5.2                                       |
|                      | < 65,000                                   | 65,000                                       | VRF Multi-split system<br>with Heat Recovery | N/A <sup>368</sup>                        | N/A <sup>368</sup>                        |
| VPE Wator            |                                            |                                              | VRF Multi-split system                       | 15                                        | 5                                         |
| VRF, Water<br>Cooled | ≥65,000 & 100,000 <<br><135,000            | VRF Multi-split system<br>with Heat Recovery | 14.9                                         | 5.1                                       |                                           |
|                      |                                            |                                              | VRF Multi-split system                       | 13.1                                      | 4.9                                       |
|                      | ≥135,000                                   | 135,000                                      | VRF Multi-split system<br>with Heat Recovery | 12.9                                      | 4.8                                       |

Table D-63: Measure Efficiency Assumptions487

<sup>&</sup>lt;sup>487</sup> Average efficiency calculated from AHRI certified products available in US market

<sup>&</sup>lt;sup>488</sup> Product not available in US in this category

| Building Type        | EFLHc | EFLHH |
|----------------------|-------|-------|
| Fast Food            | 2,375 | 272   |
| Grocery              | 1,526 | 153   |
| Health Clinic        | 1,989 | 115   |
| Large Office         | 1,483 | 392   |
| Lodging              | 2,095 | 409   |
| Full Menu Restaurant | 1,997 | 166   |
| Retail               | 3,191 | 513   |
| School               | 2,329 | 140   |
| Small Office         | 2,060 | 255   |
| University           | 1,510 | 604   |

Table D-64: Equivalent Full-Load Hours by Building Type

Table D-65: Commercial Coincidence Factors by Building Type<sup>489</sup>

| Building Type        | Coincidence Factor |
|----------------------|--------------------|
| Fast Food            | 0.78               |
| Grocery              | 0.90               |
| Health Clinic        | 0.85               |
| Large Office         | 0.84               |
| Lodging              | 0.77               |
| Full Menu Restaurant | 0.85               |
| Retail               | 0.88               |
| School               | 0.71               |
| Small Office         | 0.84               |
| University           | 0.84               |

# D.4.1.6. Incremental Cost

The Incremental cost is \$3 per square-foot of conditioned space<sup>490</sup> compared to baseline equipment.

<sup>&</sup>lt;sup>489</sup> Values for Assembly and Religious Worship building types developed using an adjustment factor derived through a comparison of average CFs for College/University and Assembly/Religious Worship building types from the Texas state Technical Reference Manual. College/University was selected as a reference building type due to average alignment with Assembly/Religious worship building types in other TRMs, inclusion of a summer session, and increased evening usage.

<sup>&</sup>lt;sup>490</sup> CLEAResult 2016. "Utility Program Cost Effectiveness of Variable Refrigerant Flow Systems". ACEEE Summer Study on Energy Efficiency in Buildings 2016. https://aceee.org/files/proceedings/2016/data/papers/3\_345.pdf

### D.4.1.7. Future Studies

VRF systems in certain applications has greater energy savings potential than the deemed savings in this version of TRM. For example, if the facility has vacant space that is not heated or cooled, the VRF unit will run in part-load which can operate with greater efficiency. Furthermore, if the facility installs more cooling capacity than required, they can increase their energy savings by running the unit on a lower part-load. Some VRF units can provide simultaneous heating and cooling which can improve overall unit efficiency as well. An example of this application is to install VRF systems in lodging facilities where not all rooms are occupied so the unit will run on part load, as well as having some rooms request heating while other rooms request cooling. Both operational patterns present an opportunity for a VRF system to achieve greater savings. However, this version of TRM does not cover applications such as this as further is needed. It is advised that in large scale projects, program administrators should consider taking a custom savings approach rather than using this deemed savings approach to capture full potential savings.

# D.4.2. Door Heater Controls for Refrigerators and Freezers

# D.4.2.1. Measure Description

This measure refers to the installation of anti-sweat door heater controls on glass doors for reach-in commercial refrigerators and freezers. The added control reduces both heater operation time and cooling load.

This measure only qualifies for retrofit applications. New construction applications are not allowed as this measure is standard practice for new construction and comes integrated on most modern glass-door refrigerators and freezers.

# D.4.2.2. Baseline and Efficiency Standards

Qualifying equipment includes any controls that reduce the run time of door and frame heaters for refrigerated cases. The baseline efficiency case is a cooler or freezer door heater that operates 8,760 hours per year without any controls. The high efficiency case is a cooler (medium temperature) or freezer (low temperature) door heater connected to a heater control system. There are no state or federal codes or standards that govern the eligibility of equipment.

# D.4.2.3. Estimated Useful Life (EUL)

The estimated useful life (EUL) is 12 years as defined in the DEER database.<sup>491</sup>

# D.4.2.4. Calculation of Deemed Savings

# D.4.2.4.1. Energy Savings

A door heater controller senses dew point (DP) temperature in the store and modulates power supplied to the heaters accordingly. DP inside a building is primarily dependent on the moisture content of outdoor ambient air. Because the outdoor DP varies between weather zones, weather data from each weather zone must be analyzed to obtain a DP profile.

Indoor dew point  $(t_{d-in})$  is related to outdoor dew point  $(t_{d-out})$  according to the following equation. Indoor dew point was calculated at each location for every hour in the year.<sup>492</sup>

$$t_{d-in} = 0.005379 \times t_{d-out}^2 + 0.171795 \times t_{d-out} + 19.870006$$

In the base case, the door heaters are all on and have a duty of 100% irrespective of the indoor DP temperature. For the post-retrofit case, the duty for each hourly reading was calculated by assuming a linear relationship between indoor DP and duty cycle for each bin reading. It is assumed that the door heaters will be all off (duty cycle of 0%) at 42.89°F

<sup>&</sup>lt;sup>491</sup> California's Database for Energy Efficiency Resources (DEER 2014).

<sup>&</sup>lt;sup>492</sup> Work Paper PGEREF108: Anti-Sweat Heat (ASH) Controls. Pacific Gas & Electric Company. May 29, 2009.

or lower DP and all on (duty cycle of 100%) at 52.87°F or higher DP for a typical supermarket. Between these values, the door heaters' duty cycle changes proportionally:

$$Door \ Heater \ ON\% = \frac{t_{d-in} - All \ OFF \ Setpt \ (42.89^{\circ}F)}{All \ ON \ Setpt \ (52.87^{\circ}F) - All \ OFF \ Setpt \ (42.89^{\circ}F)}$$

Because the controller only changes the run-time of the heaters, instantaneous door heater power ( $kW_{ASH}$ ) as a resistive load remains constant per linear foot of door heater at:

$$kW_{ASH} = \frac{kW}{ft} \times L_{DH}$$

Where kW/ft. = 0.0368 for medium temperature and 0.0780 for low temperature applications.

Door heater energy consumption for each hour of the year is a product of power and runtime:

$$kWh_{ASH-Hourl} = kW_{Ash} \times Door Heater ON\% \times 1 hour$$

Total annual door heater energy consumption  $(kWh_{ASH})$  is the sum of all hourly reading values:

$$kWh_{ASH} = \sum kWh_{ASH-Hourl}$$

Energy savings were also estimated for reduced refrigeration loads using average system efficiency and assuming that 35% of the anti-sweat heat becomes a load on the refrigeration system.<sup>493</sup> The cooling load contribution from door heaters can be given by:

$$Q_{ASH}(ton) = 0.35 \times kW_{ASH} \times \frac{3,412 \frac{Btu/h}{ton}}{12,000 \frac{Btu/h}{ton}} \times Door \ Heater \ ON\%$$

The compressor power requirements are based on calculated cooling load and energyefficiency ratios obtained from the manufacturers' data. The compressor analysis is limited to the cooling load imposed by the door heaters, not the total cooling load of the refrigeration system.

 <sup>&</sup>lt;sup>493</sup> Southern California Edison (SCE), 1999, "A Study of Energy Efficient Solutions for Anti-Sweat Heaters." Prepared for the Refrigeration Technology and Test Center (RTTC). December 14.
 <u>https://www.sce.com/NR/rdonlyres/B1F7A3B4-719D-4CBB-87EB-</u>
 <u>E27F7CE7ECE0/0/Anti\_Sweat\_Heater\_Report.pdf</u>.

The typical efficiency for a medium temperature case is 9 EER (1.33 kW/ton), and the typical efficiency for a low temperature case is 5 EER (2.40 kW/ton).<sup>494</sup>

Energy used by the compressor to remove heat imposed by the door heaters for each hourly reading is determined based on calculated cooling load and EER, as outlined below:

$$kWh_{Refrig-Hourl} = Q_{ASH} \times \frac{kW}{ton} \times 1 hour$$

Total annual refrigeration energy consumption is the sum of all hourly reading values:

$$kWh_{Refrig} = \sum kWh_{Refrig-Hourl}$$

Total annual energy consumption (direct door heaters and indirect refrigeration) is the sum of all hourly reading values:

$$kWh_{Total} = kWh_{Refrig} + kWh_{ASH}$$

Once the annual energy consumption (direct door heaters and indirect refrigeration) has been determined for the baseline and post-retrofit case, the total energy savings are calculated by the following equation:

Annual Energy Savings =  $\Delta kWh = kWh_{Total-Baselin} - kWh_{Total-Post Retrofit}$ 

## D.4.2.4.2. Demand Savings

It is important to note that while there might be instantaneous demand savings as a result of the cycling of the door heaters, peak demand savings will only be due to the reduced refrigeration load. Peak demand savings was calculated by the equation shown below:

$$Peak \ Demand \ Savings = \Delta kW = \frac{kWh_{Refrig-Baselin} - kWh_{Refrig-Post \ Retrofit}}{8,760 \ hr/yr}$$

## D.4.2.5. Deemed Savings Values

Annual and peak energy savings due to anti-sweat door heater controls in medium and low temperature refrigerated cases for New Orleans. Deemed savings is calculated using a ratio compared to El Dorado, AR (Zone 6) Savings provided in the table are per linear foot of glass door-controlled heater.

<sup>&</sup>lt;sup>494</sup> Chapter 15 of the 2010 ASHRAE Handbook for Refrigeration

Table D-66: Anti-Sweat Heater Controls – Savings per Linear Foot of Case by Location

|                         | Med-Tem                                  | perature | Low-Temperature           |                |  |
|-------------------------|------------------------------------------|----------|---------------------------|----------------|--|
| Weather Zone            | Annual kWh/ft.<br>Savings kW/ft. Savings |          | Annual kWh/ft.<br>Savings | kW/ft. Savings |  |
| New Orleans<br>(Zone 3) | 248                                      | 0.0046   | 259                       | 0.0060         |  |

# D.4.2.6. Incremental Cost

The full installed cost should be used for this measure. If not available, use \$300 per circuit<sup>495</sup>.

# D.4.2.7. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure had low participation in Energy Smart programs. As a result, savings are calculated using weather-adjusted default values from other programs. If participation exceeds 500,000 kWh, the evaluation should include a metering study to support runtime estimates.

<sup>&</sup>lt;sup>495</sup> Efficiency Vermont Technical Reference User Manual (TRM) Measure Savings Algorithms and Cost Assumptions, February, 19, 2010

## D.4.3.1. Measure Description

Commercial refrigerators and freezers are commonly found in restaurants and other food service industries. Reach-in, solid-door refrigerators and freezers are significantly more efficient than regular refrigerators and freezers due to better insulation and higher-efficiency components. These efficiency levels relate the volume of the appliance to its daily energy consumption.

# D.4.3.2. Baseline and Efficiency Standards

Effective January 1, 2010, EPAct 2005 established new federal minimum efficiency levels for solid-door refrigerators and freezers (see Table D-67 below). Also included are the minimum efficiency levels for the ENERGY STAR® specifications.

| Equipment<br>Type | Efficiency<br>Level | Maximum Daily Energy<br>Consumption <sup>496</sup> (kWh/day) |  |
|-------------------|---------------------|--------------------------------------------------------------|--|
| Refrigerator      | Baseline            | 0.1V + 2.04                                                  |  |
|                   |                     | 0 <v<15, +="" 0.089v="" 1.411<="" td=""></v<15,>             |  |
| Defrigerator      |                     | 15≤V<30, 0.037V + 2.2                                        |  |
| Refrigerator      | ENERGY STAR®        | 30≤V<50, 0.056V + 1.635                                      |  |
|                   |                     | 50≤V, 0.060V + 1.416                                         |  |
| Freezer           | Baseline            | 0.4V + 1.38                                                  |  |
|                   |                     | 0 <v<15, +="" 0.250v="" 1.250<="" td=""></v<15,>             |  |
| <b>F</b>          |                     | 15≤V<30, 0.037V + 2.2                                        |  |
| Freezer           | ENERGY STAR®        | 30≤V<50, 0.163V                                              |  |
|                   |                     | 50≤V, 0.158V + 6.333                                         |  |

Table D-67: Solid-Door Refrigerators and Freezers – Efficiency Levels

The standard refrigerator/freezer efficiency is based on Table D-67 which contains the baseline annual energy consumption, and demand, for solid-door refrigerators and freezers.

<sup>&</sup>lt;sup>496</sup> V is the volume of the refrigerator or freezer in cubic feet.

Table D-68: Solid-Door Refrigerators and Freezers – Baseline Measure Information

| Туре         | Size Range <sup>497</sup><br>(Cubic Ft) | Annual Energy<br>Consumption<br>(kWh/unit) | Demand<br>(kW/unit) |
|--------------|-----------------------------------------|--------------------------------------------|---------------------|
|              | 0-15                                    | 1,292                                      | 0.15                |
| Pofrigorator | 15-30                                   | 1,840                                      | 0.21                |
| Refrigerator | 30-50                                   | 2,570                                      | 0.29                |
|              | ≥50                                     | 3,300                                      | 0.38                |
|              | 0-15                                    | 2,694                                      | 0.31                |
| Freezer      | 15-30                                   | 4,884                                      | 0.56                |
|              | 30-50                                   | 7,804                                      | 0.89                |
|              | ≥50                                     | 10,724                                     | 1.22                |

To qualify for this measure, new solid-door refrigerators and freezers must meet ENERGY STAR® minimum efficiency requirements. Table D-69 summarizes the estimated performance information for qualifying units.

Table D-69: Solid-Door Refrigerators and Freezers – Qualifying Measure Information

| Туре         | Size Range <sup>498</sup><br>(Cubic Ft) | Annual Energy<br>Consumption<br>(kWh/unit) | Demand<br>(kW/unit) |
|--------------|-----------------------------------------|--------------------------------------------|---------------------|
|              | 0-15                                    | 1,002                                      | 0.114               |
| Pofrigorator | 15-30                                   | 1,208                                      | 0.138               |
| Refrigerator | 30-50                                   | 1,619                                      | 0.185               |
|              | ≥50                                     | 2,050                                      | 0.234               |
|              | 0-15                                    | 1,825                                      | 0.208               |
| Freezer      | 15-30                                   | 4,015                                      | 0.458               |
|              | 30-50                                   | 5,210                                      | 0.595               |
|              | ≥50                                     | 6,348                                      | 0.725               |

# D.4.3.3. Estimated Useful Life (EUL)

According to DEER 2014, the estimated useful life (EUL) is 12 years.

# D.4.3.4. Deemed Savings Values

Deemed measure savings for qualifying solid-door refrigerators and freezers are presented in Table D-70.

<sup>&</sup>lt;sup>497</sup> Solid-door refrigerators and freezers were evaluated for four different sizes or volumes (V), 15, 30, 50 and 70 cubic feet. The unit will be operated for 365 days per year.

<sup>498</sup> Ibid.

| Туре         | Size Range <sup>499</sup><br>(Cubic Ft) | Annual Energy<br>Consumption<br>(kWh/unit) | Demand<br>(kW/unit) |
|--------------|-----------------------------------------|--------------------------------------------|---------------------|
|              | 0-15                                    | 290                                        | 0.03                |
| Pofrigorator | 15-30                                   | 631                                        | 0.07                |
| Refrigerator | 30-50                                   | 951                                        | 0.11                |
|              | ≥50                                     | 1,250                                      | 0.14                |
|              | 0-15                                    | 869                                        | 0.10                |
| Freezer      | 15-30                                   | 869                                        | 0.10                |
| Freezer      | 30-50                                   | 2,593                                      | 0.30                |
|              | ≥50                                     | 4,375                                      | 0.50                |

Table D-70: Solid-Door Refrigerators and Freezers – Deemed Savings Values

### D.4.3.5. Measure Technology Review

Five primary resources contained data about solid-door refrigerators and freezers. The ENERGY STAR® website and the Consortium for Energy Efficiency (CEE) had the same maximum daily energy consumption levels for commercial food-grade refrigerators and freezers. The NPCC report and Ecotope studies gave savings and cost estimates but did not include the volume of the appliances. NYSERDA's deemed savings and cost database (Nexant 2005) contained data for both refrigerators and freezers at common sizes.

| Available<br>Resource      | Notes                                                                                                                              |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| PG&E 2005 <sup>41</sup>    | Energy savings and cost estimates for refrigerators and freezers at common sizes                                                   |
| DEER 2014 <sup>65</sup>    | Energy savings and cost estimates for refrigerators and freezers at common sizes                                                   |
| KEMA 2010 <sup>24</sup>    | Energy savings and cost estimates for refrigerators and freezers at common sizes                                                   |
| CEE <sup>64</sup>          | Maximum daily energy consumption levels (kWh/day) for CEE-qualified commercial qualified food-<br>grade refrigerators and freezers |
| ENERGY STAR <sup>®69</sup> | Maximum daily energy consumption levels (kWh/day) for commercial qualified food-grade refrigerators and freezers                   |
| NEXANT 2005 <sup>31</sup>  | Energy savings and cost estimates for refrigerators and freezers at common sizes                                                   |
| PacifiCorp 200944          | Unitary savings included in comprehensive potential study                                                                          |

Note: Italic numbers are endnotes not footnotes. (See Section 4.4 Commercial Measure Reference)

<sup>&</sup>lt;sup>499</sup> Solid-door refrigerators and freezers were evaluated for four different sizes or volumes (V), 15, 30, 50 and 70 cubic feet. The unit will be operated for 365 days per year.

### D.4.3.6. Incremental Cost

The incremental cost is provided in Table D-72<sup>500</sup>.

Table D-72: Solid-Door Refrigerators and Freezers Incremental Costs

| Туре         | Incremental<br>Cost |
|--------------|---------------------|
|              | \$143               |
| Pofrigorator | \$164               |
| Refrigerator | \$164               |
|              | \$249               |
|              | \$142               |
| Freezer      | \$166               |
| Freezer      | \$166               |
|              | \$407               |

### D.4.3.7. Future Studies

This measure applies known values from ENERGY STAR; the TPE does not recommend focused study for this measure. Parameters should be updated to correspond to the most recent ENERGY STAR specification.

<sup>&</sup>lt;sup>500</sup> For the purposes of this characterization, assume and incremental cost adder of 5% on the full unit costs presented in Goldberg et al, State of Wisconsin Public Service Commission of Wisconsin, Focus on Energy Evaluation, Business Programs: Incremental Cost Study, KEMA, October 28, 2009.

## D.4.4. Refrigerated Case Night Covers

### D.4.4.1. Measure Description

This measure applies to the installation of night covers on otherwise open vertical (multideck) and horizontal (coffin-type) low-temperature (L) and medium temperature (M) display cases to decrease cooling load of the case during the night. It is recommended that these film-type covers have small, perforated holes to decrease the build-up of moisture.

Cases may be either: Self Contained (SC) having both evaporator and condenser coils, along with the compressor as part of the unit or Remote Condensing (RC) where the condensing unit and compressor are remotely located. Refrigerated case categories<sup>501</sup> are as follows:

- Vertical Open (VO): Equipment without doors and an air-curtain angle ≥ 0° and < 10°</p>
- Semi-vertical Open (SVO): Equipment without doors and an air-curtain angle ≥ 10° and < 80°</li>
- Horizontal Open (HO): Equipment without doors and an air-curtain angle ≥ 80°

This measure is only eligible for retrofit applications. The measure is standard practice in new construction.

## D.4.4.2. Baseline and Efficiency Standards

The baseline standard for this measure is an open low-temperature or medium temperature refrigerated display case (vertical or horizontal) that is not equipped with a night cover.

The efficiency standard for this measure is any suitable material sold as a night cover. The cover must be applied for a period of at least six hours per night.

# D.4.4.3. Estimated Useful Life (EUL)

According to the California Database of Energy Efficiency Resources (DEER 2014), strip curtains are assigned an EUL of 4 years.

## D.4.4.4. Calculation of Deemed Savings

The following outlines the assumptions and approach used to estimate demand and energy savings due to installation of night covers on open low- and medium-temperature, vertical and horizontal, display cases. Heat transfer components of the display case

<sup>&</sup>lt;sup>501</sup> U.S. DOE, Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial Industrial Equipment, Commercial Refrigeration Equipment, Washington DC, p3-15

include infiltration (convection), transmission (conduction), and radiation. This deemed savings approach assumes that installing night covers on open display cases will only reduce the infiltration load on the case. Infiltration affects cooling load in the following ways:

- Infiltration accounts for approximately 80% of the total cooling load of open vertical (or multi-deck) display cases.<sup>502</sup>
- Infiltration accounts for approximately 24% of the total cooling load of open horizontal (coffin or tub style) display cases.<sup>503</sup>

Installing night covers for a period of 6 hours per night can reduce the cooling load due to infiltration. This was modeled by the U.S. Department of Energy (DOE) for Vertical and Semi-vertical cases.

| Case Type <sup>504</sup>          | VO.RC.M | VO.RC.L | VO.SC.M | SVO.RC.M | SVO.SC.M |
|-----------------------------------|---------|---------|---------|----------|----------|
| kWh per day- before Night Curtain | 50.52   | 118.44  | 38.98   | 38.48    | 32.82    |
| kWh per day - with Night Curtain  | 46.84   | 111.58  | 36.99   | 35.74    | 31.05    |
| Percent kWh Savings per Day       | 7%      | 6%      | 5%      | 7%       | 5%       |
| Annual kWh Savings                | 1,343   | 2,504   | 726     | 1,000    | 646      |
| Test Case Length (ft.)            | 12      | 12      | 4       | 12       | 4        |

Table D-73: Vertical & Semi-vertical Refrigerated Case Savings

503 Ibid.

<sup>&</sup>lt;sup>502</sup> ASHRAE 2006. Refrigeration Handbook. Retail Food Store Refrigeration and Equipment. Atlanta, Georgia. pp. 46.1, 46.5, 46.10.

<sup>&</sup>lt;sup>504</sup> U.S. DOE, Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial Industrial Equipment, Commercial Refrigeration Equipment, Washington DC, pp.5-43- 5-47, 5A-5, 5A-6

| Case Type <sup>505</sup>                         | HO.RC.M | HO.RC.L | HO.SC.M | HO.SC.L |
|--------------------------------------------------|---------|---------|---------|---------|
| kWh per day- before Night Curtain <sup>506</sup> | 15.44   | 34.23   | 16.06   | 35.02   |
| kWh per day - with Night Curtain                 | 14.05   | 31.15   | 14.61   | 31.87   |
| Percent kWh Savings per Day <sup>507</sup>       | 9%      | 9%      | 9%      | 9%      |
| Annual kWh Savings                               | 507     | 1,124   | 528     | 1,150   |
| Test Case Length (ft.)                           | 12      | 12      | 4       | 4       |

Table D-74: Horizontal Refrigerated Case Savings

While the DOE also modeled the energy consumption for horizontal open cases, there was not an efficient case modeled with a night cover. The 9% energy savings as found by Faramarzi & Woodworth-Szleper<sup>6</sup> was used to determine the post kWh per day.

### D.4.4.5. Deemed Savings Values

Due to the relatively consistent summer dry-bulb temperature across the New Orleans weather zone, deemed savings values are only provided for the average dry-bulb temperature of 96°F.

506 Ibid.

<sup>&</sup>lt;sup>505</sup> U.S. DOE, Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial Industrial Equipment, Commercial Refrigeration Equipment, Washington DC, pp. 5-48 - 5-51. The level AD3 was used for the baseline efficiency.

<sup>&</sup>lt;sup>507</sup> ASHRAE 1999 Effects of Low-E Shields on the Performance and Power Use of a Refrigerated Display Case. Faramarzi & Woodworth-Szleper, p.8

| Case Description                                            | Temperature<br>Range (°F) | kWh Savings<br>(kWh/ft.) | kW Savings<br>(kW/ft.) |
|-------------------------------------------------------------|---------------------------|--------------------------|------------------------|
| Vertical Open, Remote Condensing<br>Medium Temperature      | 10 – 35 °F                | 112                      | 0.00                   |
| Vertical Open, Remote Condensing<br>Low Temperature         | < 10 °F                   | 209                      | 0.00                   |
| Vertical Open, Self-Contained<br>Medium Temperature         | 10 – 35 °F                | 182                      | 0.00                   |
| Semi-vertical Open, Remote Condensing<br>Medium Temperature | 10 – 35 °F                | 83                       | 0.00                   |
| Semi-vertical Open, Self-Contained<br>Medium Temperature    | 10 – 35 °F                | 162                      | 0.00                   |
| Horizontal Open, Remote Condensing<br>Medium Temperature    | 10 – 35 °F                | 42                       | 0.00                   |
| Horizontal Open, Remote Condensing<br>Low Temperature       | < 10 °F                   | 94                       | 0.00                   |
| Horizontal Open, Self-Contained<br>Medium Temperature       | 10 – 35 °F                | 132                      | 0.00                   |
| Horizontal Open, Self-Contained<br>Low Temperature          | < 10 °F                   | 288                      | 0.00                   |

 Table D-75: Refrigerated Case Night Covers – Deemed Savings Values (per Linear

 Foot)<sup>508</sup>

<sup>&</sup>lt;sup>508</sup> Pacific Gas & Electric (PG&E), 2009, "Night Covers for Open Vertical and Horizontal Display Cases (Low and Medium Temperature Cases), May 29,.

| Case Description                                            | Temperature<br>Range (°F) | Length (ft.) | kWh Savings<br>(kWh/Cover | kW Savings<br>(kW/Cover) |
|-------------------------------------------------------------|---------------------------|--------------|---------------------------|--------------------------|
| Vertical Open, Remote Condensing<br>Medium Temperature      | 10 – 35 °F                | 12           | 1,344                     | 0.00                     |
| Vertical Open, Remote Condensing<br>Low Temperature         | < 10 °F                   | 12           | 2,508                     | 0.00                     |
| Vertical Open, Self-Contained<br>Medium Temperature         | 10 – 35 °F                | 4            | 728                       | 0.00                     |
| Semi-vertical Open, Remote Condensing<br>Medium Temperature | 10 – 35 °F                | 12           | 996                       | 0.00                     |
| Semi-vertical Open, Self-Contained<br>Medium Temperature    | 10 – 35 °F                | 4            | 648                       | 0.00                     |
| Horizontal Open, Remote Condensing<br>Medium Temperature    | 10 – 35 °F                | 12           | 504                       | 0.00                     |
| Horizontal Open, Remote Condensing<br>Low Temperature       | < 10 °F                   | 12           | 1,128                     | 0.00                     |
| Horizontal Open, Self-Contained<br>Medium Temperature       | 10 – 35 °F                | 4            | 528                       | 0.00                     |
| Horizontal Open, Self-Contained<br>Low Temperature          | < 10 °F                   | 4            | 1,152                     | 0.00                     |

 Table D-76: Refrigerated Case Night Covers – Deemed Savings Values (per Night

 Cover)<sup>509</sup>

## D.4.4.1. Incremental Cost

The full measure cost should be used. When not available, use \$42 per linear foot (CA DEER 2014). For projects that lack size information, use:

- Remote Condensing: \$504
- Self-contained: \$168
- Unknown: \$336

### D.4.4.1. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure had low participation in Energy Smart programs. As a result, savings are calculated using weather-adjusted default values from other programs. If participation exceeds 500,000 kWh, the evaluation should include a metering study to support coverage time estimates.

<sup>&</sup>lt;sup>509</sup> Pacific Gas & Electric (PG&E), 2009, "Night Covers for Open Vertical and Horizontal Display Cases (Low and Medium Temperature Cases), May 29,.

### D.4.5.1. Measure Description

This measure applies to the installation of strip curtains on walk-in coolers and freezers. This reduces the load on the refrigeration system through reduced infiltration of warm ambient air into the walk-in unit. This measure is only eligible for retrofit applications. The measure is standard practice in new construction.

## D.4.5.2. Baseline and Efficiency Standards

The baseline standard for this measure is a walk-in cooler or freezer with no preexisting strip curtains or damaged strip curtains.

# D.4.5.3. Estimated Useful Life (EUL)

According to the California Database of Energy Efficiency Resources (DEER 2014), refrigerated case night covers are assigned an EUL of 5 years.

# D.4.5.4. Calculation of Deemed Savings

Calculation of savings from strip curtains is based on Tamm's equation<sup>510</sup> and the ASHRAE handbook<sup>511</sup>.

The formula or savings from strip curtains is as follows:

$$\frac{kWh \, Savings}{ft.^2} = \frac{365 \times t_{open} \times (Eff_{new} - E_{old}) \times 20 \times CD \times A \times \left\{ \left[ \frac{(T_i - T_r)}{T_i} \right] \times g \times h \right\}^{0.5} \times [p_i \times h_i - p_r \times h_r]}{3,412 \frac{BTU}{kWh} \times COP_{adj} \times A}$$

The parameters are defined in the tables below. Infiltration accounts for approximately 80% of the total cooling load of open vertical (or multi-deck) display cases.<sup>512</sup> Table D-77 summarizes assumptions that are universal across facility types. Table D-78 through Table D-81 summarize assumptions for specific facilities.

| Parameter                                               | Unit                           | Value      | Source           |
|---------------------------------------------------------|--------------------------------|------------|------------------|
| kWh savings / ft. <sup>2</sup>                          | kWh savings / ft. <sup>2</sup> | Calculated | Calculated       |
| kW savings / ft. <sup>2</sup>                           | kW savings / ft. <sup>2</sup>  | Calculated | Calculated       |
| 20: product of 60 seconds and integration factor of 1/3 | Seconds/minute                 | 20         | Tamms equation   |
| g, gravitational constant                               | ft./seconds <sup>2</sup>       | 32.174     | Physics constant |
| 1073,412                                                | BTU/kWh                        | 3,412      | Physics constant |

Table D-77: Strip Curtain Universal Input Assumptions

<sup>&</sup>lt;sup>510</sup> Kalterveluste durch kuhlraumoffnungen. Tamm W,. Kaltetechnik-Klimatisierung 1966;18;142-144

<sup>&</sup>lt;sup>511</sup> ASHRAE 2010. ASHRAE Handbook, Refrigeration: 13.4, 13.6

<sup>&</sup>lt;sup>512</sup> ASHRAE 2006. Refrigeration Handbook. Retail Food Store Refrigeration and Equipment. Pp. 46.1, 46.5, 46.10.

| Paramatar                                                                                                                                                                                  | Unit                            |                                                        | ue                                                           | Courses                                                                                         |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
| Parameter                                                                                                                                                                                  | Unit                            | Coolers                                                | Freezers                                                     | - Source                                                                                        |  |
| Eff-new: efficacy for new strip curtain.                                                                                                                                                   | % of<br>infiltration<br>blocked | .88                                                    | .88                                                          |                                                                                                 |  |
| Eff-old: efficacy for preexisting condition                                                                                                                                                | % of<br>infiltration<br>blocked | Old curtain:<br>.58<br>No curtain: .00<br>Unknown: .34 | Old curtain:<br>.58<br>No curtain:<br>.00<br>Unknown:<br>.30 |                                                                                                 |  |
| CD: Discharge Coefficient, an<br>empirically determined scale<br>factor that accounts for<br>difference in infiltration rates<br>predicted by Bernoulli's law<br>and actual observed rates | None                            | .336                                                   | .415                                                         | http://www.calmac.org/pu<br>blications/ComFac_Evaluat<br>ion_V1_Final_Report_02-<br>18-2010.pdf |  |
| t-open, minutes walk-in door is open per day                                                                                                                                               | Minutes/day                     | 132                                                    | 102                                                          |                                                                                                 |  |
| A, doorway area                                                                                                                                                                            | ft. <sup>2</sup>                | 35                                                     | 35                                                           |                                                                                                 |  |
| H, doorway height                                                                                                                                                                          | ft.                             | 7                                                      | 7                                                            |                                                                                                 |  |
| T <sub>i</sub> Dry-bulb temp. of infiltrating<br>air                                                                                                                                       | Deg. F                          | 71                                                     | 67                                                           |                                                                                                 |  |
| T <sub>i</sub> Dry-bulb temp. of refrigerated air                                                                                                                                          | Deg. F                          | 37                                                     | 5                                                            |                                                                                                 |  |
| COP <sub>adj</sub> , Coefficient of<br>performance of refrigerators<br>and freezers                                                                                                        | Unitless ratio                  | 3.07                                                   | 1.95                                                         |                                                                                                 |  |
| P, Density of infiltration air at 55% relative humidity                                                                                                                                    | lb./ft. <sup>2</sup>            | .074                                                   | .074                                                         |                                                                                                 |  |
| h, Enthalpy of infiltration air at<br>55% relative humidity                                                                                                                                | BTU/ft. <sup>2</sup>            | 26.935                                                 | 24.678                                                       | Psychometric equations                                                                          |  |
| pr Density of refrigerated air at<br>80% relative humidity                                                                                                                                 | lb./ft. <sup>2</sup>            | .079                                                   | .085                                                         | - based on dry bulb and<br>relative humidity                                                    |  |
| h <sub>r</sub> Enthalpy of refrigerated air<br>at 80% relative humidity                                                                                                                    | BTU/ft. <sup>2</sup>            | 12.933                                                 | 2.081                                                        |                                                                                                 |  |

# Table D-79: Strip Curtain Input Assumptions for Convenience Stores

| Parameter  | Unit | Val     | ue       | Source |
|------------|------|---------|----------|--------|
| Faranneter | Om   | Coolers | Freezers | Source |

| Eff-new: efficacy for new strip curtain.                                                                                                                                                   | % of<br>infiltration<br>blocked | .79                                                    | .83                                                          |                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Eff-old: efficacy for preexisting condition                                                                                                                                                | % of<br>infiltration<br>blocked | Old curtain:<br>.58<br>No curtain: .00<br>Unknown: .34 | Old curtain:<br>.58<br>No curtain:<br>.00<br>Unknown:<br>.30 |                                                                                                 |
| CD: Discharge Coefficient, an<br>empirically determined scale<br>factor that accounts for<br>difference in infiltration rates<br>predicted by Bernoulli's law<br>and actual observed rates | None                            | .348                                                   | .421                                                         | http://www.calmac.org/pu<br>blications/ComFac_Evaluat<br>ion_V1_Final_Report_02-<br>18-2010.pdf |
| t-open, minutes walk-in door is open per day                                                                                                                                               | Minutes/day                     | 38                                                     | 9                                                            |                                                                                                 |
| A, doorway area                                                                                                                                                                            | ft. <sup>2</sup>                | 21                                                     | 21                                                           |                                                                                                 |
| H, doorway height                                                                                                                                                                          | ft.                             | 7                                                      | 7                                                            |                                                                                                 |
| T <sub>i</sub> Dry-bulb temp. of infiltrating air                                                                                                                                          | Deg. F                          | 68                                                     | 64                                                           |                                                                                                 |
| T <sub>i</sub> Dry-bulb temp. of refrigerated air                                                                                                                                          | Deg. F                          | 39                                                     | 5                                                            |                                                                                                 |
| COP <sub>adj</sub> , Coefficient of<br>performance of refrigerators<br>and freezers                                                                                                        | Unitless ratio                  | 3.07                                                   | 1.95                                                         |                                                                                                 |
| P, Density of infiltration air at 55% relative humidity                                                                                                                                    | lb./ft. <sup>2</sup>            | .074                                                   | .074                                                         |                                                                                                 |
| h, Enthalpy of infiltration air at<br>55% relative humidity                                                                                                                                | BTU/ft. <sup>2</sup>            | 25.227                                                 | 23.087                                                       | Psychometric equations<br>based on dry bulb and                                                 |
| pr Density of refrigerated air at<br>80% relative humidity                                                                                                                                 | lb./ft. <sup>2</sup>            | .079                                                   | .085                                                         | relative humidity                                                                               |
| h <sub>r</sub> Enthalpy of refrigerated air<br>at 80% relative humidity                                                                                                                    | BTU/ft. <sup>2</sup>            | 13.750                                                 | 2.081                                                        |                                                                                                 |

# Table D-80: Strip Curtain Input Assumptions for Restaurants

| Parameter                                | meter Unit                      |         | ue       | Source                                                |
|------------------------------------------|---------------------------------|---------|----------|-------------------------------------------------------|
| Farameter                                | Om                              | Coolers | Freezers | 300/20                                                |
| Eff-new: efficacy for new strip curtain. | % of<br>infiltration<br>blocked | .80     | .81      | http://www.calmac.org/pu<br>blications/ComFac_Evaluat |

| Eff-old: efficacy for preexisting condition                                                                                                                                                | % of<br>infiltration<br>blocked | Old curtain:<br>.58<br>No curtain: .00<br>Unknown: .33 | Old curtain:<br>.58<br>No curtain:<br>.00<br>Unknown: | ion_V1_Final_Report_02-<br>18-2010.pdf  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------|-------------------------------------------------------|-----------------------------------------|
| CD: Discharge Coefficient, an<br>empirically determined scale<br>factor that accounts for<br>difference in infiltration rates<br>predicted by Bernoulli's law<br>and actual observed rates | None                            | .383                                                   | .26                                                   |                                         |
| t-open, minutes walk-in door is open per day                                                                                                                                               | Minutes/day                     | 45                                                     | 38                                                    |                                         |
| A, doorway area                                                                                                                                                                            | ft. <sup>2</sup>                | 21                                                     | 21                                                    |                                         |
| H, doorway height                                                                                                                                                                          | ft.                             | 7                                                      | 7                                                     |                                         |
| T <sub>i</sub> Dry-bulb temp. of infiltrating air                                                                                                                                          | Deg. F                          | 70                                                     | 67                                                    |                                         |
| T <sub>i</sub> Dry-bulb temp. of refrigerated air                                                                                                                                          | Deg. F                          | 39                                                     | 8                                                     |                                         |
| COP <sub>adj</sub> , Coefficient of<br>performance of refrigerators<br>and freezers                                                                                                        | Unitless ratio                  | 3.07                                                   | 1.95                                                  |                                         |
| P, Density of infiltration air at<br>55% relative humidity                                                                                                                                 | lb./ft. <sup>2</sup>            | .074                                                   | .074                                                  |                                         |
| h, Enthalpy of infiltration air at<br>55% relative humidity                                                                                                                                | BTU/ft. <sup>2</sup>            | 26.356                                                 | 24.678                                                | Psychometric equations                  |
| p <sub>r</sub> Density of refrigerated air at 80% relative humidity                                                                                                                        | lb./ft. <sup>2</sup>            | .079                                                   | .085                                                  | based on dry bulb and relative humidity |
| h <sub>r</sub> Enthalpy of refrigerated air<br>at 80% relative humidity                                                                                                                    | BTU/ft. <sup>2</sup>            | 13.750                                                 | 2.948                                                 |                                         |

| Parameter                                                                                                                                                                                  | Unit                            | Value                                                  | Source                                                                           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------|--|
| Eff-new: efficacy for new strip curtain.                                                                                                                                                   | % of<br>infiltration<br>blocked | .80                                                    |                                                                                  |  |
| Eff-old: efficacy for preexisting condition                                                                                                                                                | % of<br>infiltration<br>blocked | Old curtain:<br>.58<br>No curtain: .00<br>Unknown: .54 |                                                                                  |  |
| CD: Discharge Coefficient, an<br>empirically determined scale<br>factor that accounts for<br>difference in infiltration rates<br>predicted by Bernoulli's law<br>and actual observed rates | None                            | .425                                                   | http://www.calmac.org/pu<br>blications/ComFac_Evaluat<br>ion_V1_Final_Report_02- |  |
| t-open, minutes walk-in door is open per day                                                                                                                                               | Minutes/day                     | 494                                                    | 18-2010.pdf                                                                      |  |
| A, doorway area                                                                                                                                                                            | ft. <sup>2</sup>                | 80                                                     |                                                                                  |  |
| H, doorway height                                                                                                                                                                          | ft.                             | 10                                                     |                                                                                  |  |
| Ti Dry-bulb temp. of infiltrating air                                                                                                                                                      | Deg. F                          | 59                                                     |                                                                                  |  |
| T <sub>i</sub> Dry-bulb temp. of refrigerated air                                                                                                                                          | Deg. F                          | 28                                                     |                                                                                  |  |
| COP <sub>adj</sub> , Coefficient of performance of refrigerators and freezers                                                                                                              | Unitless ratio                  | 1.91                                                   |                                                                                  |  |
| P, Density of infiltration air at 55% relative humidity                                                                                                                                    | lb./ft. <sup>2</sup>            | .076                                                   |                                                                                  |  |
| h, Enthalpy of infiltration air at<br>55% relative humidity                                                                                                                                | BTU/ft. <sup>2</sup>            | 20.609                                                 | Psychometric equations                                                           |  |
| pr Density of refrigerated air at<br>80% relative humidity                                                                                                                                 | lb./ft. <sup>2</sup>            | .081                                                   | based on dry bulb and relative humidity                                          |  |
| hr Enthalpy of refrigerated air<br>at 80% relative humidity                                                                                                                                | BTU/ft. <sup>2</sup>            | 9.462                                                  |                                                                                  |  |

# D.4.5.5. Deemed Savings Values

Table D-82 summarizes savings by system, baseline, and facility type for strip curtains on a per-square-foot basis.

| Case Description            | Preexisting<br>Curtains | kWh Savings<br>(kWh/ft.²) | kW Savings<br>(kWh/ft.²) |
|-----------------------------|-------------------------|---------------------------|--------------------------|
| Supermarket – Cooler        | Yes                     | 62                        | 0.00708                  |
| Supermarket – Cooler        | No                      | 108                       | 0.01233                  |
| Supermarket – Cooler        | Unknown                 | 37                        | 0.00422                  |
| Supermarket – Freezer       | Yes                     | 179                       | 0.02043                  |
| Supermarket – Freezer       | No                      | 349                       | 0.03984                  |
| Supermarket – Freezer       | Unknown                 | 61                        | 0.00696                  |
| Convenience Store - Cooler  | Yes                     | 5                         | 0.00057                  |
| Convenience Store - Cooler  | No                      | 20                        | 0.00228                  |
| Convenience Store - Cooler  | Unknown                 | 11                        | 0.00126                  |
| Convenience Store - Freezer | Yes                     | 8                         | 0.00091                  |
| Convenience Store - Freezer | No                      | 27                        | 0.00308                  |
| Convenience Store - Freezer | Unknown                 | 17                        | 0.00194                  |
| Restaurant - Cooler         | Yes                     | 8                         | 0.00091                  |
| Restaurant – Cooler         | No                      | 30                        | 0.00342                  |
| Restaurant – Cooler         | Unknown                 | 18                        | 0.00205                  |
| Restaurant - Freezer        | Yes                     | 34                        | 0.00388                  |
| Restaurant - Freezer        | No                      | 119                       | 0.01358                  |
| Restaurant - Freezer        | Unknown                 | 81                        | 0.00925                  |
| Refrigerated Warehouse      | Yes                     | 254                       | 0.02900                  |
| Refrigerated Warehouse      | No                      | 729                       | 0.08322                  |
| Refrigerated Warehouse      | Unknown                 | 287                       | 0.03276                  |

Table D-82: Strip Curtains – Deemed Savings Values (per Square Foot)<sup>513</sup>

Table D-83 summarizes the deemed savings that should be used when project-specific data is not available. These values are per-walk-in door and assume the following:

- Doorway area:
  - Supermarket: 35
  - Convenience Store: 21
  - o Restaurant: 21
  - o Refrigerated Warehouse: 80
- Preexisting curtains: Unknown

<sup>&</sup>lt;sup>513</sup> Pacific Gas & Electric (PG&E), 2009, "Night Covers for Open Vertical and Horizontal Display Cases (Low and Medium Temperature Cases), May 29,.

| Table D-83: Strip Curtains – Deemed | Savings Values (per Square Foot) <sup>514</sup> |
|-------------------------------------|-------------------------------------------------|
|                                     |                                                 |

| Case Description            | Preexisting<br>Curtains | kWh Savings<br>(kWh/door) | kW Savings<br>(kW/door) |
|-----------------------------|-------------------------|---------------------------|-------------------------|
| Supermarket – Cooler        | Unknown                 | 1,295                     | 0.1477                  |
| Supermarket – Freezer       | Unknown                 | 2,135                     | 0.2436                  |
| Convenience Store - Cooler  | Unknown                 | 231                       | 0.02646                 |
| Convenience Store - Freezer | Unknown                 | 357                       | 0.04074                 |
| Restaurant – Cooler         | Unknown                 | 378                       | 0.04305                 |
| Restaurant - Freezer        | Unknown                 | 1,701                     | 0.19425                 |
| Refrigerated Warehouse      | Unknown                 | 22,960                    | 2.6208                  |

# D.4.5.6. Incremental Cost

The full measure cost should be used. When not available, use \$10.22 per linear foot (CA DEER 2014).

For projects that lack specific inputs for size, the default incremental costs are:

- Supermarket: \$358
- Convenience Store: \$215
- Restaurant: \$215
- Refrigerated Warehouse: \$818

# D.4.5.7. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure had low participation in Energy Smart programs. As a result, savings are calculated using weather-adjusted default values from other programs. If participation exceeds 500,000 kWh, the evaluation should include a metering study to support coverage time estimates.

<sup>&</sup>lt;sup>514</sup> Pacific Gas & Electric (PG&E), 2009, "Night Covers for Open Vertical and Horizontal Display Cases (Low and Medium Temperature Cases), May 29,.

# D.4.6.1. Measure Description

This measure applies to the installation of zero energy doors for refrigerated cases. Zero energy doors eliminate the need for anti-sweat heaters to prevent the formation of condensation on the glass surface by incorporating heat reflective coatings on the glass, gas inserted between the panes, non-metallic spacers to separate glass panes, and/or non-metallic frames.

This measure cannot be used in conjunction with anti-sweat heat (ASH) controls.

# D.4.6.2. Baseline and Efficiency Standards

The baseline standard for this measure is a standard vertical reach-in refrigerated cooler or freezer with anti-sweat heaters on the glass surface of the doors.

The efficiency standard for this measure is a reach-in refrigerated cooler or freezer with special doors installed to eliminate the need for anti-sweat heaters. Doors must have either heat reflective treated glass, be gas-filled, or both.

# D.4.6.3. Estimated Useful Life (EUL)

According to the California Database of Energy Efficiency Resources (DEER 2014), zero energy doors are assigned an EUL of 12 years.

# D.4.6.4. Calculation of Deemed Savings

$$kW_{savings} = kW_{door} \times BF$$
  
 $kWh_{savings} = kW_{savings} \times 8760$ 

Where:

 $kW_{door}$  = Connected load kW of a typical reach-in cooler or freezer door with a heater

BF = Bonus factor for reducing cooling load from eliminating heat generated by the door heater from entering the cooler or freezer

8760 = Annual operating hours

| Variable               | Deemed Values           |
|------------------------|-------------------------|
| kW <sub>door</sub> 515 | Cooler: 0.075           |
| KVVdoor                | Freezer: 0.200          |
|                        | Low-Temp Freezer: 1.3   |
| BF <sup>516</sup>      | Medium-Temp Cooler: 1.2 |
|                        | High-Temp Cooler: 1.1   |

Table D-84: Assumptions for Savings Calculations

# D.4.6.5. Deemed Savings Values

Table D-85: Zero Energy Doors – Deemed Savings Values (per door)<sup>517</sup>

| Measure                   | kWh Savings | kW Savings | Measure                   |
|---------------------------|-------------|------------|---------------------------|
| Low-Temperature Freezer   | 2,278       | 0.26       | Low-Temperature Freezer   |
| (< 25°F)                  | 2,278       | 0.20       | (< 25°F)                  |
| Medium-Temperature Cooler | 2 102       | 0.24       | Medium-Temperature Cooler |
| (25° - 40°F)              | 2,102       | 0.24       | (25° - 40°F)              |
| High-Temperature Cooler   | 723         | 0.08       | High-Temperature Cooler   |
| (41° - 65°F)              | 723         | 0.08       | (41° - 65°F)              |

# D.4.6.6. Incremental Cost

The incremental cost is \$290 per door.<sup>518</sup>

# D.4.6.1. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure was not implemented in Energy Smart programs. If this measure is added to Energy Smart, The TPE recommends a baseline study to capture the market share of ASH-controlled doors versus uncontrolled doors.

<sup>&</sup>lt;sup>515</sup> Based on range of wattages from two manufacturers and metered data (cooler 50-130W, freezer 200-320W). Efficiency Vermont Commercial Master Technical Reference Manual No. 2005-37.

<sup>&</sup>lt;sup>516</sup> Bonus factor (1+0.65/COP) assumes 2.0 COP for low temp, 3.5 COP for medium temp, and 5.4 COP for high temp, based on the average of standard reciprocating and discuss compressor efficiencies with Saturated Suction Temperatures of -20°F, 20°F, and 45°F, respectively, and a condensing temperature of 90°F, and manufacturers assumption that 65% of heat generated by door enters the refrigerated case. Efficiency Vermont Commercial Master Technical Reference Manual No. 2005-37.

<sup>&</sup>lt;sup>517</sup> Temperature ranges based on Commercial Refrigeration Rebate Form, p, 3. Efficiency Vermont. https://www.efficiencyvermont.com/Media/Default/docs/rebates/forms/efficiency-vermont-commercial-refrigeration-rebate-form.pdf.

<sup>&</sup>lt;sup>518</sup> Vermont TRM

#### D.4.7.1. Measure Description

This measure applies to the installation of evaporator fan controls. As walk-in cooler and freezer evaporators often run continuously, this measure consists of a control system that turns the fan on only when the unit's thermostat is calling for the compressor to operate.

### D.4.7.2. Baseline and Efficiency Standards

The baseline standard for this measure is an existing shaded pole evaporator fan motor with no temperature controls with 8,760 annual operating hours.

The efficiency standard for this measure is an energy management system (EMS) or other electronic controls to modulate evaporator fan operation based on temperature of the refrigerated space.

# D.4.7.3. Estimated Useful Life (EUL)

According to the California Database of Energy Efficiency Resources (DEER 2014), evaporator fan controls are assigned an EUL of 16 years.<sup>519</sup>

#### D.4.7.4. Deemed Savings Values

| Measure                                   | kWh Savings | kW Savings |
|-------------------------------------------|-------------|------------|
| Low-Temperature Freezer<br>(< 25°F)       | 543         | 0.062      |
| Medium-Temperature Cooler<br>(25° - 40°F) | 501         | 0.057      |
| High-Temperature Cooler<br>(41° - 65°F)   | 463         | 0.053      |

#### D.4.7.5. Calculation of Deemed Savings

The energy savings from the installation of evaporator fan controls are a result of savings due to the reduction in operation of the fan. The energy and demand savings are calculated using the following equations:

$$kW_{savings} = \left[ \left( kW_{evap} \times n_{fans} \right) - kW_{circ} \right] \times \left( 1 - DC_{comp} \right) \times DC_{evap} \times BF$$
$$kWh_{savings} = kW_{savings} \times 8760$$

Where:

<sup>&</sup>lt;sup>519</sup> Database for Energy Efficient Resources (2014). <u>http://www.deeresources.com/</u>.

kWevap = Nameplate connected load kW of each evaporator fan = 0.123 kW (default) 520

 $kW_{circ}$  = Nameplate connected load kW of the circulating fan = 0.035 kW (default) <sup>521</sup>

 $n_{fans}$  = Number of evaporator fans

 $DC_{comp}$  = Duty cycle of the compressor = 50% (default)<sup>522</sup>

 $DC_{evap}$  = Duty cycle of the evaporator fan = Coolers: 100%; Freezers: 94% (default)<sup>523</sup>

BF = Bonus factor for reducing cooling load from replacing the evaporator fan with a lower wattage circulating fan when the compressor is not running = Low Temp.: 1.5, Medium Temp.: 1.3, High Temp.: 1.2 (default)<sup>524</sup>

*8760* = Annual hours per year

### D.4.7.6. Incremental Cost

The incremental cost is \$291 per unit<sup>525</sup>.

### D.4.7.1. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure had low participation in Energy Smart programs. As a result, savings are calculated using weatheradjusted default values from other programs. If participation exceeds 500,000 kWh, the evaluation should include a metering study to support energy savings estimates.

<sup>525</sup> CA DEER 2014

<sup>&</sup>lt;sup>520</sup> Based on a weighted average of 80% shaded pole motors at 132 watts and 20% PSC motors at 88 watts.

<sup>&</sup>lt;sup>521</sup> Wattage of fan used by Freeaire and Cooltrol.

<sup>&</sup>lt;sup>522</sup> A 50% duty cycle is assumed based on examination of duty cycle assumptions from Richard Traverse (35%-65%), Control (35%-65%), Natural Cool (70%), Pacific Gas & Electric (58%). Also, manufacturers typically size equipment with a built-in 67% duty factor and contractors typically add another 25% safety factor, which results in a 50% overall duty factor.

 <sup>&</sup>lt;sup>523</sup> An evaporator fan in a cooler runs all the time, but a freezer only runs 8273 hours per year due to defrost cycles (4
 20-min defrost cycles per day).

<sup>&</sup>lt;sup>524</sup> Bonus factor (1+1/COP) assumes 2.0 COP for low temp, 3.5 COP for medium temp, and 5.4 COP for high temp, based on the average of standard reciprocating and discus compressor efficiencies with Saturated Suction Temperatures of -20°F, 20°F, and 45°F, respectively, and a condensing temperature of 90°F.

### D.4.8. Beverage and Snack Machine Controls

#### D.4.8.1. Measure Description

This measure involves the installation of a beverage or snack machine control on an existing refrigerated beverage vending machine, refrigerated glass-front reach-in cooler, or non-refrigerated snack machine with a lighted display and no existing controls. Applicable control types include occupancy or schedule-based controls installed on the unit that will reduce energy consumption by powering down the refrigeration and lighting systems when the control does not detect human activity and by reducing the refrigeration process, while still maintaining product quality.

### D.4.8.2. Baseline and Efficiency Standards

The baseline for this measure is an existing 120-volt single phase refrigerated or nonrefrigerated beverage vending machine, refrigerated reach-in cooler, or non-refrigerated snack machine with a lighted display and no existing controls. Current federal regulations specify that refrigerated bottled or canned beverage vending machines manufactured on or after August 31, 2012 must meet increased energy conservation standards.<sup>526,527</sup> Therefore, any vending machine occupancy controls installed on refrigerated beverage vending machines must be installed on machines that were manufactured and purchased before August 31, 2012 to be eligible for this measure.

# D.4.8.3. Estimated Useful Life (EUL)

The estimated useful life (EUL) for this measure for occupancy-based vending controls is five years.<sup>528</sup> The EUL for schedule-based controls is ten years.<sup>529</sup>

<sup>&</sup>lt;sup>526</sup> U.S. DOE. Refrigerated Beverage Vending Machines: Standards and Test Procedures. <u>http://www1.eere.energy.gov/buildings/appliance\_standards/product.aspx/productid/24</u>.

<sup>&</sup>lt;sup>527</sup> Refrigerated bottled or canned beverage vending machines manufactured on or after August 31, 2012 must meet the energy conservation standards specified in the Code of Federal Regulations, 10 CFR 421.296. <u>http://www.gpo.gov/fdsys/pkg/CFR-2012-title10-vol3/pdf/CFR-2012-title10-vol3-sec431-292.pdf</u>

<sup>&</sup>lt;sup>528</sup> Database for Energy Efficiency Resources (DEER) 2014. Used value specified for Vending Machine Controllers.

<sup>&</sup>lt;sup>529</sup> Energy & Resource Solutions (ERS), "Measure Life Study". Prepared for the Massachusetts Joint Utilities. November 17, 2005. Used median value specified for Novelty Cooler Shutoff.

#### D.4.8.4. Calculation of Deemed Savings

### D.4.8.4.1. Energy Savings

The following energy savings estimates align conservatively with various other vending miser energy savings studies.<sup>530,531,532</sup> Additionally, in comparing to savings calculation methodologies for schedule-based controls from other TRMs, the energy savings factors defined in this measure produce energy savings that are more in line with expected savings percentages. This is likely due to the exclusion of a morning start-up penalty, used to represent the additional energy required to return to typical operating temperatures, from some TRMs.<sup>533</sup>

$$kWh_{Savings} = W_{CL} \times \frac{1 \ kW}{1000 \ W} \times AOH \times ESF$$

Where:

 $W_{CL}$  = Connected load of controlled beverage or snack machine; if unknown, use default values from Table D-87.

AOH = Annual Operating Hours = 8,760 hours for occupancy-based controls; for schedulebased controls, assume one less hour than the number of hours that the installation location is closed per day

*ESF* = Energy Savings Factor from Table D-88

| Machine Type                             | Connected Load<br>(W) |
|------------------------------------------|-----------------------|
| Refrigerated beverage vending machine    | 400                   |
| Refrigerated glass-front reach-in cooler | 460                   |
| Non-refrigerated snack vending machine   | 85                    |

Table D-87: Default Connected Load by Machine Type

http://www.energymisers.com/downloads/FosterMillerReportVMEnergyNoCover.pdf

<sup>&</sup>lt;sup>530</sup> Deru, M., et. al. 2003, "Analysis of NREL Cold-Drink Vending Machines for Energy Savings". June. National Renewable Energy Laboratory (NREL). <u>http://www.nrel.gov/docs/fy03osti/34008.pdf</u>

<sup>&</sup>lt;sup>531</sup> Foster-Miller, Inc., "Vending Machine Energy Efficiency Device Engineering Evaluation and Test Report". June 1,2000. Bayview Technology Group, Inc.

<sup>&</sup>lt;sup>532</sup> Ritter, J & Hugghins, J. 2000 Joel Hugghins, "Vending Machine Energy Consumption and Vending Miser Evaluation". October 31. Texas A&M Energy Systems Laboratory. http://repository.tamu.edu/bitstream/handle/1969.1/2006/ESL-TR-00-11-01.pdf

<sup>&</sup>lt;sup>533</sup> Select Energy Services, Inc., "Analysis of Cooler Control Energy Conservation Measures: Final Report. March 3, 2004. Submitted to NSTAR Electric.

| Machine Type                             |     |
|------------------------------------------|-----|
| Refrigerated beverage vending machine    |     |
| Refrigerated glass-front reach-in cooler |     |
| Non-refrigerated snack vending machine   | 46% |

Table D-88: Energy Savings Factor by Machine Type<sup>534</sup>

## D.4.8.4.2. Demand Savings

Metered data from a Sacramento Municipal Utility District (SMUD) program evaluation found an average demand impact of 0.030 kW/unit using a peak definition of 2 PM to 6 PM.<sup>535</sup> This impact equates to a 7.5% demand reduction, using the USA Technologies, Inc. controlled load estimate of 400 W for refrigerated beverage vending machines. Assuming a comparable load reduction for other equipment types, this measure estimates an average demand impact of 0.035 kW/unit for refrigerated reach-in coolers and 0.006 kW/unit for non-refrigerated snack vending machines.

No demand savings are claimed for schedule-based beverage and snack machine controls because energy savings typically occur during off-peak hours.

$$kW_{Savings} = W_{CL} \times \frac{1 \ kW}{1000 \ W} \times DSF$$

Where:

 $W_{CL}$  = Connected load of controlled beverage or snack machine; if unknown, use default values from Table D-87.

*DSF* = Demand Savings Factor = 7.5% (occupancy controls); 0% (schedule controls)

#### D.4.8.5. Deemed Savings Values

Table D-89: Occupancy-based Controls – Energy and Demand Savings by Machine Type

| Machine Type                             | Annual<br>Energy Savings<br>(kWh/unit) | Peak<br>Demand Savings<br>(kW/unit) |
|------------------------------------------|----------------------------------------|-------------------------------------|
| Refrigerated beverage vending machine    | 1,612                                  | 0.030                               |
| Refrigerated glass-front reach-in cooler | 1,209                                  | 0.035                               |
| Non-refrigerated snack vending machine   | 343                                    | 0.006                               |

<sup>&</sup>lt;sup>534</sup> Product data sheets from USA Technologies, Inc. <u>http://www.energymisers.com</u>.

<sup>&</sup>lt;sup>535</sup> Chappell, C., et. al. 2002 "Does It Keep The Drinks Cold and Reduce Peak Demand?: An Evaluation of a Vending Machine Control Program". Heschong Mahone Group, Sacramento Municipal Utility District (SMUD), RLW Analytics, Inc., and American Council for an Energy-Efficient Economy (ACEEE). <u>http://aceee.org/proceedings-paper/ss02/panel10/paper05</u>

Table D-90: Schedule-based Controls – Energy and Demand Savings by Machine Type

| Machine Type                             | Annual<br>Energy Savings<br>(kWh/unit) | Peak<br>Demand<br>Savings<br>(kW/unit) |
|------------------------------------------|----------------------------------------|----------------------------------------|
| Refrigerated beverage vending machine    | Use energy savings                     | 0                                      |
| Refrigerated glass-front reach-in cooler | algorithms with site-                  | 0                                      |
| Non-refrigerated snack vending machine   | specific annual operating<br>hours     | 0                                      |

# D.4.8.6. Incremental Cost

Full measure cost should be used. If not available, use \$180 for refrigerated machines and \$80 for non-refrigerated machines<sup>536</sup>.

# D.4.8.7. Future Studies

This measure has received significant metering in support of its California DEER savings estimate, and the TPE has concluded that metering for New Orleans units would not add value to the precision of these savings estimates. Savings should be updated to correspond to CA DEER.

<sup>&</sup>lt;sup>536</sup> Illinois TRM, based on ComEd workpapers

#### D.4.9.1. Measure Description

This measure involves ENERGY STAR® air-cooled commercial ice makers in retrofit and new construction applications. Eligible equipment types are batch type (also known as cube-type) and continuous type (also known as nugget or flakers). Batchtype ice makers harvest ice with alternating freezing and harvesting periods and can be used in a variety of applications but are generally used to generate ice for use in beverages. Both types of equipment qualify based on their configuration as ice-making heads (IMHs), remote condensing units (RCUs) and self-contained units (SCUs). Remote condensing units designed for connection to a remote condenser rack are also eligible.

# D.4.9.2. Baseline and Efficiency Standards

The ENERGY STAR®<sup>537</sup> criteria for ice makers define efficiency requirements for both energy and potable water use. The baseline standard for batch ice makers are federal minimum levels that went into effect January 28, 2018. The following four tables show the standards and requirements for equipment manufactured on or after January 28, 2018.

| Equipment Type            | Ice Harvest Rate (H)<br>(Ibs. of ice / 24 hrs.) | Batch Ice Makers<br>Consumption Rate<br>(kWh/100 Ibs. ice) |
|---------------------------|-------------------------------------------------|------------------------------------------------------------|
|                           | < 300                                           | 10.0 – 0.01233H                                            |
| Ico Making Hoads          | ≥ 300 and < 800                                 | 7.05 – 0.0025H                                             |
| Ice Making Heads          | ≥ 800 and < 1,500                               | 5.55 – 0.00063H                                            |
|                           | ≥ 1,500                                         | 4.61                                                       |
| Remote Condensing Units   | < 988                                           | 7.97 – 0.00342H                                            |
| (w/out remote compressor) | ≥ 988 and < 4,000                               | 4.59                                                       |
| Remote Condensing Units   | < 930                                           | 7.97 – 0.00342H                                            |
| (w/ remote compressor)    | ≥ 934 and < 4,000                               | 4.79                                                       |
| Self-Contained Units      | < 110                                           | 14.79 – 0.0469H                                            |
|                           | ≥ 110 and < 200                                 | 12.42 – 0.02533H                                           |
|                           | ≥ 200 and < 4,000                               | 7.35                                                       |

Table D-91: Federal Minimum Standards for Air-Cooled Batch Ice Makers

<sup>&</sup>lt;sup>537</sup> ENERGY STAR<sup>®</sup> Commercial Ice Makers Version 3.0, effective on January 28, 2018.

| Equipment Type            | Ice Harvest Rate (H)<br>(Ibs. of ice / 24 hrs.) | Batch Ice Makers<br>Consumption Rate<br>(kWh/100 lbs. ice) |
|---------------------------|-------------------------------------------------|------------------------------------------------------------|
|                           | <310                                            | 9.19-0.00629H                                              |
| Ice Making Heads          | ≥310 and <820                                   | 8.23-0.0032H                                               |
|                           | ≥4,000                                          | 5.61                                                       |
| Remote Condensing Units   | <800                                            | 9.7-0.0058H                                                |
| (w/out remote compressor) | ≥800 and <4,000                                 | 5.06                                                       |
| Remote Condensing Units   | <800                                            | 9.9– 0.0058H                                               |
| (w/ remote compressor)    | ≥800 and <4,000                                 | 5.26                                                       |
|                           | <200                                            | 14.22–0.03H                                                |
| Self-Contained Units      | ≥200 and <700                                   | 9.47-0.00624H                                              |
|                           | ≥700 and <4,000                                 | 5.1                                                        |

Table D-92: Federal Minimum Standards for Air-Cooled Continuous Ice Makers

Table D-93: ENERGY STAR® Requirements for Air-Cooled Batch Ice Makers

| Equipment Type            | Ice Harvest Rate (H)<br>(Ibs. of ice / 24 hrs.) | Batch Ice Makers<br>Consumption Rate<br>(kWh/100 lbs. ice) | Potable Water Use<br>(gal/100 lbs. ice) |
|---------------------------|-------------------------------------------------|------------------------------------------------------------|-----------------------------------------|
|                           | ≤ 300                                           | ≤ 9.2– 0.01134H                                            | ≤ 20.0                                  |
| Les Making Lloads         | ≥ 300 and ≤ 800                                 | ≤ 6.49-0.0023H                                             | ≤ 20.0                                  |
| Ice Making Heads          | ≥ 800 and ≤ 1,500                               | ≤ 5.11-0.00058H                                            | ≤ 20.0                                  |
|                           | ≥ 1,500 and ≤ 4,000                             | ≤ 4.24                                                     | ≤ 20.0                                  |
| Remote Condensing Units   | ≤988                                            | ≤ 7.17– 0.00308H                                           | ≤ 20.0                                  |
| (w/out remote compressor) | ≥988 and ≤4,000                                 | ≤ 4.13                                                     | ≤ 20.0                                  |
| Remote Condensing Units   | ≤988                                            | ≤ 7.17– 0.00308H                                           | ≤ 20.0                                  |
| (w/ remote compressor)    | ≥988 and ≤4,000                                 | ≤ 4.13                                                     | ≤ 20.0                                  |
|                           | ≤110                                            | ≤ 12.57 – 0.0399H                                          | ≤ 25.0                                  |
| Self-Contained Units      | ≥110 and ≤200                                   | ≤ 10.56-0.0215H                                            | ≤ 25.0                                  |
|                           | ≥200 and ≤4,000                                 | ≤ 6.25                                                     | ≤ 25.0                                  |

| Equipment Type            | Ice Harvest Rate (H)<br>(Ibs. of ice / 24 hrs.) | Batch Ice Makers<br>Consumption Rate<br>(kWh/100 lbs. ice) | Potable Water Use<br>(gal/100 lbs. ice) |
|---------------------------|-------------------------------------------------|------------------------------------------------------------|-----------------------------------------|
|                           | < 310                                           | ≤ 7.90– 0.005409H                                          | ≤ 15.0                                  |
| Ice Making Heads          | ≥ 310 and < 820                                 | ≤ 7.08-0.002752H                                           | ≤ 15.0                                  |
|                           | ≥ 4,000                                         | ≤ 4.82                                                     | ≤ 15.0                                  |
| Remote Condensing Units   | < 800                                           | ≤ 7.76– 0.00464H                                           | ≤ 15.0                                  |
| (w/out remote compressor) | ≥ 800 and < 4,000                               | ≤ 4.05                                                     | ≤ 15.0                                  |
| Remote Condensing Units   | < 800                                           | ≤ 7.76– 0.00464H                                           | ≤ 15.0                                  |
| (w/ remote compressor)    | ≥ 800 and < 4,000                               | ≤ 4.05                                                     | ≤ 15.0                                  |
|                           | < 200                                           | ≤ 12.37–0.0261H                                            | ≤ 15.0                                  |
| Self-Contained Units      | ≥ 200 and < 700                                 | ≤ 8.24-0.005429H                                           | ≤ 15.0                                  |
|                           | ≥ 700 and < 4,000                               | ≤ 4.44                                                     | ≤ 15.0                                  |

Table D-94: ENERGY STAR® Requirements for Air-Cooled Continuous Ice Makers

# D.4.9.3. Estimated Useful Life (EUL)

According to DEER 2011, the average commercial ice maker will have a measure life of 10 years.

# D.4.9.1. Energy and Demand Savings

Energy savings and demand reductions for commercial ice makers are based on the energy consumption from the harvesting of ice, either in batches or continuously. The following subsections outline deemed calculations for energy savings and demand reductions, respectively.

# D.4.9.1.1. Calculation of Deemed Savings

Annual electric savings are calculated by determining the energy consumed for baseline ice makers compared against the energy consumed by qualifying ENERGY STAR® product using the harvest rate of the more efficient unit.

The following two equations show how energy savings and demand reductions can be calculated, respectively:

$$\Delta kWh = \frac{\left(kWh_{base,per\ 100\ lb} - kWh_{ee,per\ 100\ lb}\right)}{100} \times DC \times H \times 365$$
$$\Delta kW = \left(\frac{\Delta kWh}{HRS}\right) \times CF$$

Where:

 $kWh_{base,per\ 100\ lb}$  = Calculated on the harvest rate and type of ice machine from the Federal Minimum Energy Consumption Rate relationships in Table D-128

 $kWh_{ee,per\ 100\ lb}$  = Qualifying energy efficient model consumption found in the AHRI directory of certified products by model information.

100 = conversion factor to convert  $kWh_{base,per 100 lb}$  and  $kWh_{ee,per 100 lb}$  into

maximum kWh consumption per pound of ice DC = Duty Cycle of the ice maker representing the percentage of time the ice machine is making ice = 0.75 H = Harvest Rate (lbs. of ice made per day) 365 = days per year HRS = Annual operating hours = 365 \* 24 = 8,760 hours/year CF = 1.0

For example, the annual energy savings and demand reductions for a batch type IMH commercial ice maker with an ice harvest rate (H) of 550 lbs. of ice per day and a consumption rate of kWh/100 lbs. ice of 4.45 are calculated as:

$$\Delta kWh = \frac{\left((7.05 - 0.0025 \times 550) - 4.45\right)}{100} \times 0.75 \times 550 \times 365 = 1,844 \, kWh$$

$$\Delta kW = \left(\frac{1,844 \ kWh}{8,760 \ hr/yr}\right) \times 1.0 = 0.2105 \ kW$$

#### D.4.9.2. Incremental Cost<sup>538</sup>

| Ice Harvest Rate (H)    | Incremental<br>Cost |
|-------------------------|---------------------|
| 100-200 lb. ice maker   | \$296               |
| 201-300 lb. ice maker   | \$312               |
| 301-400 lb. ice maker   | \$559               |
| 401-500 lb. ice maker   | \$981               |
| 501-1000 lb. ice maker  | \$1,485             |
| 1001-1500 lb. ice maker | \$1,821             |
| <1500 lb. ice maker     | \$2,194             |

#### D.4.9.1. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure was not implemented in Energy Smart programs. Thus, savings are calculated using ENERGY STAR default values. If this measure is added to Energy Smart programs, the evaluation should include a review of actual efficiency levels and costs of units rebated in the program.

Deemed parameters should be updated whenever DOE standards or other applicable codes warrant it.

<sup>&</sup>lt;sup>538</sup> These values are from electronic work papers prepared in support of San Diego Gas & Electric's "Application for Approval of Electric and Gas Energy Efficiency Programs and Budgets for Years 2009-2011", SDGE, March 2, 2009. https://www.sdge.com/node/709

#### D.5. Food Service

#### D.5.1. Commercial Griddles

#### D.5.1.1. Measure Description

This measure applies to ENERGY STAR® or its equivalent natural gas and electric commercial griddles in retrofit and new construction applications. This appliance is designed for cooking food in oil or its own juices by direct contact with either a flat, smooth, hot surface or a hot channeled cooking surface where plate temperature is thermostatically controlled.

Energy-efficient commercial electric griddles reduce energy consumption primarily through application of advanced controls and improved temperature uniformity. Energy efficient commercial gas griddles reduce energy consumption primarily through advanced burner design and controls.

#### D.5.1.2. Baseline and Efficiency Standards

Key parameters for defining griddle efficiency are Heavy Load Cooking Energy Efficiency and Idle Energy Rate. There are currently no federal minimum standards for Commercial Griddles, however, the American Society of Testing and Materials (ASTM) publishes Test Methods<sup>539</sup> that allow uniform procedures to be applied to each commercial cooking appliance for a fair comparison of performance results.

ENERGY STAR® efficiency requirements apply to single and double-sided griddles. The ENERGY STAR® criteria should be reviewed on an annual basis to reflect the latest requirements.

Table D-95: ENERGY STAR® Criteria540 for Electric and Gas Single- and Double-SidedGriddles

| Performance Parameters               | Electric Griddles              |  |
|--------------------------------------|--------------------------------|--|
| Heavy-Load Cooking Energy Efficiency | ≥70%                           |  |
| Idle Energy Rate                     | ≤320 watts per ft <sup>2</sup> |  |

<sup>&</sup>lt;sup>539</sup> The industry standard for energy use and cooking performance of griddles are ASTM F1275-03: Standard Test Method for the Performance of Griddles and ASTM F1605-01: Standard Test Method for the Performance of Double-Sided Griddles

<sup>&</sup>lt;sup>540</sup> ENERGY STAR<sup>®</sup> Commercial Griddles Program Requirements Version 1.1, effective May 2009 for gas griddles and effective January 1, 2011 for electric.

# D.5.1.3. Estimated Useful Life (EUL)

According to DEER 2014, commercial griddles are assigned an estimated useful life (EUL) of 12 years.<sup>541</sup>

# D.5.1.4. Calculation of Deemed Savings

Annual savings can be calculated by determining the energy consumed by a standard efficiency griddle as compared with an ENERGY STAR® rated griddle.

For electric savings,

 $\Delta kWh = kWhbase - kWheff$ 

kWh(base or eff) = kWhcooking + kWhidle + kWhpreheat

kWhcooking = 
$$\left( LBfood \times \frac{Efood}{CookEff} \right) \times Days$$

kWhidle = IdleEnergy × (DailyHrs 
$$-\frac{\text{LBfood}}{\text{Capacity}} - \frac{\text{PreheatTime}}{60}$$
) × Days

kWhpreheat = PreheatEnergy × Days

Key parameters used to compute savings are defined in Table D-96.

<sup>&</sup>lt;sup>541</sup> Database for Energy Efficient Resources, 2008,

http://www.deeresources.com/deer0911planning/downloads/EUL\_Summary\_10-1-08.xls

| Parameter          | Description                    | Value                     | Source                |
|--------------------|--------------------------------|---------------------------|-----------------------|
| Daily Hrs.         | Daily Operating Hours          | 12 hours                  | FSTC                  |
| Preheat Time       | Time to Preheat (Min)          | 15 Minutes                | FSTC                  |
| E <sub>food</sub>  | ASTM defined Energy to Food    | 0.139 kWh/lb., 475 Btu/if | FSTC                  |
| Days               | Number of Days of operation    | 365 Days                  | FSTC                  |
| CookEff            | Cooking Energy Efficiency (%)  | See Table D-97            | FSTC                  |
| IdleEnergy         | Idle energy rate (kW), (Btu/h) |                           | FSTC, ENERGY<br>STAR® |
| Capacity           | Production capacity (lbs./hr)  |                           | FSTC                  |
| Preheat Energy     | kWh/day, Btu/day               |                           | FSTC                  |
| LB <sub>Food</sub> | Food cooked per day (lb/day)   |                           | FSTC                  |

Table D-96: Energy Consumption Related Parameters for Commercial Griddles<sup>542</sup>

General assumptions used for deriving deemed electric and gas savings are values are taken from the Food Service Technology Center (FSTC) work papers.<sup>543</sup> These deemed values assume that the griddles are 3 x 2 feet in size. Parameters in the table are per linear foot, with an assumed depth of 2 feet.

<sup>&</sup>lt;sup>542</sup> Assumptions based on PG&E Commercial Griddles Work Paper developed by FSTC, May 22, 2012.

<sup>&</sup>lt;sup>543</sup> FSTC food service equipment work papers submitted to CPUC for Energy Efficiency 2013-2014 Portfolio; document titled EnergyEfficiency2013-2014-Portfolio\_Test\_PGE\_20120702\_242194.zip

https://www.pge.com/regulation/EnergyEfficiency2013-2014-Portfolio/Testimony/PGE/2012/EnergyEfficiency2013-2014-Portfolio\_Test\_PGE\_20120702\_242194.zip.

| Parameter                           | Baseline Electric Griddles | Efficient Electric Griddles |
|-------------------------------------|----------------------------|-----------------------------|
| Preheat Energy (kWh/ft.)            | 1.33                       | 0.67                        |
| Idle Energy Rate (kW/ft.)           | 0.8                        | 0.64                        |
| Cooking Energy Efficiency<br>(%)    | 65%                        | 70%                         |
| Production Capacity<br>(lbs./h/ft.) | 11.7                       | 16.33                       |
| Lbs. of food cooked/day/ft.         | 33.33                      | 33.33                       |

Table D-97: Baseline and Efficient Assumptions for Electric Griddles

Peak Demand Savings can be derived by dividing the annual energy savings by the operating Equivalent hours and multiplying by the Coincidence Factor.

$$\Delta kW = \left(\frac{\Delta kWh}{HOURS}\right) \times CF$$

Where:

 $\Delta kWh$  = Annual energy savings (kWh)

4380 = Operating Equivalent hours = 365 x 12 = 4380 hours

 $0.84^{544}$  = Coincidence Factor (*CF*)

# D.5.1.5. Deemed Savings Values

Deemed savings based on the assumptions above are tabulated below per griddle, per linear foot.

<sup>&</sup>lt;sup>544</sup> Coincidence factors utilized in other jurisdictions for Commercial Griddles vary from 0.84 to 1.0. The KEMA report titled "Business Programs: Deemed Savings Parameter Development," November 2009 conducted for Wisconsin Focus on Energy lists Coincidence Factors by building type and identifies food service at 0.84.

Table D-98: Deemed Savings for Electric and Gas Commercial Griddles per Linear Foot

| Measure Description             | Deemed Savings per Griddle<br>per linear foot |     |
|---------------------------------|-----------------------------------------------|-----|
|                                 | kW                                            | kWh |
| Griddle, Electric, ENERGY STAR® | 0.15                                          | 758 |

# D.5.1.6. Incremental Cost

The incremental cost is \$60 per linear foot of width of the unit<sup>545</sup>.

# D.5.1.7. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure was not implemented in Energy Smart programs. As a result, savings are calculated using default values from FSTC. If this measure is added to Energy Smart programs, the evaluation should include an assessment of actual usage schedules to replace the default FSTC schedule values.

<sup>&</sup>lt;sup>545</sup> Measure cost from ENERGY STAR which cites reference as "EPA research on available models using AutoQuotes, 2010" http://www.energystar.gov/index.cfm?fuseaction=find\_a\_product.showProductGroup&pgw\_code=COG

#### D.5.2.1. Measure Description

High efficiency ovens exhibit better baking uniformity and higher production capacities while also including high-quality components and controls.

## D.5.2.2. Estimated Useful Life (EUL)

According to the California Database of Energy Efficiency Resources (DEER 2014), all commercial ovens are assigned an estimated useful life (EUL) of 12 years.<sup>546</sup>

### D.5.2.3. Baseline and Efficiency Standards

Efficient convection ovens are defined by ENERGY STAR® or its equivalent and apply to electric full-size and half-size convection ovens and gas full-size convection ovens. Full size ovens accept a minimum of five pans measuring 18 x 26 x 1-inch. Half size ovens accept a minimum of five sheet pans measuring 18 x 13 x 1-inch. The ENERGY STAR® criteria should be reviewed on an annual basis to reflect the latest requirements.

There are currently no federal minimum standards for Commercial Convection Ovens, however, the American Society of Testing and Materials (ASTM) publishes Test Methods<sup>547</sup> that allow uniform procedures to be applied to each commercial cooking appliance for a fair comparison of performance results.

| Performance Parameters                  | Half Size Electric Ovens | Full Size Electric Ovens |
|-----------------------------------------|--------------------------|--------------------------|
| Heavy-Load Cooking Energy<br>Efficiency | ≥71%                     | ≥71%                     |
| Idle Energy Rate                        | ≤1.0 kW                  | ≤1.6 kW                  |

#### D.5.2.4. Calculation of Deemed Savings

Annual savings can be calculated by determining the energy consumed by a standard efficiency convection oven as compared with an ENERGY STAR® rated convection oven.

 $\Delta kWh = kWhbase - kWheff$ 

<sup>&</sup>lt;sup>546</sup> Database for Energy Efficient Resources, 2008,

http://www.deeresources.com/deer0911planning/downloads/EUL\_Summary\_10-1-08.xls

<sup>&</sup>lt;sup>547</sup> The industry standard for energy use and cooking performance of convection ovens is ASTM F-2861-10, Standard Test Method for Enhanced Performance of Combination Oven in Various Modes.

<sup>&</sup>lt;sup>548</sup> ENERGY STAR<sup>®</sup> Commercial Ovens Version 1.1, effective May 2009; Version 2.0 is currently under development to be releas `qed by 2013. New efficiency levels will be identified and scope will add Combination Ovens.

kWh(base or eff) = kWhcooking + kWhidle + kWhpreheat

$$kWhcooking = \left(LB \times \frac{Efood}{CookEff}\right) \times Days$$
$$kWhidle = IdleEnergy \times \left(DailyHrs - \frac{LB}{Capacity} - \frac{PreheatTime}{60}\right) \times Days$$

kWhpreheat = PreheatEnergy × Days

General assumptions in Table D-100 are from the ENERGY STAR® Commercial Kitchen Equipment Savings Calculator – Convection Ovens which refers to the Food Service Technology Center (FSTC) work papers and research.<sup>549</sup>

|                                     | Half Size Electric Ovens |                 | Full Size Electric Ovens |                 |
|-------------------------------------|--------------------------|-----------------|--------------------------|-----------------|
| Parameter                           | Baseline<br>Model        | Efficient Model | Baseline Model           | Efficient Model |
| Preheat Energy (kWh/ft.)            | 1                        | 0.9             | 1.5                      | 1               |
| Idle Energy Rate (kW/ft.)           | 1.5                      | 1               | 2                        | 1.6             |
| Cooking Energy<br>Efficiency (%)    | 65%                      | 71%             | 65%                      | 71%             |
| Production Capacity<br>(lbs./h/ft.) | 45                       | 50              | 70                       | 80              |
| Lbs. of food<br>cooked/day/ft.      | 100                      | 100             | 100                      | 100             |
| Efood (kWh/lb)                      | 0.0732                   | 0.0732          | 0.0732                   | 0.0732          |

Table D-100: Baseline and Efficient Assumptions for Electric Convection Ovens

Peak Demand Savings can be derived by dividing the annual energy savings by the operating Equivalent hours and multiplying by the Coincidence Factor.

$$\Delta kW = \left(\frac{\Delta kWh}{HOURS}\right) \times CF$$

Where:

 $\Delta kWh$  = Annual energy savings (kWh)

<sup>&</sup>lt;sup>549</sup> FSTC food service equipment work papers submitted to CPUC for Energy Efficiency 2013-2014 Portfolio; document titled EnergyEfficiency2013-2014-Portfolio\_Test\_PGE\_20120702\_242194.zip

HOURS = Operating Equivalent hours =  $365 \times 12 = 4,380$  hours<sup>550</sup>

CF = Coincidence Factor = 0.84<sup>551</sup>

# D.5.2.5. Deemed Savings Estimates for Convection Ovens

Deemed savings based on the assumptions above are tabulated below for electric convection ovens.

| Measure Description                               |       | Deemed Savings per<br>Oven |  |
|---------------------------------------------------|-------|----------------------------|--|
|                                                   |       | kW                         |  |
| Half-Size Convection Oven, Electric, ENERGY STAR® | 2,042 | 0.39                       |  |
| Full-Size Convection Oven, Electric, ENERGY STAR® | 1,933 | 0.37                       |  |

Table D-101: Deemed Savings Estimates for Electric Convection Ovens

### D.5.2.6. Incremental Cost

The incremental cost for this measure is \$50.552

<sup>&</sup>lt;sup>550</sup> ENERGY STAR<sup>®</sup> Commercial Kitchen Equipment Savings Calculator – Convection Ovens assumes an operating time of 12 hours.

<sup>&</sup>lt;sup>551</sup> KEMA report titled "Business Programs: Deemed Savings Parameter Development," November 2009 conducted for Wisconsin Focus on Energy lists Coincidence Factors by building type and identifies food service at 0.84.

<sup>&</sup>lt;sup>552</sup> Measure cost from ENERGY STAR which cites reference as "EPA research on available models using AutoQuotes, 2010" http://www.energystar.gov/index.cfm?fuseaction=find\_a\_product.showProductGroup&pgw\_code=COG

Combination ("Combi") ovens are convection ovens with a steam cooking mode.

# D.5.3.1. Baseline and Efficiency Standards

There are currently no federal minimum standards for Commercial Combination Ovens, however, the American Society of Testing and Materials (ASTM) publishes Test Methods611 that allow uniform procedures to be applied to each commercial cooking appliance for a fair comparison of performance results.

As of January 1, 2014, efficient combination ovens are defined by ENERGY STAR® and apply to both electric and gas ovens. Combination ovens combines the function of hot air convection (oven mode), saturated and superheated steam heating (steam mode), and combination convection/steam mode for moist heating, to perform steaming, baking, roasting, rethermalizing, and proofing of various food products.

| Table D-102: High Efficiency Requirements for Electric Combination Ovens by Pan |
|---------------------------------------------------------------------------------|
| Capacity                                                                        |

| Mode            | Idle Rate                                | Cooking Efficiency (%) |
|-----------------|------------------------------------------|------------------------|
|                 | Electric, where P is $\ge$ 5 and $\le$ 2 | 0                      |
| Steam Mode      | ≤ 0.133P + 0.64 kW                       | ≥ 55%                  |
| Convection Mode | ≤ 0.08P + 0.4989 kW                      | ≥ 76%                  |

# D.5.3.2. Calculation of Deemed Savings

Annual savings can be calculated by determining the energy consumed by a standard efficiency combination oven as compared with a high efficiency combination oven.

For electric savings,

```
\Delta kWh = kWhtotal, base - kWhtotal, eff
```

kWh(total, base or total, eff) = kWhoven + kWhsteam + kWhpreheat

kWh(oven or steam) = kWhcooking + kWhidle

kWhcooking (oven or steam) = (LBoven or steam  $\times \frac{Efood}{CookEff}$ )  $\times Days$ 

Where LBoven = LB × (1-% Steam) and LBsteam = LB × % Steam

kWhidle(oven)

 $= (1 - \% Steam) \times IdleEnergy \times (DailyHrs - LBovenCapacity)$  $- nP \times PreheatTime60) \times Days$ 

#### kWhidle(steam)

# $= (\%Steam) \times IdleEnergy \times (DailyHrs - LBsteamCapacity - np \times PreheatTime60) \times Days$

 $kWhpreheat = nP \times PreheatEnergy \times Days$ 

Key parameters used to compute savings are listed in Table D-103, Table D-104, and Table D-105.

| Table D-103: Energy Consumption Parameters for Commercial Combination Ovens |
|-----------------------------------------------------------------------------|
|-----------------------------------------------------------------------------|

| Parameter               | Description                                            | Value              | Source/Approach                                                                        |
|-------------------------|--------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------|
| Daily Hrs.              | Daily Operating Hours                                  | 12 hours           | ENERGY STAR <sup>®</sup> Commercial Kitchen<br>Equipment Calculator                    |
| Preheat<br>Time         | Time to Preheat (Min)                                  | 15 min             | FSTC Life Cycle & Energy Cost<br>Calculator                                            |
| nP                      | Number of Preheats per<br>Day                          | 1/day              | FSTC Life Cycle & Energy Cost<br>Calculator                                            |
| E <sub>food,oven</sub>  | ASTM defined Energy to<br>Food for Convection<br>Ovens | 0.0732<br>kWh/lb   | ASTM                                                                                   |
| E <sub>food,steam</sub> | ASTM defined Energy to<br>Food for Steam Cookers       | 0.0308<br>kWh.lb,  | ASTM                                                                                   |
| Days                    | Number of days of operation                            | 365 days           | ENERGY STAR <sup>®</sup> Commercial Kitchen<br>Equipment Calculator                    |
| % Steam                 | Percent of time in Steam<br>Mode                       | 50%                | ENERGY STAR <sup>®</sup> Commercial Kitchen<br>Equipment Calculator                    |
| CookEff                 | Cooking energy efficiency<br>(%)                       | See Table<br>D-102 | Baseline: Average from ENERGY<br>STAR <sup>®</sup> and FSTC Calculators <sup>553</sup> |
| IdleEnergy              | Idle energy rate (kW),<br>(Btu/h)                      |                    |                                                                                        |

<sup>&</sup>lt;sup>553</sup> Baseline cooking efficiencies and idle energy rates were averaged between the ENERGY STAR® Food Service Appliance Calculator and the FSTC food service life cycle cost calculator.

| Capacity                 | Production capacity<br>(lbs./hr)                              | Average from ENERGY STAR <sup>®</sup><br>Qualifying Products Listing                     |
|--------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Preheat<br>Energy        | kWh/day, Btu/day                                              | FSTC Life Cycle & Energy Cost<br>Calculator<br>ENERGY STAR <sup>®</sup> Products Listing |
| LB <sub>oven,steam</sub> | Food cooked per day<br>(lb/day) in steam mode<br>or oven mode | ENERGY STAR <sup>®</sup> Commercial Kitchen<br>Equipment Calculator                      |

General assumptions used for deriving deemed electric and gas savings are defined in the following tables. These values were taken from the ENERGY STAR® Food Service Appliance Calculator as well as the Food Service Technology Center (FSTC) Life Cycle and Energy Cost Calculator.

# D.5.3.3. Incremental Cost

The incremental cost is \$800<sup>554</sup>.

# D.5.3.4. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure was not implemented in Energy Smart programs. As a result, savings are calculated using default values from FSTC. If this measure is added to Energy Smart programs, the evaluation should include an assessment of actual usage schedules to replace the default FSTC schedule values.

<sup>&</sup>lt;sup>554</sup>ENERGY STAR Commercial Food Service Calculator

## D.5.4.1. Measure Description

This measure applies to ENERGY STAR® or its equivalent electric commercial opendeep fat fryers in retrofit and new construction applications. Commercial fryers consist of a reservoir of cooking oil that allows food to be fully submerged without touching the bottom of the vessel. Electric fryers use a heating element immersed in the cooking oil.

High efficiency standard and large vat fryers offer shorter cook times and higher production rates through the use of advanced burner and heat exchanger design. Standby losses are reduced in more efficient models through the use of fry pot insulation.

# D.5.4.2. Baseline & Efficiency Standard

Key parameters for defining fryer efficiency are Heavy Load Cooking Energy Efficiency and Idle Energy Rate. ENERGY STAR® requirements apply to a standard fryer and a large vat fryer. A standard fryer measures 14 to 18 inches wide with a vat capacity from 25 to 60 pounds. A large vat fryer measures 18 inches to 24 inches wide with a vat capacity greater than 50 pounds. The ENERGY STAR® criteria should be reviewed on an annual basis to reflect the latest requirements.

There are currently no federal minimum standards for Commercial Fryers, however, ASTM publishes Test Methods<sup>555</sup> that allow uniform procedures to be applied to each commercial cooking appliance for a fair comparison of performance results.

| Performance Parameters                  | ENERGY STAR® Electric Fryer Criteria |                  |  |
|-----------------------------------------|--------------------------------------|------------------|--|
| Fenomiance Farameters                   | Standard Fryers                      | Large Vat Fryers |  |
| Heavy-Load Cooking Energy<br>Efficiency | ≥ 80%                                | ≥ 80%            |  |
| Idle Energy Rate                        | ≤ 1.0 kW                             | ≤ 1.1 kW         |  |

# Table D-104: ENERGY STAR® Criteria556 and FSTC Baseline for Open Deep-VatElectric Fryers

<sup>&</sup>lt;sup>555</sup> The industry standards for energy use and cooking performance of fryers are ASTM Standard Test Method for the Performance of Open Deep Fat Fryers (F1361) and ASTM Standard Test Method for the Performance of Large Vat Fryers (FF2144).

<sup>556</sup> 

# D.5.4.3. Estimated Useful Life (EUL)

According to DEER 2014, commercial fryers are assigned an estimated useful life (EUL) of 12 years.<sup>557</sup>

# D.5.4.4. Calculation of Deemed Savings

Annual savings can be calculated by determining the energy consumed by a standard efficiency fryer as compared with an ENERGY STAR® rated fryer.

$$\Delta kWh = kWhbase - kWheff$$

$$kWh(base or eff) = kWhcooking + kWhidle + kWhpreheat$$

$$kWhcooking = \left(LB \times \frac{Efood}{CookEff}\right) \times Days$$

$$kWhidle = IdleEnergy \times \left(DailyHrs - \frac{LB}{Capacity} - \frac{PreheatTime}{60}\right) \times Days$$

$$kWhpreheat = PreheatEnergy \times Days$$

Key parameters used to compute savings are defined in Table D-105.

<sup>&</sup>lt;sup>557</sup> Database for Energy Efficient Resources, 2008,

http://www.deeresources.com/deer0911planning/downloads/EUL\_Summary\_10-1-08.xls

| Parameter         | Description                       | Value                        | Source                |
|-------------------|-----------------------------------|------------------------------|-----------------------|
| Daily Hrs.        | Daily Operating Hours             | 12 hours                     | FSTC                  |
| Preheat Time      | Time to Preheat (Min)             | 15 Minutes                   | FSTC                  |
| E <sub>food</sub> | ASTM defined Energy to<br>Food    | 0.167 kWh/lb, 570<br>Btu/lb. | FSTC                  |
| Days              | Number of Days of operation       | 365 Days                     | FSTC                  |
| CookEff           | Cooking Energy Efficiency<br>(%)  | See Table D-106              | FSTC                  |
| IdleEnergy        | Idle energy rate (kW),<br>(Btu/h) |                              | FSTC, ENERGY<br>STAR® |
| Capacity          | Production capacity<br>(lbs./hr)  |                              | FSTC                  |
| Preheat Energy    | kWh/day, Btu/day                  |                              | FSTC                  |
| LB                | Food cooked per day<br>(lb/day)   |                              | FSTC                  |

Table D-105: Energy Consumption Related Parameters for Commercial Fryers<sup>558</sup>

General assumptions used for deriving deemed electric and gas savings are defined in the following tables. These values are taken from the ENERGY STAR® Commercial Kitchen Equipment Savings Calculator as well as the Food Service Technology Center (FSTC) work papers and research.

<sup>&</sup>lt;sup>558</sup> Assumptions based on PG&E Commercial Fryers Work Paper developed by FSTC, June 13, 2012

Table D-106: Baseline and Efficient Assumptions for Electric Standard and Large VatFryers

| Parameter                        | Baseline Electric Fryers |           | Efficient Electric Fryers |           |
|----------------------------------|--------------------------|-----------|---------------------------|-----------|
|                                  | Standard                 | Large Vat | Standard                  | Large Vat |
| Preheat Energy (kWh/ft.)         | 2.3                      | 2.5       | 1.7                       | 2.1       |
| Idle Energy Rate (kW/ft.)        | 1.05                     | 1.35      | 1                         | 1.1       |
| Cooking Energy Efficiency (%)    | 75%                      | 70%       | 80%                       | 80%       |
| Production Capacity (lbs./h/ft.) | 65                       | 100       | 70                        | 110       |
| Lbs. of food cooked/day/ft.      | 150                      | 150       | 150                       | 150       |

Peak Demand Savings can be derived by dividing the annual energy savings by the operating Equivalent hours and multiplying by the Coincidence Factor.

$$\Delta kW = \left(\frac{\Delta kWh}{HOURS}\right) \times CF$$

Where:

 $\Delta kWh = Annual energy savings (kWh)$ 

HOURS = Operating equivalent hours = 365 x 12 = 4,380

CF = Coincidence factor = 0.84<sup>559</sup>

#### D.5.4.5. Deemed Savings Values

Deemed savings using the assumptions above are tabulated below. These values are per installed unit based on the type of fryer.

Table D-107: Deemed Savings per Fryer Vat

| Measure Description | Deemed Savings per Fryer<br>Vat |
|---------------------|---------------------------------|
|---------------------|---------------------------------|

<sup>&</sup>lt;sup>559</sup> Coincidence factors utilized in other jurisdictions for Commercial Fryers vary from 0.84 to 1.0. The KEMA report titled "Business Programs: Deemed Savings Parameter Development," November 2009 conducted for Wisconsin Focus on Energy lists Coincidence Factors by building type and identifies food service at 0.84.

|                                          | kWh   | kW   |
|------------------------------------------|-------|------|
| Fryer, Electric, ENERGY STAR®            | 1,057 | 0.2  |
| Fryer, Large Vat, Electric, ENERGY STAR® | 2,659 | 0.51 |

#### D.5.4.6. Incremental Cost

The incremental cost is \$1,200<sup>560</sup>.

#### D.5.4.1. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure was not implemented in Energy Smart programs. As a result, savings are calculated using default values from FSTC. If this measure is added to Energy Smart programs, the evaluation should include an assessment of actual usage schedules to replace the default FSTC schedule values.

<sup>&</sup>lt;sup>560</sup> cost from ENERGY STAR which cites reference as "EPA research on available models using AutoQuotes, 2010" http://www.energystar.gov/index.cfm?fuseaction=find\_a\_product.showProductGroup&pgw\_code=COG

#### **D.5.5. Commercial Steam Cookers**

#### D.5.5.1. Measure Description

This measure applies to ENERGY STAR® or its equivalent electric steam cookers in retrofit and new construction applications. Commercial steam cookers, also known as "compartment steamers," vary in configuration and size based on the number of pans. High efficiency steam cookers offer shorter cook times, higher production rates and reduced heat loss due to better insulation and more efficient steam delivery system.

#### D.5.5.2. Baseline & Efficiency Standard

Key parameters for defining steam cookers efficiency are Heavy Load Cooking Energy Efficiency and Idle Energy Rate. ENERGY STAR® requirements apply to steam cookers based on the pan capacity. These criteria should be reviewed on an annual basis to reflect the latest ENERGY STAR® requirements.

There are currently no federal minimum standards for Commercial Steam Cookers, however, ASTM publishes Test Methods<sup>561</sup> that allow uniform procedures to be applied to each commercial cooking appliance for a fair comparison of performance results.

| Pan Capacity     | Cooking Efficiency | Idle Rate (watts) |
|------------------|--------------------|-------------------|
| 3-pan            | 50%                | 400               |
| 4-pan            | 50%                | 530               |
| 5-pan            | 50%                | 670               |
| 6-pan and larger | 50%                | 800               |

Table D-108: ENERGY STAR® Criteria for Electric Steam Cookers<sup>562</sup>

Table D-109: ENERGY STAR® Criteria for Gas Steam Cookers<sup>563</sup>

| Pan Capacity     | Cooking Efficiency | Idle Rate (Btu/h) |
|------------------|--------------------|-------------------|
| 5-pan            | 38%                | 10,400            |
| 6-pan and larger | 38%                | 12,500            |

<sup>&</sup>lt;sup>561</sup> The industry standard for steam cookers energy use and cooking performance is ASTM Standard F1484-99, Test Method for the Performance of Steam Cookers/

<sup>&</sup>lt;sup>562</sup> ENERGY STAR<sup>®</sup> Commercial Steam Cookers Version 1.2, effective August 1, 2003.

<sup>&</sup>lt;sup>563</sup> ENERGY STAR<sup>®</sup> provides criteria for 3-pan, 4-pan but availability of products in this range is limited or unavailable.

# D.5.5.3. Estimated Useful Life (EUL)

According to DEER 2014, steam cookers are assigned an estimated useful life (EUL) of 12 years.

# D.5.5.4. Calculation of Deemed Savings

Energy savings for steam cookers is derived by determining the total energy consumed by standard steam cooker as compared with an ENERGY STAR® rated steam cooker. Total energy for a steam cooker includes the energy used during cooking, the energy used when the equipment is idling, the energy spent when set in a constant steam mode and the energy required during pre-heat.

$$\Delta Energy = Energybase, total - Energyeff, total$$

Energy(base, total or eff, total) = Energycooking + Energyidle + Energysteam + Energypreheat

where,

$$Energy cooking = LB food \times EfoodCook Eff \times Days$$

 $Energyidle = (1 - \%Steam) \times IdleEnergy \times (DailyHrs - \frac{LBfood}{Capacity} - \frac{PreheatTime}{60}) \times Days$ 

Energysteam

$$= (\%Steam) \times \frac{Capacity \times Efood}{Cook Eff} \\ \times \left( DailyHrs - \frac{LBfood}{Capacity} - \frac{PreheatTime}{60} \right) \times Days$$

General assumptions used for deriving deemed electric savings are defined in the following tables. These values are taken from the ENERGY STAR® Commercial Kitchen Equipment Savings Calculator as well as the Food Service Technology Center (FSTC) work papers and research.

| Parameter          | Description                        | Value                        | Source/Approach    |  |
|--------------------|------------------------------------|------------------------------|--------------------|--|
| Daily Hrs.         | Daily Operating Hours              | 12 hours                     | FSTC               |  |
| Preheat Time       | Steam Cooker Preheat Time<br>(Min) | 15 min                       | FSTC               |  |
| E <sub>food</sub>  | ASTM defined Energy to<br>Food     | 0.0308 kWh/lb, 105<br>Btu/lb | FSTC               |  |
| Days               | Number of days of operation        | 365 days                     | FSTC               |  |
| CookEff            | Cooking energy efficiency<br>(%)   |                              | FSTC               |  |
| IdleEnergy         | Idle energy rate (kW),<br>(Btu/h)  |                              | FSTC, ENERGY STAR® |  |
| %Steam             | Constant Steam energy use          | See Table D-111              | FSTC               |  |
| Capacity           | Production capacity (lb/hr)        |                              | ENERGY STAR®       |  |
| Preheat<br>Energy  | kWh/day, Btu/day                   |                              | ENERGY STAR®       |  |
| LB <sub>food</sub> | Food cooked per day<br>(lb/day)    |                              | ENERGY STAR®       |  |

Table D-110: Energy Consumption Related Parameters for Commercial Steam Cookers

| Parameter                         | Baseline Model | Efficient Electric Model |  |
|-----------------------------------|----------------|--------------------------|--|
| Cooking Efficiency (%)            | 26%            | 50%                      |  |
| Preheat Energy (Btu)              | 1.5            | 1.5                      |  |
| Constant Steam Mode Time (%)      | 0.9            | 0.1                      |  |
| Lbs. of food Cooked/Day           | 100            | 100                      |  |
| Production Capacity (lbs./hr/pan) | 23.33          | 16.67                    |  |
| Idle Energy Rate (kW/pan)         | 0.33           | 0.13                     |  |

Table D-111: Deemed Savings Assumptions for Electric Steam Cookers

Peak Demand Savings can be derived by dividing the annual energy savings by the operating Equivalent hours and multiplying by the Coincidence Factor.

$$\Delta kW = \left(\frac{\Delta kWh}{HOURS}\right) \times CF$$

Where:

 $\Delta kWh$  = Annual energy savings (kWh)

4380 = Operating Equivalent hours = 365 x 12 = 4380 hours

 $0.84^{564}$  = Coincidence Factor (*CF*)

#### D.5.5.5. Deemed Savings Values

Deemed savings are per installed unit based on the number of pans per steam cooker.

| Macaura Description                          | Deemed Savings |                 |
|----------------------------------------------|----------------|-----------------|
| Measure Description                          | kW             | kWh             |
| Steam Cooker, Electric, 3-pan - ENERGY STAR® | 5.4            | 28,214          |
| Steam Cooker, Electric, 4-pan - ENERGY STAR® | 7.3            | 38,081          |
| Steam Cooker, Electric, 5-pan - ENERGY STAR® | 9.2            | 47,948          |
| Steam Cooker, Electric, 6-pan - ENERGY STAR® | 11.1           | 57 <i>,</i> 815 |

<sup>&</sup>lt;sup>564</sup> Coincidence factors utilized in other jurisdictions for Commercial Steam Cookers vary from 0.84 to 1.0. The KEMA report titled "Business Programs: Deemed Savings Parameter Development," November 2009 conducted for Wisconsin Focus on Energy lists Coincidence Factors by building type and identifies food service at 0.84.

### D.5.5.1. Incremental Cost

The incremental cost is \$2,490<sup>565</sup>.

#### D.5.5.1. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure was not implemented in Energy Smart programs. As a result, savings are calculated using default values from FSTC. If this measure is added to Energy Smart programs, the evaluation should include an assessment of actual usage schedules to replace the default FSTC schedule values.

<sup>&</sup>lt;sup>565</sup> 32Source for efficient electric steamer incremental cost is \$2,490 per 2009 PG&E Workpaper - PGECOFST104.1 - Commercial Steam Cooker - Electric and Gas as reference by KEMA in the ComEd C & I TRM.

### D.5.6. Low-Flow Pre-Rinse Spray Valves

#### D.5.6.1. Measure Description

This measure consists of installing low-flow pre-rinse spray valves which reduce hot water use and save energy associated with heating the water. The low-flow pre-rinse spray valves have the same cleaning effect as the existing standard spray valves even though they use less water.

Savings are shown assuming two possible delivery channels:

- 1. Direct install retrofit of functioning equipment
- 2. Downstream rebate measure, replacing failed equipment, new construction.

#### D.5.6.2. Baseline & Efficiency Standard

For direct install (DI) PRSVs, a baseline of 1.60 GPM may be used. This code pre-dates the 2019 code change specifying 1.28 GPM<sup>566</sup>.

For downstream rebates or replace on burnout, the baseline is 1.28 GPM.

The maximum flow rate of program-qualifying low-flow pre-rinse spray valves is 1.07 GPM. To qualify for savings the facility must have electric domestic hot water equipment.

#### D.5.6.3. Estimated Useful Life (EUL)

The effective useful life (EUL) of a PRSV is 5 years.<sup>567</sup>

DI PRSVs may claim two years of remaining useful life (RUL) at the 1.60 baseline, while the last three years must use the 1.28 GPM baseline. This results in a weighted useful life of 3.19 years for direct install PRSVs, using the early replacement baseline.

<sup>&</sup>lt;sup>566</sup> FEMP Performance Requirements for Federal Purchases of Pre-Rinse Spray Valves, Based on ASTM F2324-13: Standard Test Method for Pre-Rinse Spray Valves.

<sup>&</sup>lt;sup>567</sup> FEMP Purchasing Specification for Energy-Efficiency Products, Pre-Rinse Spray Valves: http://www1.eere.energy.gov/femp/pdfs/pseep\_spray\_valves.pdf

#### D.5.6.4. Deemed Savings Values

| Facility Type | Days/Year | Minutes/Day | kWh   | kW    |
|---------------|-----------|-------------|-------|-------|
| Fast Food     | 365       | 45          | 980   | 0.134 |
| Casual Dining | 365       | 105         | 2,287 | 0.251 |
| Institutional | 365       | 210         | 4,574 | 0.376 |
| Dormitory     | 274       | 210         | 3,434 | 0.501 |
| K-12 School   | 200       | 105         | 1,253 | 0.313 |

Table D-113: Deemed Savings – Direct Install

Table D-114: Deemed Savings – Rebate/ROB/NC

| Facility Type | Days/Year | Minutes/Day | kWh   | kW    |
|---------------|-----------|-------------|-------|-------|
| Fast Food     | 365       | 45          | 388   | 0.053 |
| Casual Dining | 365       | 105         | 906   | 0.099 |
| Institutional | 365       | 210         | 1,813 | 0.149 |
| Dormitory     | 274       | 210         | 1,361 | 0.199 |
| K-12 School   | 200       | 105         | 497   | 0.124 |

#### D.5.6.5. Calculation of Deemed Savings

Annual kWh electric and peak kW savings can be calculated using the following equations and

Table D-115 summarizes the needed variables:

$$\Delta kWh = \frac{\rho \times CP \times U \times (FB - FP) \times (TH - TSupply) \times \frac{1}{Et} \times \frac{Days}{Year}}{3412BTU/kWh}$$

$$\Delta kW = \frac{\rho \times CP \times U \times (FB - FP) \times (TH - TSupply) \times \frac{1}{Et} \times P}{3412BTU/kWh}$$

| Parameter           | Description                                                         | Value                          |
|---------------------|---------------------------------------------------------------------|--------------------------------|
| F <sub>B</sub>      | Direct Install Average baseline flow rate of sprayer (GPM)          | 1.60                           |
|                     | Downstream Rebate Average baseline flow rate of sprayer (GPM)       | 1.28                           |
| Fp                  | Average post measure flow rate of sprayer (GPM)                     | 1.07                           |
| Days/Year           | Annual Operating Days for the applications: See Tatype definitions: | able D-116 for building        |
|                     | 1. Fast Food Restaurant                                             | 365 <sup>568</sup>             |
|                     | 2. Casual Dining Restaurant                                         | 365                            |
|                     | 3.Institutional                                                     | 365                            |
|                     | 4. Dormitory                                                        | 274 <sup>569</sup>             |
|                     | 5. K-12 School                                                      | 200                            |
| T <sub>supply</sub> | Average supply (cold) water temperature (°F)                        | 74.8                           |
| T <sub>H</sub>      | Average mixed hot water (after spray valve)<br>temperature (°F)     | 120 <sup>570</sup>             |
| U <sub>B</sub>      | Baseline water usage duration for the following ap                  | oplications:                   |
|                     | 1. Fast Food Restaurant (see Table D-117 - small service)           | 45 min/day/unit <sup>571</sup> |
|                     | 2. Casual Dining Restaurant (see Table D-117-<br>medium service)    | 105 min/day/unit               |

Table D-115: Variables for the Deemed Savings Algorithm

<sup>&</sup>lt;sup>568</sup> Osman S &. Koomey, J. G. , . Lawrence Berkeley National Laboratory 1995. Technology Data Characterizing Water Heating in Commercial Buildings: Application to End-Use Forecasting. December.

<sup>&</sup>lt;sup>569</sup>For dormitories with few occupants in the summer:  $365 \times (9/12) = 274$ .

<sup>&</sup>lt;sup>570</sup> According to ASTM F2324 03 Cleanability Test the optimal operating conditions are at 120ºF.

<sup>&</sup>lt;sup>571</sup> CEE Commercial Kitchens Initiative Program Guidance on Pre-Rinse Valves.

|    | 3. Institutional (see Table D-117- large service)                                           | 210 min/day/unit                                 |
|----|---------------------------------------------------------------------------------------------|--------------------------------------------------|
|    | 4. Dormitory (see Table D-117- large service)                                               |                                                  |
|    | 5. K-12 School (see Table D-117- medium service)                                            | 105 min/day/unit <sup>572</sup>                  |
| ρ  | Density of water 8.33 lbs./Gallon                                                           | 8.33                                             |
| Ср | Heat capacity of water, 1 BTU/lb·°F                                                         | 1                                                |
| Et | Thermal efficiency of water heater                                                          | Default value 0.98 for electric and 0.80 for gas |
|    | Hourly peak demand as a fraction of daily water consumption for the following applications: |                                                  |
|    | 1. Fast food restaurant (Fast Food)                                                         | 0.05 <sup>573</sup>                              |
| Р  | 2. Casual Dining Restaurant (Sit Down Rest.)                                                | 0.04                                             |
|    | 3. Institutional (Nursing Home)                                                             | 0.03                                             |
|    | 4. Dormitory (Sit Down Rest.)                                                               | 0.04                                             |
|    | 5. K-12 School (High School)                                                                | 0.05                                             |

Table D-116: Building Type Definitions

| Building Type | Operating Days per<br>Year | Representative PRSV Usage Examples |
|---------------|----------------------------|------------------------------------|
|               | 365                        |                                    |

<sup>572</sup> School mealtime duration is assumed to be half of that of institutions, assuming that institutions (e.g. prisons, university dining halls, hospitals, nursing homes) serve three meals per day at 70 minutes each, and schools serve breakfast to half of the students and lunch to all, yielding 105 minutes per day.

<sup>573</sup> ASHRAE Handbook 2011. HVAC Applications. Chapter 50 –Service Water Heating. American Society of Heating Refrigeration and Air Conditioning Engineers, Inc. (ASHRAE) 2011. ASHRAE, Inc., Atlanta, GA.

| 1. Fast food<br>restaurant        |     | Establishments engaged in providing food services<br>where patrons order and pay before eating. These<br>facilities typically use disposable serving ware. PRSV<br>are used for rinsing cooking ware, utensils, trays, etc.<br>Examples: Fast food restaurant, supermarket food<br>preparation and food service area, drive-ins, grills,<br>luncheonettes, sandwich, and snack shops.                                                                                           |
|-----------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. Casual<br>dining<br>restaurant | 365 | Establishments primarily engaged in providing food<br>services to customers who order and are served while<br>seated (i.e. waiter/waitress service). These facilities<br>typically use chinaware and use the PRSV to rinse<br>dishes, cooking ware, utensils, trays, etc. Example: Full<br>meal restaurant.                                                                                                                                                                     |
| 3. Institutional                  | 365 | Establishments located in institutional facilities (e.g.<br>nursing homes, hospitals, prisons, military) where food<br>is prepared in large volumes and patrons order food<br>before eating, such as in dining halls and cafeterias.<br>These facilities typically use disposable serving ware<br>and serving trays. PRSVs are used for rinsing cooking<br>ware, utensils, tray, etc. Examples: Nursing home,<br>hospital, prison cafeteria, and military barrack mess<br>hall. |
| 4. Dormitory                      | 274 | Establishments located in higher education facilities<br>where food is prepared in large volumes and patrons<br>order food before eating, such as in dining halls and<br>cafeterias. These facilities typically use disposable<br>serving ware and serving trays. PRSVs are used for<br>rinsing cooking ware, utensils, trays, etc. Example:<br>University dining halls.                                                                                                        |
| 5. K-12 school                    | 200 | Establishments located in K-12 schools where food is<br>prepared in large volumes and patrons order food<br>before eating, such as in dining halls and cafeterias.<br>These facilities typically use disposable serving ware<br>and serving trays. PRSVs are used for rinsing cooking<br>ware, utensils, trays, etc. Example: K-12 school<br>cafeterias                                                                                                                         |

# Table D-117: Daily Operating Hours

| Food Service Operation | Min (Min/Day) | Max (Min/Day) | Average<br>(Min/Day) |
|------------------------|---------------|---------------|----------------------|
|------------------------|---------------|---------------|----------------------|

| Small Service (e.g., quick-service restaurants)                                                    | 30  | 60  | 45  |
|----------------------------------------------------------------------------------------------------|-----|-----|-----|
| Medium Service (e.g., casual dining restaurants)                                                   | 90  | 120 | 105 |
| Large Service (e.g., institutional such as cafeterias in universities, prisons, and nursing homes) | 180 | 240 | 210 |

The following are example calculations for a fast food restaurant in New Orleans using the previous equations.

Direct Install  $\Delta kWh$ 

 $=\frac{8.33 BTU/Gal x 45 minday x (1.60 - 1.07)GPM x (120 - 74.8^{\circ}F)x \left(\frac{1}{0.98}\right) x \frac{365 days}{year}}{3412 BTU/kWh}$ 

 $= 980 \, kWh$ 

Direct Install  $\Delta kW$ 

$$= \frac{0.05 \ x \ 8.33 \ x \ 45 \ minday \ x \ (1.60 - 1.07) GPM \ x \ (120 - 74.8^{\circ}\text{F}) \ x \ \left(\frac{1}{0.98}\right)}{3412 \ BTU/kWh}$$
$$= 0.134 \ kW$$

 $ROB \Delta kWh$ 

 $=\frac{8.33 BTU/Gal x 45 minday x (1.28 - 1.07) GPM x (120 - 74.8^{\circ}F) x \left(\frac{1}{0.98}\right) x \frac{365 days}{year}}{3412 BTU/kWh}$ 

 $= 388 \, kWh$ 

Direct Install  $\Delta kW$ 

$$=\frac{0.05 \ x \ 8.33 \ x \ 45 \ minday \ x \ (1.28 - 1.07) GPM \ x \ (120 - 74.8^{\circ}\text{F}) \ x \ \left(\frac{1}{0.98}\right)}{3412 \ BTU/kWh}$$

 $= 0..053 \, kW$ 

*Lfetime*  $\Delta kWh = 980 \ kWh * 2 \ years \ RUL + 388 * 3 \ years = 3,124 \ kWh$ 

#### D.5.6.6. Incremental Cost

For direct install, program-actual costs should be used when available. If unknown, use a default value of \$92.90<sup>574</sup>.

For downstream rebate / replace on burnout / new construction, use \$46.12.575

#### D.5.6.7. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure was not implemented in Energy Smart programs. If this measure is incorporated into Energy Smart, the TPE recommends studying the following parameters:

- DHW setpoint;
- Flow rate of installed PRSVs;
- Flow rate of baseline PRSVs (to be collected by the program implementer and sent to the TPE for testing).

<sup>&</sup>lt;sup>574</sup> Average of costs recognized by Ameren Missouri (\$85.8) and KCPL (\$100).

<sup>&</sup>lt;sup>575</sup> CA DEER Workpaper SWFS013-01, authored by Southwest Gas (2010)

#### D.5.7. Demand Control Ventilation (Kitchens)

#### D.5.7.1. Measure Description

Commercial Demand Control Kitchen Ventilation (DCKV) systems are a technology implemented in a variety of commercial kitchen types in order to reduce energy use associated with ventilation fan energy use as well as the HVAC energy use associated with conditioning the requisite make up air (MAU). The systems incorporate sensors and variable speed controls in order to operate the ventilation equipment only when it is necessary.

#### D.5.7.2. Baseline and Efficiency Standards

The baseline for this measure is a commercial kitchen exhaust fan controlled with a simple on/off switch that operates at one fixed speed and can optionally include an MAU to resupply a portion of the ventilation air. The efficient case is a ventilation fan controlled by a DCKV system which modifies the fan speed depending on the requirements within the kitchen and cooking appliances.

| Building Type                    | Energy Savings<br>(kWh/kW <sub>exhaust</sub> ) |           | Demand<br>Savings<br>(kW/kW <sub>exhaust</sub> ) |           | Heating<br>Savings <sup>576</sup> | Cooling<br>Savings                |  |
|----------------------------------|------------------------------------------------|-----------|--------------------------------------------------|-----------|-----------------------------------|-----------------------------------|--|
|                                  | MAU                                            | No<br>MAU | MAU                                              | No<br>MAU | (KWh /<br>KW <sub>exhaust</sub> ) | (kWh /<br>kW <sub>exhaust</sub> ) |  |
| Supermarket                      | 4,731                                          | 3,519     | 0.975                                            | 0.725     | 1,479                             | 1,925                             |  |
| Restaurant <sup>577</sup>        | 5,492                                          | 4,085     | 0.975                                            | 0.725     | 1,717                             | 2,235                             |  |
| Hotel                            | 8,022                                          | 5,967     | 0.975                                            | 0.725     | 2,507                             | 3,264                             |  |
| Campus                           | 4,808                                          | 3,576     | 0.975                                            | 0.725     | 1,503                             | 1,957                             |  |
| K-12 School, Inc Summer Sessions | 3,205                                          | 2,384     | 0.975                                            | 0.725     | 1,002                             | 1,304                             |  |
| K-12 School, No Summer Sessions  | 2,340                                          | 1,740     | 0.975                                            | 0.725     | 731                               | 952                               |  |

#### D.5.7.3. Deemed Savings Values

Table D-118: Deemed Savings per Rated Exhaust kW by Building Type, with or withoutDedicated MAU

\*If exhaust fan is only rated in horsepower, use the conversion 1 hp = 0.746 kW\*

<sup>&</sup>lt;sup>576</sup> Heating and cooling savings are assumed to be the same with or without an MAU. This is because any exhaust air will be replaced with outside air by the MAU or via increased infiltration proportional to exhaust airflow and thus will result in the same impact on heating and cooling equipment regardless of infiltration method. The savings calculation methodology was obtained from Work Paper SCE13CC008 (discussed below) and the AR TRM which also did not differentiate between MAU and non-MAU facilities.

<sup>&</sup>lt;sup>577</sup> Source data (discussed below) included various restaurant types thus this value is applicable for all full service and fast-food kitchens.

# D.5.7.4. Calculation of Deemed Savings

Deemed demand and annual savings are based on average fan kW reductions, HVAC savings, and hours of use by kitchen type as calculated using Southern California Edison work paper SCE13CC008<sup>578</sup>, and the AR TRM 8.1. Average fan energy savings (kW/kW) were calculated based on whether the kitchen had a dedicated MAU or not. The hours of use and annual days of operation were calculated from 72 surveyed sites with DCKV systems as well as 11 metered sites. For the School hours of use and days of operation, the AR TRM 8.1 was referenced.

| Building Type                    | Annual<br>Operating<br>Hours |
|----------------------------------|------------------------------|
| Supermarket                      | 4,864                        |
| Restaurant                       | 5,652                        |
| Hotel                            | 8,226                        |
| College / University             | 4,939                        |
| Institutional                    | 6,789                        |
| K-12 School, Inc Summer Sessions | 3,288                        |
| K-12 School, No Summer Sessions  | 2,400                        |

Table D-119: Annual Hours of Operation by Building Type

Using the savings data from SCE13CC008 for 16 climate zones in CA, along with Heating Degree Day (HDD) and Cooling Degree Day (CDD) data for these climate zones<sup>579</sup>, a linear regression was performed to calibrate heating and cooling load with New Orleans weather. The subsequent regression models had R-square values of 0.969 and 0.890 for heating and cooling energy load respectively thus indicating a high degree of confidence in calculated loads for New Orleans. The regressed values were then normalized to the average rated exhaust horsepower of 14.3 HP based on the 72 sites' data in SCE13CC008, and divided by the 17 hours per day and 365 days per year as input into the Outdoor Air Calculator by the work paper author. Thus, using these HVAC load values, the operation profiles calculated in SCE13CC008, the deemed HVAC savings values were calculated for each building type.

<sup>&</sup>lt;sup>578</sup> "Commercial Kitchen Exhaust Hoods Demand Controlled Ventilation." Work Paper SCE13CC008. Southern California Edison Company. 11 June, 2014 Accessed from: http://www.deeresources.net/workpapers

<sup>&</sup>lt;sup>579</sup> "The Pacific Energy Center's Guide to: California Climate Zones and Bioclimatic Design." October 2006. Retrieved from:

https://www.pge.com/includes/docs/pdfs/about/edusafety/training/pec/toolbox/arch/climate/california\_climate \_zones\_01-16.pdf

| Fan Type | Demand Savings<br>(kW/kW <sub>exhaust</sub> ) | Heating Savings<br>(kWh/kW/hr/day) | Cooling Savings<br>(kWh/kW/hr/day) |
|----------|-----------------------------------------------|------------------------------------|------------------------------------|
| MAU      | 0.975                                         | 0.305                              | 0.397                              |
| No MAU   | 0.725                                         | 0.305                              | 0.397                              |

Table D-120: Regressed Load Savings Calibrated for NOLA

 $Savings_{kWh} = Demand Savings \times CAP \times AOH$  $Savings_{kW} = Demand Savings \times CAP$ 

Where:

*Demand Savings* = Fan demand reduction per rated kW of exhaust fan, kW/kW<sub>exhaust</sub>. See Table D-120.

CAP = Rated capacity of exhaust fan, kW

AOH = Annual Operating Hour of operation, day(s). See Table D-119.

$$kWh Savings_{Heating} = \frac{Heating Savings \times kW_{exhaust} \times AOH}{Eff_{heat}}$$
$$kWh Savings_{Cooling} = \frac{Cooling Savings \times kW_{exhau} \times AOH}{Eff_{cool}}$$

Where:

*Heat Reduction* = Heating energy savings per rated exhaust kW, kWh/kW/hr/day. See Table D-120.

*Cool Reduction* = Cooling energy savings per rated exhaust kW, kWh/kW/hr/day. See Table D-120.

kW<sub>exhaust</sub> = Rated kW of the installed exhaust fan, kW

AOH = Annual Operating Hour of operation. See Table D-119.

*Eff<sub>heat</sub>* = Efficiency of heating system (%)

*Eff<sub>cool</sub>* = Efficiency of cooling system (%)

# D.5.7.5. Estimated Useful Life (EUL)

According to DEER 2014 the EUL of this measure is 15 years<sup>580</sup>.

# D.5.7.6. Incremental Cost

The incremental cost is \$2,383 per exhaust fan rated HP<sup>581</sup>.

<sup>&</sup>lt;sup>580</sup> DEER 2014 for Variable Speed Drive controlled by CO2 sensor for HVAC-VSD-DCV

<sup>&</sup>lt;sup>581</sup> "Commercial Kitchen Exhaust Hoods Demand Controlled Ventilation." Work Paper SCE13CC008. Southern California Edison Company. 11 June, 2014

#### D.5.8. ENERGY STAR® Hot Food Holding Cabinets

#### D.5.8.1. Measure Description

Hot Food Holding Cabinets (HFHC) keep cooked foods hot, fresh, and out of temperature danger zones until customers are ready to order. Cabinets that meet the ENERGY STAR requirements often incorporate better insulation which reduces heat loss, offers better temperature uniformity within the cabinet from top to bottom and keeps the external cabinet cooler. In addition, many certified cabinets may include additional energy saving devices such as magnetic door gaskets, auto-door closures, or Dutch doors. Savings occur from reduced idle energy consumption. ENERGY STAR models are, on average, 70 percent more energy efficient than standard models.

# D.5.8.1.1. Qualification Criteria

To qualify for this measure the installed equipment must be an ENERGY STAR certified HFHC. Qualification is based upon idle energy consumption per given interior cabinet volumes, measured in cubic feet. Measuring cabinet interior volume: Commercial hot food holding cabinet interior volume shall be calculated using straight-line segments following the gross interior dimensions of the appliance and using Equation 3 below. Interior volume shall not account for racks, air plenums or other interior parts.

#### Equation 3: Interior Volume

Interior Volume = Interior Height × Interior Width × Interior Depth

| Table D-121: Maximum | Idle Enerav  | Requirements for    | r ENERGY S | STAR Qualification |
|----------------------|--------------|---------------------|------------|--------------------|
|                      | iuic Liicigy | ricquire mento into |            |                    |

| Product Interior Volume<br>(Cubic Feet) | Product Idle Energy<br>Consumption Rate<br>(Watts) |
|-----------------------------------------|----------------------------------------------------|
| 0 < Volume < 13                         | ≤ 21.5 x Volume                                    |
| 13 ≤ Volume <28                         | ≤ (2.0 x Volume) + 254.0                           |
| 28 ≤ Volume                             | ≤ (3.8 x Volume) + 203.5                           |

# D.5.8.2. Baseline

The baseline equipment is an electric HFHC that's not ENERGY STAR certified and at end of its life. Baseline energy use is 40 watts per cubic foot<sup>582</sup>.

<sup>582</sup> 

https://www.energystar.gov/sites/default/files/asset/document/commercial\_kitchen\_equipment\_calculator\_0.xls x

# D.5.8.3. Estimated Useful Life (EUL)

According to ENERGY STAR<sup>583</sup>, the estimated useful life for HFHC is 12 years.

#### D.5.8.4. Deemed Savings Values

Custom calculation below, otherwise use deemed values depending on HFHC size:

| Cabinet Size                   | Savings<br>(kWh) | Savings<br>(kW) |
|--------------------------------|------------------|-----------------|
| Full Size (20 cubic feet) HFHC | 2,772            | 0.204           |
| ¾ Size (12 cubic feet) HFHC    | 1,216            | 0.090           |
| 1/2 Size (8 cubic feet) HFHC   | 811              | 0.060           |

Table D-122: HFHC Deemed Savings

#### D.5.8.5. Calculation of Deemed Savings

#### D.5.8.5.1. Energy Savings

 $kWh_{savings} = Baseline_{kWh} - Efficient_{kWh}$ 

Where:

$$Baseline_{kWh} = \frac{Power_{Baseline} \times Hours_{Day} \times Days}{1000}$$

And

$$Efficient_{kWh} = \frac{Power_{ENERGY STAR} \times Hours_{Day} \times Days}{1000}$$

#### Where:

*Hours*<sub>Dav</sub> = Custom. If Unknown, use  $15^2$ .

Days = Custom. If Unknown, use  $365.25^2$ .

 $Power_{Baseline}$  = Baseline power consumption = Cubic feet × 40W/ft<sup>3</sup>

*Power*<sub>ENERGY STAR</sub> = Custom idle power consumption using ENERGY STAR idle power consumption (see Table D-121).

<sup>&</sup>lt;sup>583</sup> ENERGY STAR Commercial Kitchen Equipment Calculator:

https://www.energystar.gov/sites/default/files/asset/document/commercial\_kitchen\_equipment\_calculator\_0.xls x

#### D.5.8.5.2. Demand Savings

Demand savings are calculated using the following equation:

$$kW_{savings} = \frac{kWh_{savings}}{AOH} \times CF$$

CF = Coincidence factor<sup>584</sup>

| Location                  | CF   |
|---------------------------|------|
| Fast Food Limited Menu    | 0.30 |
| Fast Food Expanded Menu   | 0.40 |
| Pizza                     | 0.50 |
| Full Service Limited Menu | 0.50 |
| Full Service Expanded     | 0.40 |
| Cafeteria                 | 0.40 |

Table D-123: HFHC Peak Coincidence Factors

For example, if an 18ft<sup>3</sup> HFHC is installed in a cafeteria the measure would save:

kWh = ((18\*40)-((18\*2.0)+254)) × 15 × 365.25/1000

= (720 – 290) × 15 × 365.25/1000

=2,356 kWh

And

 $kW = (2,356kWh/(15*365.25)) \times 0.40$ 

=0.43 × 0.40

=0 .17 kW

#### D.5.8.6. Incremental Cost

The incremental cost is \$902<sup>585</sup>.

<sup>&</sup>lt;sup>584</sup> Values taken from Minnesota Technical Reference Manual, 'Electric Oven and Range' measure and is based upon "Project on Restaurant Energy Performance-End-Use Monitoring and Analysis", Appendixes I and II, Claar, et. al., May 1985

<sup>&</sup>lt;sup>585</sup> Based on the difference between a similar ENERGY STAR and non-qualifying model, EPA research using AutoQuotes, July 2016

# D.5.9. ENERGY STAR® Commercial Dishwashers

#### D.5.9.1. Measure Description

This measure defines energy savings and peak reductions from ENERGY STAR® commercial dishwashers in retrofit and new construction applications. Commercial dishwashers, also known as "warewashers," fall into two categories of machine type: stationary rack machines (under counter, single tank/door type, glasswashing, and pot, pan and utensil) and conveyor machines (rack and rackless/flight type, single and multiple tank). Key parameters used to characterize the efficient performance of commercial dishwashers are Idle Energy Rate and Water Consumption Rate. Energy savings from commercial dishwashers is primarily attributed to reducing the amount of water used which reduces the energy consumed to heat that water. This is accomplished via combinations of the following:

- Improved nozzle and rinse arm design
- Auxiliary pre-rinse section
- Heat recovery technology
- Sophisticated controls and sensors
- Effective curtain designs to minimize airflow
- Auto-mode capabilities, including low power mode during long periods of idle

**Eligible Products:** High temp (hot water sanitizing), low temp (chemical sanitizing) machines, and dual sanitizing machines.

**Ineligible Products:** Steam, gas, and other non-electric models; dishwashers intended for use in residential or laboratory applications.

#### D.5.9.2. Baseline & Efficiency Standard

Descriptions of commercial dishwasher configurations, as defined by ENERGY STAR, are as follows:

**Stationary Rack Machines** – A dishwashing machine in which a rack of dishes remains stationary within the machine while subjected to sequential wash and rinse sprays. This definition also applies to machines in which the rack revolves on an axis during the wash and rinse cycles.

- Under Counter A stationary rack machine with an overall height of 38 inches or less, designed to be installed under food preparation workspaces. Under counter dishwashers can be either chemical or hot water sanitizing, with an internal or external booster heater for the latter.
- Stationary Single Tank Door A stationary rack machine designed to accept a standard 20" x 20" dish rack, which requires the raising of a door to place the rack

into the wash/rinse chamber. Closing of the door typically initiates the wash cycle. Single tank door type models can be either chemical or hot water sanitizing, with an internal or external booster heater for the latter.

• **Pot, Pan, and Utensil** – A stationary rack, door type machine designed to clean and sanitize pots, pans, and kitchen utensils.

**Conveyor Machines** – A dishwashing machine that employs a conveyor or similar mechanism to carry dishes through a series of wash and rinse sprays within the machine.

- Single Tank Conveyor A conveyor machine that includes a tank for wash water followed by a sanitizing rinse (pumped or fresh water). This type of machine does not have a pumped rinse tank. This type of machine may include a pre-washing section ahead of the washing section and an auxiliary rinse section, for purposes of reusing the sanitizing rinse water, between the power rinse and sanitizing rinse sections. Single tank conveyor dishwashers can be either chemical or hot water sanitizing, with an internal or external booster heater for the latter.
- Multiple Tank Conveyor A conveyor type machine that includes one or more tanks for wash water and one or more tanks for pumped rinse water, followed by a sanitizing rinse. This type of machine may include a pre-washing section before the washing section and an auxiliary rinse section, for purposes of reusing the sanitizing rinse water, between the power rinse and sanitizing rinse sections. Multiple tank conveyor dishwashers can be either chemical or hot water sanitizing, with an internal or external booster heater for the latter.

Each of these machines are further classified by their rinse water washing strategies; high temperature, sanitized by heat with boost heating (~180°) and low temperature, sanitized by chemicals (~120°-140°). While less common, dual-method sanitization machines are also available.

There are currently no federal minimum standards for Commercial Dishwashers, however, the ASTM and the National Sanitation Foundation (NSF) publishes Test Methods<sup>586</sup> that allow uniform procedures to be applied to each commercial dishwasher for a fair comparison of performance results. To meet the strict efficiency requirements developed by the U.S. Environmental Protection Agency's ENERGY STAR program, manufacturers use high quality components and employ innovative designs. All ENERGY STAR certified machines are certified to NSF 3 sanitation standards.

<sup>&</sup>lt;sup>586</sup> The industry standards for energy use is ASTM Standard F1920, Standard Test Method for Energy Performance of Rack Conveyor, Hot Water Sanitizing, Commercial Dishwashing Machines, ASTM Standard F1696, Standard Test Method for Energy Performance of Single-Rack Hot Water Sanitizing, Door-Type Commercial Dishwashing Machines and NSF/ANSI 3-2007 Standard, Commercial Warewashing Equipment.

| Machine Type                | Requii                                 | o Efficiency<br>rements<br>80°F) | Low Temp Efficiency<br>Requirements<br>(~120°F – 140°F) |                       |  |
|-----------------------------|----------------------------------------|----------------------------------|---------------------------------------------------------|-----------------------|--|
| maonine Type                | Tank HeaterWaterIdle EnergyConsumption |                                  | Tank Heater Idle<br>Energy Rate<br>(kW)                 | Water<br>Consumption  |  |
| Under Counter               | ≤ 0.50                                 | ≤ 0.86 GPR                       | ≤ 0.50                                                  | ≤ 1.19 GPR            |  |
| Stationary Single Tank Door | ≤ 0.70                                 | ≤ 0.89 GPR                       | ≤ 0.60                                                  | ≤ 1.18 GPR            |  |
| Pot, Pan, and Utensil       | <u>&lt;</u> 1.20                       | <u>&lt;</u> 0.58 GPSF            | <u>&lt;</u> 1.00                                        | <u>&lt;</u> 0.58 GPSF |  |
| Single Tank Conveyor        | ≤ 1.50                                 | ≤ 0.70 GPR                       | ≤ 1.50                                                  | ≤ 0.79 GPR            |  |
| Multiple Tank Conveyor      | ≤ 2.25                                 | ≤ 0.54 GPR                       | ≤ 2.00                                                  | ≤ 0.54 GPR            |  |

Table D-124: ENERGY STAR<sup>587</sup> Requirements for Commercial Dishwashers<sup>588</sup>

*GPR* = Gallons per Rack

GPSF = Gallons per Square Foot of Rack

GPH = Gallons per Hour

# D.5.9.3. Estimated Useful Life<sup>589</sup> (EUL)

The estimated useful life (EUL) of commercial dishwashers vary based on the machine type. Under Counters have an EUL of 10 years, Door-Types have an EUL of 15 years and Conveyor Types have an EUL of 20 years.

# D.5.9.4. Calculation of Deemed Savings<sup>590</sup>

Annual savings were calculated by determining the energy consumed for baseline commercial dishwashers compared against ENERGY STAR performance requirements. The annual energy consumption for commercial dishwashers was determined by the summation of the annual energy used for water heating, the booster heater and when the machine is in idle mode.

$$E_{total} = E_{DHW} + E_{boost} + E_{idle}$$

These are defined as follows for both gas and electric calculations:

<sup>&</sup>lt;sup>587</sup> ENERGY STAR<sup>®</sup> Commercial Dishwashers Version 2.0 effective as of February 1, 2013. <u>http://www.energystar.gov/index.cfm?c=comm\_dishwashers.pr\_crit\_comm\_dishwashers</u>.

<sup>&</sup>lt;sup>588</sup> ENERGY STAR<sup>®</sup> Commercial Dishwashers Version 2.0 includes 3 new dishwasher types: 1) Pot, Pan, and Utensil, 2) Single Tank Flight Type, and 3) Multiple Tank Flight Type. These new dishwasher types will be incorporated into the measure once they are incorporated into the ENERGY STAR<sup>®</sup> Commercial Dishwasher Savings Calculator.

<sup>&</sup>lt;sup>589</sup> EUL values from CEE Program Design Guidance-Commercial Dishwashers, updated 5/11/2009.

<sup>&</sup>lt;sup>590</sup> Assumptions from the ENERGY STAR<sup>®</sup> Commercial Dishwashers Savings Calculator (May 2013 update).

$$E_{DHW} = \frac{\left(RPD \times GPR \times Days \times d \times c_p \times \Delta T_{DHW}\right)}{EF_{DHW} \times Conversion \ Factor}$$

$$E_{BOOST} = \frac{(RPD \ x \ GPR \ x \ Days \ x \ d \ x \ c_p \ x \ \Delta T_{BOOST})}{EF_{BOOST} \ x \ Conversion \ Factor}$$

(only applicable in High Temperature Machines)

$$E_{idle} = kW_{idle} \times \left(HRS - \frac{(RPD \times MPR)}{60}\right) \times Days$$

Where:

RPD = Average number of racks washed per day, varies by machine

*GPR* = Average gallons per rack used by dishwasher, varies by machine

Days = Operating Day per Year = 365 days/yr.

d = Density of water, constant value 8.34 lb/gal

 $c_p$  = Specific heat of water, 1 Btu/lb-°F

 $\Delta T_{DHW}$  = Temperature rise at primary water heater, 70°F (default)

 $\Delta T_{BOOST}$  = Temperature rise at booster heater, 40°F (default)

 $EF_{DHW}$  = Efficiency of building water heater, 98% for electric (default), 80% for gas

 $EF_{BOOST}$  = Efficiency of booster water heater, 98% for electric (default), 80% for gas

Conversion Factor = 100,000 Btu/therm or 3,413 Btu/kWh.

 $kW_{idle}$  = Energy consumed while idle, varies by machine

*HRS* = Hours per day dishwasher operates, 18 hours (default)

*MPR* = Time to wash one rack of dishes, minutes per rack, varies by machines

60 = Minutes per hour

To determine electric savings for the different types of commercial dishwashers, Table D-125 and

Table D-126 list the assumptions made for the machine dependent parameters; Idle Power, Racks per Day, Minutes per Rack and Gallons per Rack. Table D-125 lists the parameters for machines that employ Low Temperature cleaning and

# Table D-126 lists parameters for machines that employ High Temperature cleaning.Table D-125: Default Assumptions for Low Temperature, Electric and Gas WaterHeaters

| Performance | Under Counter |        | Single Tank Door |        | -    | e Tank<br>veyor | Multi Tank | Conveyor |
|-------------|---------------|--------|------------------|--------|------|-----------------|------------|----------|
|             | Base          | Change | Base             | Change | Base | Change          | Base       | Change   |
| Idle Power  | 0.5           | 0.5    | 0.6              | 0.6    | 1.6  | 1.5             | 2.0        | 2.0      |
| Racks/Day   | 75            | 75     | 280              | 280    | 400  | 400             | 600        | 600      |
| Min/Rack    | 2.0           | 2.0    | 1.5              | 1.5    | 0.3  | 0.3             | 0.3        | 0.3      |
| Gal/Rack    | 1.73          | 1.19   | 2.1              | 1.18   | 1.31 | 0.79            | 1.04       | 0.54     |

# Table D-126: Default Assumptions for High Temperature, Electric and Gas WaterHeaters4

| Performance | Under Counter |        | -    | le Tank<br>oor | -    | le Tank<br>iveyor |      | ti Tank<br>nveyor | -    | Pan, and<br>ensil |
|-------------|---------------|--------|------|----------------|------|-------------------|------|-------------------|------|-------------------|
|             | Base          | Change | Base | Change         | Base | Change            | Base | Change            | Base | Change            |
| Idle Power  | 0.76          | 0.5    | 0.87 | 0.7            | 1.93 | 1.5               | 2.59 | 2.25              | 1.2  | 1.2               |
| Racks/Day   | 75            | 75     | 280  | 280            | 400  | 400               | 600  | 600               | 280  | 280               |
| Min/Rack    | 2.0           | 2.0    | 1.0  | 1.0            | 0.3  | 0.3               | 0.2  | 0.2               | 3.0  | 3.0               |
| Gal/Rack    | 1.09          | 0.86   | 1.29 | 0.89           | 0.87 | 0.70              | 0.97 | 0.54              | 0.70 | 0.58              |

Peak Demand Savings can be derived by dividing the annual energy savings by the operating hours and multiplying by the Coincidence Factor.

$$\Delta kW = \left(\frac{\Delta kWh}{HRS}\right) \times CF$$

Where:

 $\Delta kWh$  = Annual energy savings (kWh)

HRS = Operating hours = 365 x 18 = 6,570 hours (default)

CF = Coincidence Factor = 0.84 (default)<sup>591</sup>

# D.5.9.5. Deemed Savings Values

If specific equipment data is not available for use with the measure savings calculations described above, deemed electric and gas savings from ENERGY STAR commercial

<sup>&</sup>lt;sup>591</sup> The KEMA report titled "Business Programs: Deemed Savings Parameter Development," November 2009 conducted for Wisconsin Focus on Energy lists Coincidence Factors by building type and identifies food service at 0.84.

dishwashers can be seen in Table D-127. Equipment savings are defined based on the following information:

- Dishwasher Type (Under Counter, Stationary Single Tank Door, Pots, Pans, and Utensils, Single Tank Conveyor, or Multiple Tank Conveyor)
- Water Temperature (Low Temperature or High Temperature)
- Building Water Heater Fuel (Electric or Gas)
- Booster Water Heater Fuel (Electric or Gas) Only applicable in High Temperature Units
- Default Assumptions from ENERGY STAR Commercial Dishwasher Savings Calculator.

| Water<br>Temperature | Water Heater<br>Fuel/Booster<br>Heater Fuel | Measure Description         | kWh    | kW  | Therms |
|----------------------|---------------------------------------------|-----------------------------|--------|-----|--------|
|                      |                                             | Under Counter               | 3,171  | 0.4 |        |
|                      | Electric /                                  | Stationary Single Tank Door | 11,863 | 1.5 |        |
|                      | Electric                                    | Pots, Pans, and Utensils    | 3,311  | 0.4 |        |
|                      | Electric                                    | Single Tank Conveyor        | 9,212  | 1.2 |        |
|                      |                                             | Multiple Tank Conveyor      | 27,408 | 3.5 |        |
|                      |                                             | Under Counter               | 2,089  | 0.3 | 45.2   |
| High                 | Carl                                        | Stationary Single Tank Door | 4,840  | 0.6 | 294    |
| High<br>Temperature  | Gas /<br>Electric                           | Pots, Pans, and Utensils    | 1,204  | 0.2 | 88     |
| remperature          | Electric                                    | Single Tank Conveyor        | 4,948  | 0.6 | 178    |
|                      |                                             | Multiple Tank Conveyor      | 11,230 | 1.4 | 676    |
|                      |                                             | Under Counter               | 1,471  | 0.2 | 71     |
|                      | Carl                                        | Stationary Single Tank Door | 827    | 0.1 | 461    |
|                      | Gas /<br>Gas                                | Pots, Pans, and Utensils    |        |     | 138    |
|                      | Gas                                         | Single Tank Conveyor        | 2,511  | 0.3 | 280    |
|                      |                                             | Multiple Tank Conveyor      | 1,986  | 0.3 | 1,063  |
|                      |                                             | Under Counter               | 2,540  | 0.3 |        |
|                      | Electric /                                  | Stationary Single Tank Door | 16,153 | 2.1 |        |
|                      | No Booster                                  | Single Tank Conveyor        | 13,626 | 1.7 |        |
| Low                  |                                             | Multiple Tank Conveyor      | 18,811 | 2.4 |        |
| Temperature          |                                             | Under Counter               |        |     | 106    |
|                      | Gas/                                        | Stationary Single Tank Door |        |     | 675    |
|                      | No Booster                                  | Single Tank Conveyor        | 584    | 0.1 | 545    |
|                      |                                             | Multiple Tank Conveyor      |        |     | 787    |

Table D-127: Deemed Savings for Commercial Dishwashers

## D.5.9.6. Incremental Cost

|      | Dishwasher Type             | Incremental<br>Cost |
|------|-----------------------------|---------------------|
|      | Under Counter               | \$50                |
| Low  | Stationary Single Tank Door | \$0                 |
| Temp | Single Tank Conveyor        | \$0                 |
|      | Multi Tank Conveyor         | \$970               |
|      | Under Counter               | \$120               |
| High | Stationary Single Tank Door | \$770               |
| Temp | Single Tank Conveyor        | \$2,050             |
| remp | Multi Tank Conveyor         | \$970               |
|      | Pot, Pan, and Utensil       | \$1,710             |

The incremental capital cost for this measure is provided below:<sup>592</sup>

# D.5.9.7. Future Studies

This measure uses ENERGY STAR default inputs. Deemed savings should be updated to align with any applicable code updates.

<sup>&</sup>lt;sup>592</sup> Measure cost from ENERGY STAR Commercial Kitchen Equipment Savings Calculator which cites reference as "EPA research on available models using AutoQuotes, 2012"

#### D.5.10. ENERGY STAR® Commercial Ice Makers

#### D.5.10.1. Measure Description

This measure involves ENERGY STAR® air-cooled commercial ice makers in retrofit and new construction applications. Eligible equipment types are batch type (also known as cube-type) and continuous type (also known as nugget or flakers). Batchtype ice makers harvest ice with alternating freezing and harvesting periods and can be used in a variety of applications but are generally used to generate ice for use in beverages. Both types of equipment qualify based on their configuration as ice-making heads (IMHs), remote condensing units (RCUs) and self-contained units (SCUs). Remote condensing units designed for connection to a remote condenser rack are also eligible.

# D.5.10.2. Baseline and Efficiency Standards

The ENERGY STAR®<sup>593</sup> criteria for ice makers define efficiency requirements for both energy and potable water use. The baseline standard for batch ice makers are federal minimum levels that went into effect January 28, 2018. The following four tables show the standards and requirements for equipment manufactured on or after January 28, 2018.

| Equipment Type            | Ice Harvest Rate (H)<br>(Ibs. of ice / 24 hrs.) | Batch Ice Makers<br>Consumption Rate<br>(kWh/100 Ibs. ice) |
|---------------------------|-------------------------------------------------|------------------------------------------------------------|
|                           | < 300                                           | 10.0 – 0.01233H                                            |
| Ico Making Hoads          | ≥ 300 and < 800                                 | 7.05 – 0.0025H                                             |
| Ice Making Heads          | ≥ 800 and < 1,500                               | 5.55 – 0.00063H                                            |
|                           | ≥ 1,500                                         | 4.61                                                       |
| Remote Condensing Units   | < 988                                           | 7.97 – 0.00342H                                            |
| (w/out remote compressor) | ≥ 988 and < 4,000                               | 4.59                                                       |
| Remote Condensing Units   | < 930                                           | 7.97 – 0.00342H                                            |
| (w/ remote compressor)    | ≥ 934 and < 4,000                               | 4.79                                                       |
|                           | < 110                                           | 14.79 – 0.0469H                                            |
| Self-Contained Units      | ≥ 110 and < 200                                 | 12.42 – 0.02533H                                           |
|                           | ≥ 200 and < 4,000                               | 7.35                                                       |

Table D-128: Federal Minimum Standards for Air-Cooled Batch Ice Makers

<sup>&</sup>lt;sup>593</sup> ENERGY STAR<sup>®</sup> Commercial Ice Makers Version 3.0, effective on January 28, 2018.

| Table D-129: Feder | al Minimum S | Standards for | Air-Cooled | Continuous Ice Makers |
|--------------------|--------------|---------------|------------|-----------------------|
|--------------------|--------------|---------------|------------|-----------------------|

| Equipment Type            | Ice Harvest Rate (H)<br>(Ibs. of ice / 24 hrs.) | Batch Ice Makers<br>Consumption Rate<br>(kWh/100 lbs. ice) |
|---------------------------|-------------------------------------------------|------------------------------------------------------------|
|                           | <310                                            | 9.19-0.00629H                                              |
| Ice Making Heads          | ≥310 and <820                                   | 8.23-0.0032H                                               |
|                           | ≥4,000                                          | 5.61                                                       |
| Remote Condensing Units   | <800                                            | 9.7-0.0058H                                                |
| (w/out remote compressor) | ≥800 and <4,000                                 | 5.06                                                       |
| Remote Condensing Units   | <800                                            | 9.9– 0.0058H                                               |
| (w/ remote compressor)    | ≥800 and <4,000                                 | 5.26                                                       |
|                           | <200                                            | 14.22–0.03H                                                |
| Self-Contained Units      | ≥200 and <700                                   | 9.47-0.00624H                                              |
|                           | ≥700 and <4,000                                 | 5.1                                                        |

Table D-130: ENERGY STAR® Requirements for Air-Cooled Batch Ice Makers

| Equipment Type            | Ice Harvest Rate (H)<br>(Ibs. of ice / 24 hrs.) | Batch Ice Makers<br>Consumption Rate<br>(kWh/100 lbs. ice) | Potable Water Use<br>(gal/100 lbs. ice) |
|---------------------------|-------------------------------------------------|------------------------------------------------------------|-----------------------------------------|
|                           | ≤ 300                                           | ≤ 9.2– 0.01134H                                            | ≤ 20.0                                  |
| Les Making Lloads         | ≥ 300 and ≤ 800                                 | ≤ 6.49-0.0023H                                             | ≤ 20.0                                  |
| Ice Making Heads          | ≥ 800 and ≤ 1,500                               | ≤ 5.11-0.00058H                                            | ≤ 20.0                                  |
|                           | ≥ 1,500 and ≤ 4,000                             | ≤ 4.24                                                     | ≤ 20.0                                  |
| Remote Condensing Units   | ≤988                                            | ≤ 7.17– 0.00308H                                           | ≤ 20.0                                  |
| (w/out remote compressor) | ≥988 and ≤4,000                                 | ≤ 4.13                                                     | ≤ 20.0                                  |
| Remote Condensing Units   | ≤988                                            | ≤ 7.17– 0.00308H                                           | ≤ 20.0                                  |
| (w/ remote compressor)    | ≥988 and ≤4,000                                 | ≤ 4.13                                                     | ≤ 20.0                                  |
|                           | ≤110                                            | ≤ 12.57 – 0.0399H                                          | ≤ 25.0                                  |
| Self-Contained Units      | ≥110 and ≤200                                   | ≤ 10.56-0.0215H                                            | ≤ 25.0                                  |
|                           | ≥200 and ≤4,000                                 | ≤ 6.25                                                     | ≤ 25.0                                  |

Table D-131: ENERGY STAR® Requirements for Air-Cooled Continuous Ice Makers

| Equipment Type            | Ice Harvest Rate (H)<br>(Ibs. of ice / 24 hrs.) | Batch Ice Makers<br>Consumption Rate<br>(kWh/100 lbs. ice) | Potable Water Use<br>(gal/100 lbs. ice) |
|---------------------------|-------------------------------------------------|------------------------------------------------------------|-----------------------------------------|
|                           | < 310                                           | ≤ 7.90– 0.005409H                                          | ≤ 15.0                                  |
| Ice Making Heads          | ≥ 310 and < 820                                 | ≤ 7.08-0.002752H                                           | ≤ 15.0                                  |
|                           | ≥ 4,000                                         | ≤ 4.82                                                     | ≤ 15.0                                  |
| Remote Condensing Units   | < 800                                           | ≤ 7.76– 0.00464H                                           | ≤ 15.0                                  |
| (w/out remote compressor) | ≥ 800 and < 4,000                               | ≤ 4.05                                                     | ≤ 15.0                                  |
| Remote Condensing Units   | < 800                                           | ≤ 7.76– 0.00464H                                           | ≤ 15.0                                  |
| (w/ remote compressor)    | ≥ 800 and < 4,000                               | ≤ 4.05                                                     | ≤ 15.0                                  |
|                           | < 200                                           | ≤ 12.37–0.0261H                                            | ≤ 15.0                                  |
| Self-Contained Units      | ≥ 200 and < 700                                 | ≤ 8.24-0.005429H                                           | ≤ 15.0                                  |
|                           | ≥ 700 and < 4,000                               | ≤ 4.44                                                     | ≤ 15.0                                  |

# D.5.10.3. Estimated Useful Life (EUL)

According to DEER 2011, the average commercial ice maker will have a measure life of 10 years.

# D.5.10.4. Energy and Demand Savings

Energy savings and demand reductions for commercial ice makers are based on the energy consumption from the harvesting of ice, either in batches or continuously. The following subsections outline deemed calculations for energy savings and demand reductions, respectively.

# D.5.10.4.1. Calculations of Deemed Savings

Annual electric savings are calculated by determining the energy consumed for baseline ice makers compared against the energy consumed by qualifying ENERGY STAR® product using the harvest rate of the more efficient unit.

The following two equations show how energy savings and demand reductions can be calculated, respectively:

$$\Delta kWh = \frac{\left(kWh_{base,per\ 100\ lb} - kWh_{ee,per\ 100\ lb}\right)}{100} \times DC \times H \times 365$$
$$\Delta kW = \left(\frac{\Delta kWh}{HRS}\right) \times CF$$

Where:

 $kWh_{base,per\ 100\ lb}$  = calculated on the harvest rate and type of ice machine from the Federal Minimum Energy Consumption Rate relationships in Table D-128 and Table D-129

 $kWh_{ee,per\ 100\ lb}$  = Qualifying energy efficient model consumption found in the AHRI directory of certified products by model information.

100 = conversion factor to convert  $kWh_{base,per 100 lb}$  and  $kWh_{ee,per 100 lb}$  into maximum kWh consumption per pound of ice

DC = Duty Cycle of the ice maker representing the percentage of time the ice machine is making ice = 0.75

H = Harvest Rate (lbs. of ice made per day)

HRS = Annual operating hours = 365 \* 24 = 8,760 hours/year CF = 1.0

For example, the annual energy savings and demand reductions for a batch type IMH commercial ice maker with an ice harvest rate (H) of 550 lbs. of ice per day and a consumption rate of kWh/100 lbs. ice of 4.45 are calculated as:

$$\Delta kWh = \frac{\left((7.05 - 0.0025 \times 550) - 4.45\right)}{100} \times 0.75 \times 550 \times 365 = 1,844 \, kWh$$
$$\Delta kW = \left(\frac{1,844 \, kWh}{8,760 \, hr/yr}\right) \times 1.0 = 0.2105 \, kW$$

#### D.5.10.5. Incremental Cost<sup>594</sup>

| Ice Harvest Rate (H)    | Incremental<br>Cost |
|-------------------------|---------------------|
| 100-200 lb. ice maker   | \$296               |
| 201-300 lb. ice maker   | \$312               |
| 301-400 lb. ice maker   | \$559               |
| 401-500 lb. ice maker   | \$981               |
| 501-1000 lb. ice maker  | \$1,485             |
| 1001-1500 lb. ice maker | \$1,821             |
| <1500 lb. ice maker     | \$2,194             |

#### D.5.10.6. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure was not implemented in Energy Smart programs. Thus, savings are calculated using ENERGY STAR default values. If this measure is added to Energy Smart programs, the evaluation should include a review of actual efficiency levels and costs of units rebated in the program.

Deemed parameters should be updated whenever DOE standards or other applicable codes warrant it.

<sup>&</sup>lt;sup>594</sup> These values are from electronic work papers prepared in support of San Diego Gas & Electric's "Application for Approval of Electric and Gas Energy Efficiency Programs and Budgets for Years 2009-2011", SDGE, March 2, 2009. <u>https://www.sdge.com/node/709</u>

#### D.6. Commercial Lighting

# D.6.1. Commercial Lighting Efficiency

#### D.6.1.1. Measure Description

A variety of high-efficiency fixtures, ballasts and lamps exist in the market today, producing the same lighting level (in lumens) as their standard-efficiency counterparts while consuming less electricity. This measure provides energy and demand savings calculations for the replacement of commercial lighting equipment with energy efficient lamps or fixtures. The operating hours and demand factors for the different building types listed in this measure are based on a wide array of information available in the market.

#### D.6.1.2. Baseline & Efficiency Standard

The following sections explain the various codes, standards, and required processes to establish the applicability of the Lighting Efficiency savings calculation method.

# D.6.1.1. Deemed Savings

Due to the myriad of possible baseline lighting configurations, efficient configurations and facility parameters that contribute to a commercial lighting savings calculation, the TPE has opted to not include deemed savings per-fixture. Such a value would require too many assumptions and is likely to be too in accurate to provide a fixed estimate. If the needed data cannot be collected by program implementers, then the project in question is ineligible for savings. The data requested to calculate deemed savings is consistent with what program implementers have historically collected in implementing Energy Smart programs and align with industry best practices for deemed savings for commercial lighting.

# D.6.1.1.1. State Commercial Energy Codes

Louisiana's state commercial energy code recognizes ASHRAE 90.1-2007<sup>595</sup> for commercial structures. These standards specify the maximum lighting power densities (LPDs) by building type (building area method) and interior space type (space-by-space method). LPDs apply to all new construction and major renovation projects. The ASHRAE 90.1-2007 LPDs for various building types are outlined in Appendix F. Agricultural lighting for animals will utilize recognized industry standards unique to the requirements of that animal to determine the LPD for the building housing those animals.

<sup>&</sup>lt;sup>595</sup> Any references to any versions of this standard refer to the American National Standards Institute (ANSI) /American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1

# D.6.1.1.2. Retrofit Baseline Summary

For all retrofit projects, the baseline is the current federal efficacy standard. If the replacement system is a T8, then it must meet Consortium for Energy Efficiency (CEE) specification requirements for High Performance and Reduced Wattage T8 systems. Other high-performance systems, including but not limited to T5 and LED systems, are allowed. T12s are no longer an eligible baseline technology.

#### D.6.1.1.3. Federal Efficacy Standards

The Energy Independence and Security Act (EISA) of 2007 mandates minimum efficacy standards for general service incandescent lamps, modified spectrum general service incandescent lamps, incandescent reflector lamps, fluorescent lamps and metal halide lamps.

Effective January 1, 2010, EISA increased minimum ballast efficacy factors and established pulse-start metal halides (PSMHs) as the new industry standard baseline for the metal halide technology ( $\leq$  500 W). New construction projects must use PSMHs in metal halide applications.

Starting in 2012, baseline wattages for general service incandescent lamps (GSILs) should not exceed values specified by EISA. For convenience, Table D-132 provides the lumens and wattages required to meet EISA standards for incandescent lamps.

| Old Standard<br>Incandescent<br>Wattage | New Maximum<br>Wattage<br>(EISA 2007) | Rated<br>Lumens | Effective<br>Date <sup>596</sup> |
|-----------------------------------------|---------------------------------------|-----------------|----------------------------------|
| 100                                     | 72                                    | 1490 - 2600     | 6/1/2012                         |
| 75                                      | 53                                    | 1050 - 1489     | 6/1/2013                         |
| 60                                      | 43                                    | 750 - 1049      | 6/1/2014                         |
| 40                                      | 29                                    | 310 – 749       | 6/1/2014                         |

Table D-132: New Maximum Wattages for General Service Incandescent Lamps, 2012-2014

The Energy Policy Act (EPAct) of 2005 and EISA of 2007 are two energy legislative rulings enacted to establish energy reduction targets for the United States. On July 14, 2009, the Department of Energy published a final rule for energy conservation standards for general service fluorescent lamps (GSFLs). These standards are shown in Table D-133. As a result of this rule, all GSFLs manufactured in the United States, or imported

<sup>&</sup>lt;sup>596</sup> Adjusted from January to June assuming continued market availability for a period of 6 months after the standard effective date.

for sale into the United States on or after July 14, 2012 (three years from the ruling date) must meet new, more stringent efficacy standards (measured in lumens per watt, LPW).

| Lamp Type            | Nominal<br>Lamp Wattage | Minimum<br>Color Rendering<br>Index (CRI) | Minimum Average<br>Lamp Efficacy<br>(Lumens/Watt, or LPW) |
|----------------------|-------------------------|-------------------------------------------|-----------------------------------------------------------|
| 4-foot Medium Bi-Pin | > 35W                   | 69                                        | 75.0                                                      |
|                      | ≤ 35 W                  | 45                                        | 75.0                                                      |
| 2-foot U-Shaped      | > 35W                   | 69                                        | 68.0                                                      |
|                      | ≤ 35W                   | 45                                        | 64.0                                                      |
| 0 fa at Clinelin a   | > 65W                   | 69                                        | 80.0                                                      |
| 8-foot Slimline      | ≤ 65W                   | 45                                        | 80.0                                                      |
| 8-foot High Output   | > 100W                  | 69                                        | 80.0                                                      |
|                      | ≤ 100W                  | 45                                        | 80.0                                                      |

Table D-133: Lighting Efficiency – Current Federal Efficiency Standards for GSFLs

Facilities with 4-foot and 8-foot T12s or with 2-foot U-Shaped T12s are still eligible to participate in lighting retrofit projects, but an assumed electronic T8 baseline should be used in place of the existing T12 equipment. These T12 fixtures will remain in the standard wattage table with the label "T12 (T8 baseline)" and will include adjusted wattages assumptions consistent with a T8 fixture with an equivalent length and lamp count. T12 fixtures not specified above will remain an eligible baseline technology.

| T12 Length                | Lamp Count                                                                | Revised<br>Lamp Wattage | Revised<br>System Wattage |  |  |
|---------------------------|---------------------------------------------------------------------------|-------------------------|---------------------------|--|--|
|                           | 1                                                                         | 32                      | 31                        |  |  |
| 48 inch-                  | 2                                                                         | 32                      | 58                        |  |  |
| Std, HO,                  | 3                                                                         | 32                      | 85                        |  |  |
| and VHO                   | 4                                                                         | 32                      | 112                       |  |  |
| (4 feet)                  | 6                                                                         | 32                      | 170                       |  |  |
|                           | 8                                                                         | 32                      | 224                       |  |  |
|                           | 1                                                                         | 59                      | 69                        |  |  |
| 96 inch-Std               | 2                                                                         | 59                      | 110                       |  |  |
| (8 feet)                  | 3                                                                         | 59                      | 179                       |  |  |
| 60/75W                    | 4                                                                         | 59                      | 219                       |  |  |
|                           | 6                                                                         | 59                      | 330                       |  |  |
|                           | 8                                                                         | 59                      | 438*                      |  |  |
|                           | 1                                                                         | 86                      | 101                       |  |  |
| 96 inch-HO                | 2                                                                         | 86                      | 160                       |  |  |
| and VHO                   | 3                                                                         | 86                      | 261                       |  |  |
| (8 feet)                  | 4                                                                         | 86                      | 319                       |  |  |
| 95/110W                   | 6                                                                         | 86                      | 481                       |  |  |
|                           | 8                                                                         | 86                      | 638                       |  |  |
|                           | 1                                                                         | 32                      | 32                        |  |  |
| 2 ft. U-Tube              | 2                                                                         | 32                      | 60                        |  |  |
|                           | 3                                                                         | 32                      | 89                        |  |  |
| * 8 lamp fixture wattage  | * 8 lamp fixture wattage approximated by doubling 4 lamp fixture wattage. |                         |                           |  |  |
| Key: HO = high output, VI | HO = very high output                                                     |                         |                           |  |  |

Table D-134: Adjusted Baseline Wattages for T12 Equipment

# D.6.1.1.4. Fixture Qualification Process – High Performance and Reduced Wattage T-8 Equipment:

CEE develops and maintains energy specifications for High Performance and Reduced Wattage T8 equipment. CEE high performance and reduced wattage T8 specifications can be found at:

- 1) <u>http://www.cee1.org/com/com-lt/com-lt-specs.pdf</u> (High Performance products)
- 2) <u>http://www.cee1.org/com/com-lt/lw-spec.pdf</u> (Reduced Wattage products)

CEE compiles a list of approved lamps and ballasts for T8 systems that are eligible for incentives for retrofits which is available for download on CEE's website at <a href="http://library.cee1.org/content/commercial-lighting-qualifying-products-lists">http://library.cee1.org/content/commercial-lighting-qualifying-products-lists</a>.

# D.6.1.1.5. Fixture Qualification Process – CFL and LED Products:

CFL and LED products must be pre-qualified under one of the following options:

- 1) Product is on the ENERGY STAR® Qualified Product List or ENERGY STAR® Qualified Light Fixtures Product List (<u>http://www.energystar.gov</u>)
- Product is on the Northeast Energy Efficiency Partnerships (NEEP) DesignLights Consortium<sup>™</sup> (DLC) Qualified Products Listing (<u>www.designlights.org</u>)
- 3) Exceptions to the ENERGY STAR® and/or DLC requirements are allowed for unlisted lamps and fixtures that have already been submitted to either ENERGY STAR® or DLC for approval. If the lamp or fixture does not achieve approval within the AR DSM program year, however, then the lamp or fixture must immediately be withdrawn from the program. If withdrawn, savings may be claimed up to the point of withdrawal from the program. For Agricultural uses where the fixture is designed for animal use, if an LED bulb does not meet ENERGY STAR® and/or DLC requirements, the bulb can be utilized if a thorough review of the bulb is conducted and verified by the TPE.

# D.6.1.2. Input Wattages

Input wattages for pre-retrofit and qualifying fixtures are included in the Standard Fixture Wattage Table (Appendix E). This is a relatively comprehensive list of both old and new lighting technologies that could be expected for inclusion in a project. If there are fixtures identified that are not included in this table, those fixtures should be submitted to the Independent Evaluation Monitor (IEM) for review and incorporation into subsequent TRM updates. Interim approval may be made for certain fixtures at the discretion of the IEM. However, there may be eligible products that are not on the list. If a product is not on the list, then manufacturer's data should be reviewed prior to accepting the product into a

program. LED products should be approved by DLC or ENERGY STAR® before being recognized as an eligible product.

# D.6.1.3. Estimated Useful Life (EUL)

## Table D-135: Estimated Useful Life by Lamp Type

| Lamp Type                                                   | EUL<br>(years) | Source <sup>597</sup>                                                                                                                                                                                                             |
|-------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Halogen                                                     | 2.0            | Based upon 5,000-hour manufacturer rated life and weighted-<br>average 3,380 annual operating hours from Navigant U.S. Lighting<br>Study. Rated life values assume the use of energy-efficient<br>Halogen Infrared (IR) products. |
| High Intensity Discharge (HID)                              | 16.0           | Based upon 50,000 hour manufacturer rated life and weighted-<br>average 3,205 annual operating hours from Navigant U.S. Lighting<br>Study.                                                                                        |
| Integrated-Ballast Cold-Cathode<br>Fluorescent Lamps (CCFL) | 5.0            | Based upon 25,000 hour manufacturer rated life and weighted-<br>average 5,493 annual operating hours from Navigant U.S. Lighting<br>Study.                                                                                        |
| Integrated-Ballast Compact<br>Fluorescent Lamps (CFL)       | 2.025          | Based upon 8,000 hour manufacturer rated life and weighted-<br>average 3,253 annual operating hours from Navigant U.S. Lighting<br>Study.                                                                                         |
| Integrated-Ballast LED Lamps                                | 9.0            | Based on 30,000 hour manufacturer rated life and weighted-<br>average 3,260 annual operating hours from Navigant U.S. Lighting<br>Study.                                                                                          |
| Light Emitting Diode (LED)                                  | 15.0           | Based upon 50,000 hour manufacturer rated life and weighted-<br>average 3,260 annual operating hours from Navigant U.S. Lighting<br>Study.                                                                                        |
| Linear Fluorescents (T5, T8)                                | 16.0           | Based upon 50,000 hour manufacturer rated life and weighted-<br>average 3,211 annual operating hours from Navigant U.S. Lighting<br>Study.                                                                                        |
| Modular CFL and CCFL                                        | 16.0           | Based upon 60,000 hour manufacturer rated life and weighted-<br>average 3,251 annual operating hours from Navigant U.S. Lighting<br>Study.                                                                                        |

<sup>&</sup>lt;sup>597</sup> Navigant Consulting, "U.S. Lighting Market Characterization, Volume I: National Lighting Inventory and Energy Consumption Estimate, Final Report." U.S. DOE. September 2002.

#### D.6.1.4. Calculation of Deemed Savings

D.6.1.4.1. New Construction:

$$kW_{savings} = \left( \left( SF \times \frac{LPD}{1000} \right) - \sum \left( \left[ N_{fixt(i)} \times \frac{W_{fixt(i)}}{1000} \right]_{post} \right) \right) \times CF \times IEF_{D}$$
$$kWh_{savings} = \left( \left( SF \times \frac{LPD}{1000} \right) - \sum \left( \left[ N_{fixt(i)} \times \frac{W_{fixt(i)}}{1000} \right]_{post} \right) \right) \times AOH \times IEF_{E}$$

Where:

SF = Total affected square footage of the new construction facility

*N*<sub>fixt(i),post</sub> = Post-retrofit # of fixtures of type i

*W*<sub>fixt(i),post</sub> = Rated wattage of post-retrofit fixtures of type i (Appendix E)

CF = Peak demand coincidence factor (Table D-137)

AOH = Annual operating hours for specified building type (Table D-137)

 $IEF_D$  = Interactive effects factor for demand savings (Table D-138)

 $IEF_E$  = Interactive effects factor for energy savings (Table D-138)

# D.6.1.4.2. Retrofit with no existing controls:

$$kW_{savings} = \sum \left( \left[ N_{fixt(i)} \times \frac{W_{fixt(i)}}{1000} \right]_{pre} - \left[ N_{fixt(i)} \times \frac{W_{fixt(i)}}{1000} \right]_{post} \right) \times CF \times IEF_{D}$$
$$kWh_{savings} = \sum \left( \left[ N_{fixt(i)} \times \frac{W_{fixt(i)}}{1000} \right]_{pre} - \left[ N_{fixt(i)} \times \frac{W_{fixt(i)}}{1000} \right]_{post} \right) \times AOH \times IEF_{E}$$

#### D.6.1.4.3. Retrofit with existing controls:

Note: For lighting systems with existing controls, no additional control savings should be claimed with the savings specified by the equations below.

$$kW_{savings} = \sum \left( \left[ N_{fixt(i)} \times \frac{W_{fixt(i)}}{1000} \right]_{pre} - \left[ N_{fixt(i)} \times \frac{W_{fixt(i)}}{1000} \right]_{post} \right) \times IEF_D \times CF_{controls}$$

$$kWh_{savings} = \sum \left( \left[ N_{fixt(i)} \times \frac{W_{fixt(i)}}{1000} \right]_{pre} - \left[ N_{fixt(i)} \times \frac{W_{fixt(i)}}{1000} \right]_{post} \right) \times IEF_E \times AOH \times PAF$$

Where:

*N*<sub>fixt(i),pre</sub> = Pre-retrofit number of fixtures of type i

*N*<sub>fixt(i),post</sub> = Post-retrofit number of fixtures of type i

*W*<sub>fixt(i),pre</sub> = Rated wattage of pre-retrofit fixtures of type i (Appendix E)

*W*<sub>fixt(i),post</sub> = Rated wattage of post-retrofit fixtures of type i (Appendix E)

CF = Peak demand coincidence factor (Table D-137)

 $CF_{controls}$  = Controls peak demand coincidence factor = 0.26<sup>598</sup>

AOH = Annual operating hours for specified building type (Table D-137)

*PAF* = Power adjustment factor for specified control type (Table D-145)

 $IEF_D$  = Interactive effects factor for demand savings (Table D-138)

 $IEF_E$  = Interactive effects factor for energy savings (Table D-138)

# D.6.1.5. Operating Hours & Coincidence Factors (CF)

If the annual operating hours and/or CF for the specified building are not known, use the deemed average annual hours of operation and/or peak demand CF from Table D-137.

Table D-136 summarizes the general transferability ratings for the lighting end-use. Due to the low variability of schedules and weather for both indoor and outdoor lighting, there is a high degree of data transferability across regions and it is appropriate to assume very similar annual operating hours across different regions.<sup>599</sup> To the extent that utility system peak periods are similar, it is also appropriate to assume very similar peak CFs across different regions.

| Analysis Group      | Group Schedule Weather<br>Variability Variability |     | Transferability<br>Rating |  |
|---------------------|---------------------------------------------------|-----|---------------------------|--|
| Lighting – Exterior | Low                                               | Low | High                      |  |
| Lighting – Interior | Low                                               | Low | High                      |  |

Table D-136: Transferability of Data across Geographic Regions

Operating hours are the number of hours that a particular equipment type is in use over the course of a year. For the purpose of these recommendations, raw building lighting operating hour data were adjusted by Frontier Associates according to the percentage of

<sup>&</sup>lt;sup>598</sup> RLW Analytics, *"2005 Coincidence Factor Study,"* Connecticut Energy Conservation Management Board. January 4, 2007. Default value applicable to all building types. This coincidence factor is a combination of the savings factor and peak coincidence factor.

<sup>&</sup>lt;sup>599</sup> KEMA. *End-Use Load Data Update Project Final Report: Phase 1: Cataloguing Available End-Use and Efficiency Measure Load Data*. 2009. Prepared for the Northwest Power and Conservation Council and Northeast Energy Efficiency Partnerships, November.

wattage consumed by each space within a building. Subsequently, weighted average operating hours (AOH) were developed for a range of building types.

The CF for lighting is the ratio of the lighting kW demand during the utility's peak period (New Orleans does not have a specific peak period definition, and CF values are assumed to reflect peak loads of similar utilities) to the connected lighting kW ( $\sum$ (N<sub>i</sub> xW<sub>i</sub>/ 1000) as defined above. Other issues are automatically accounted for, such as diversity and load factor. A portion of the CF values were arrived at through secondary research. In the cases where acceptable values were not available through other sources, Frontier Associates calculated values comprised of CF and building operating hour data available for the types of building spaces that would likely be found within that building type.

Deemed annual operating hours from the Arkansas TRM 6.0 were used as a basis for New Orleans AOH. These hours were originally developed by Frontier Associates for the AR TRM. The TPE used these values in conjunction with on-site monitoring from facility types commonly found New Orleans commercial lighting program participant populations. Direct monitoring data was collected from 210 loggers placed in 59 New Orleans and other major Louisiana utility territories. A total of (14) facility types received updated hours, and (10) new generic space types common in New Orleans area-projects were created:

| Facility or Space Type                      | АОН   | CF   |
|---------------------------------------------|-------|------|
| Leisure Dining: Bar Area                    | 2,676 | 0.81 |
| Corridor/Hallway/Stairwell                  | 5,233 | 0.90 |
| Education: College/University               | 3,577 | 0.69 |
| Education: K-12                             | 2,333 | 0.47 |
| Exterior                                    | 4,319 | -    |
| Food Sales: 24-Hour Supermarket             | 6,900 | 0.95 |
| Food Sales: Non-24-Hour Supermarket         | 2,058 | 0.95 |
| Food Service: Fast Food                     | 6,473 | 0.81 |
| Food Service: Sit-Down Restaurant           | 4,731 | 0.81 |
| Health Care: In-Patient                     | 4,019 | 0.78 |
| Health Care: Nursing Home                   | 4,271 | 0.78 |
| Health Care: Out-Patient                    | 3,386 | 0.77 |
| Convenience Store (non-24 hour)             | 4,245 | 0.90 |
| Lodging (Hotel/Motel/Dorm): Common<br>Areas | 4,127 | 0.82 |
| Lodging (Hotel/Motel/Dorm): Room            | 3,370 | 0.25 |
| Manufacturing                               | 5,740 | 0.73 |
| Multi-family Housing: Common Areas          | 5,703 | 0.87 |
| Non-Warehouse Storage (Generic)             | 4,207 | 0.77 |
| Office                                      | 5,159 | 0.77 |
| Office (attached to other facility)         | 4,728 | 0.77 |
| Parking Structure                           | 7,884 | 1.00 |
| Public Assembly                             | 2,638 | 0.56 |
| Public Order and Safety                     | 3,472 | 0.75 |
| Religious Gathering                         | 3,174 | 0.53 |
| Restroom (Generic)                          | 3,516 | 0.90 |
| Retail: Enclosed Mall                       | 4,813 | 0.93 |
| Retail: Freestanding                        | 3,515 | 0.90 |
| Retail: Other                               | 4,312 | 0.90 |
| Retail: Strip Mall                          | 3,965 | 0.90 |
| Service: Excluding Food                     | 3,406 | 0.90 |
| Warehouse: Non-Refrigerated                 | 2,417 | 0.77 |
| Warehouse: Refrigerated                     | 3,798 | 0.84 |

Table D-137: Annual Operating Hours (AOH) and Coincidence Factors (CF)<sup>600</sup>

<sup>&</sup>lt;sup>600</sup> Unless otherwise noted, deemed AOH and CF values are based on Frontier Associates on behalf of Electric Utility Marketing Managers of Texas (EUMMOT). "Petition to Revise Existing Measurement & Verification Guidelines for Lighting Measures for Energy Efficiency Programs: Docket No. 39146." Public Utility Commission of Texas. Approved June 6, 2011.

http://interchange.puc.state.tx.us/WebApp/Interchange/application/dbapps/filings/pgSearch.asp

# D.6.1.6. Interactive Effects

Lighting in air conditioned and refrigerated spaces adds heat to the space, increasing the cooling requirement during the cooling season and decreasing the heating requirement during the heating season. The decrease in waste heat from lighting mitigates these effects, thus reducing electricity used for cooling and increasing electricity or gas used for heating.

Deemed interactive effects factors for both demand and energy savings are presented in Table D-138. These factors represent the percentage increase or decrease in energy savings for the refrigeration system's electric load attributed to the heat dissipated by the more efficient lighting system. For example, a factor of 1.20 indicates a 20% savings. The methodology for applying these Interactive Effects Factors to calculate savings is discussed in the Calculation of Deemed Savings section.

A detailed description of the derivation of interactive effects is available in Appendix I.

Table D-138: Commercial Conditioned and Refrigerated Space Interactive EffectsFactors

| Building Type           | Temperature Description                       | Heating Type        | <i>IEF</i> <sub>D</sub> | IEF <sub>E</sub> |
|-------------------------|-----------------------------------------------|---------------------|-------------------------|------------------|
|                         |                                               | Gas                 |                         | 1.09             |
|                         | Air Conditioned Space –                       | Electric Resistance | 1.20                    | 0.87             |
| All building types      | Normal Temps. (> 41°F)                        | Heat Pump           | 1.20                    | 1.02             |
| (Except Outdoor         |                                               |                     |                         | 0.98             |
| &<br>Parking Structure) | Refrigerated Space –<br>Med. Temps. (33-41°F) | All                 | 1.25                    | 1.25             |
|                         | Refrigerated Space –<br>Low Temps. (-10-10°F) | All                 | 1.30                    | 1.30             |

#### D.6.1.7. Incremental Costs

Incremental costs by lighting category are as follows.

# D.6.1.7.1. Commercial CFLs

Incremental costs are<sup>602</sup>:

- < 2,600 Lumens: \$1.20</p>
- Over 2,600 Lumens: \$5

# D.6.1.7.2. High Performance and Reduced Wattage T8s

Incremental costs are detailed in Table D-139<sup>603</sup>:

<sup>&</sup>lt;sup>601</sup> These values should be used for programs where heat type cannot be determined.

<sup>602</sup> Illinois TRM

<sup>603</sup> Illinois TRM

| EE Measure                   | Watts | Baseline                                 | Incremental<br>Cost |
|------------------------------|-------|------------------------------------------|---------------------|
| 4-lamp HPT8 High-bay         | 128   | 200W Pulse Start MH                      | \$75                |
| 4-lamp HPT8 High-bay         | 128   | 250W Pulse Start MH                      | \$75                |
| 6-lamp HPT8 High-bay         | 192   | 320W Pulse Start MH                      | \$75                |
| 6-lamp HPT8 High-bay         | 192   | 400W Pulse Start MH                      | \$75                |
| 8-lamp HPT8 High-bay         | 256   | 320W Pulse Start MH                      | \$75                |
| 8-lamp HPT8 High-bay         | 256   | 400W Pulse Start MH                      | \$75                |
| 1-lamp HPT8 – 32W            | 32    | 1-lamp standard F328- Electronic ballast | \$15                |
| 1-lamp HPT8 – 28W            | 28    | 1-lamp standard F328- Electronic ballast | \$15                |
| 1-lamp HPT8 – 25W            | 25    | 1-lamp standard F328- Electronic ballast | \$15                |
| 2-lamp HPT8 – 32W            | 64    | 2-lamp standard F328- Electronic ballast | \$18                |
| 2-lamp HPT8 – 28W            | 56    | 2-lamp standard F328- Electronic ballast | \$18                |
| 2-lamp HPT8 – 25W            | 50    | 2-lamp standard F328- Electronic ballast | \$18                |
| 3-lamp HPT8 – 32W            | 96    | 3-lamp standard F328- Electronic ballast | \$20                |
| 3-lamp HPT8 – 28W            | 84    | 3-lamp standard F328- Electronic ballast | \$20                |
| 3-lamp HPT8 – 25W            | 75    | 3-lamp standard F328- Electronic ballast | \$20                |
| 4-lamp HPT8 – 32W            | 128   | 4-lamp standard F328- Electronic ballast | \$23                |
| 4-lamp HPT8 – 28W            | 112   | 4-lamp standard F328- Electronic ballast | \$23                |
| 4-lamp HPT8 – 25W            | 100   | 4-lamp standard F328- Electronic ballast | \$23                |
| 2-lamp HPT8 Troffer          | 64    | 3-lamp standard F328- Electronic ballast | \$100               |
| RW T8-F28 Lamp               | 28    | F32 T8 Standard lamp                     | \$2                 |
| RW T8-F28 Extra Life Lamp    | 28    | F32 T8 Standard lamp                     | \$2                 |
| RW T8-F32/25W Lamp           | 25    | F32 T8 Standard lamp                     | \$2                 |
| RW T8-F32/25 Extra Life Lamp | 285   | F32 T8 Standard lamp                     | \$2                 |
| RWT8 F17T8 Lamp - 2 ft.      | 16    | F17 T8 Standard lamp – 2 ft.             | \$2                 |
| RWT8 F25T8 Lamp - 3 ft.      | 23    | F25 T8 Standard lamp – 3 ft.             | \$2                 |
| RWT8 F30T8 Lamp - 6' Utube   | 30    | F32 T8 Standard Utube                    | \$2                 |
| RWT8 F29T8 Lamp - Utube      | 29    | F32 T8 Standard Utube                    | \$2                 |
| RWT8 F96T8 Lamp - 8 ft.      | 65    | F96 T8 Standard lamp – 8 ft.             | \$2                 |

# Table D-139: T8 Linear Fluorescent Incremental Costs

#### D.6.1.7.3. T5 Linear Fluorescent Fixtures

Table D-140: T5 Linear Fluorescent Incremental Costs

| EE Measure                  | Watts | Baseline            | Incremental<br>Cost |
|-----------------------------|-------|---------------------|---------------------|
| 2-lamp T5 High-bay          | 180   | 200W Pulse Start MH | \$100               |
| 3-lamp T5 High-bay          | 180   | 200W Pulse Start MH | \$100               |
| 4-lamp T5 High-bay          | 240   | 320W Pulse Start MH | \$100               |
| 6- lamp T5 High-bay         | 192   | 320W Pulse Start MH | \$100               |
| 1-lamp T5 Troffer           | 32    | 3-lamp T8           | \$40                |
| 2-lamp T5 Troffer           | 64    | 3-lamp T8           | \$80                |
| 1-lamp T5 Industrial/Strip  | 32    | 3-lamp T8           | \$30                |
| 2- lamp T5 Industrial/Strip | 64    | 3-lamp T8           | \$60                |
| 3- lamp T5 Industrial/Strip | 96    | 3-lamp T8           | \$90                |
| 4- lamp T5 Industrial/Strip | 187   | 3-lamp T8           | \$120               |
| 1-lamp T5 Indirect          | 32    | 3-lamp T8           | \$30                |
| 2-lamp T5 Indirect          | 64    | 3-lamp T8           | \$60                |

# D.6.1.7.4. LEDs

| LED Measure Description                      | LED<br>Lamp<br>Cost | Baseline Cost<br>(EISA 2012-<br>2014, EISA<br>2020) | Incremental Cost (EISA<br>2012-2014, EISA 2020) |
|----------------------------------------------|---------------------|-----------------------------------------------------|-------------------------------------------------|
| LED Screw and Pin-based Bulbs,               | \$30.00             | \$0.34 (\$1.25,                                     | \$29.66 (\$28.75, \$27.50)                      |
| Omnidirectional, <10W                        | +                   | \$2.50)                                             | <i>+</i> ( <i>+</i> ), <i>+</i> )               |
| LED Screw and Pin-based Bulbs,               | ć 40.00             | \$0.34 (\$1.25,                                     |                                                 |
| Omnidirectional, >=10W                       | \$40.00             | \$2.50)                                             | \$39.66 (\$38.75, \$37.50)                      |
| LED Screw and Pin-based Bulbs,<br>Decorative | \$30.00             | \$1.00                                              | \$29.00                                         |

### Table D-141: Omnidirectional LED Incremental Costs

| LED Category                                                                                               | EE Measure                                                 | Incremental<br>Cost |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------|
| LED Downlight Fixtures                                                                                     | LED Recessed, Surface, Pendant Downlights                  | \$27                |
| LED Interior Directional                                                                                   | LED Track Lighting                                         |                     |
|                                                                                                            | LED Wall-Wash Fixtures                                     | \$59                |
|                                                                                                            | LED Display Case Light Fixture                             |                     |
| LED Display Case LED Undercabinet Shelf-Mounted Task Light Fixtures<br>LED Refrigerated/Freezer Case light |                                                            | \$11/ft.            |
|                                                                                                            |                                                            | \$11/ft.            |
| LED Linear                                                                                                 | LED 4' Linear Replacement Lamp                             | \$13                |
| Replacement Lamps                                                                                          | LED 2' Linear Replacement Lamp                             | \$13                |
|                                                                                                            | LED 2x2 Recessed Light Fixture, 2,000-3,500 Lumens         | \$48                |
|                                                                                                            | LED 2x2 Recessed Light Fixture, 3,501-5,000 Lumens         | \$91                |
|                                                                                                            | LED 2x4 Recessed Light Fixture, 3,000-4,500 Lumens         | \$62                |
| LED Troffers                                                                                               | LED 2x4 Recessed Light Fixture, 4,501-6,000 Lumens         | \$99                |
|                                                                                                            | LED 2x4 Recessed Light Fixture, 6,001-7,500 Lumens         | \$150               |
|                                                                                                            | LED 1x4 Recessed Light Fixture, 3,001-4,500 Lumens         | \$36                |
|                                                                                                            | LED 1x4 Recessed Light Fixture, 4,401-6,000 Lumens         | \$130               |
|                                                                                                            | LED Surface & Suspended Linear Fixture, <=3,000 Lumens     | \$54                |
|                                                                                                            | LED Surface & Suspended Linear Fixture, 3,001-4,500 Lumens | \$104               |
| LED Linear Ambient                                                                                         | LED Surface & Suspended Linear Fixture, 4,501-6,000 Lumens | \$158               |
| Fixtures                                                                                                   | LED Surface & Suspended Linear Fixture, 6,001-7,500 Lumens | \$215               |
| LED Surface & Suspended Linear Fixture, >7,500 Lumens                                                      |                                                            | \$374               |
|                                                                                                            | LED Low-Bay Fixtures, <= 10,000 Lumens                     | \$191               |
| LED Low Bay & High                                                                                         |                                                            |                     |
| Bay Fixtures                                                                                               | LED High-Bay Fixtures, 15,001-20,000 Lumens                | \$482               |
|                                                                                                            | LED High-Bay Fixtures, > 20,000 Lumens                     | \$818               |
|                                                                                                            | LED Ag Interior Fixtures, <= 2,000 Lumens                  | \$33                |
|                                                                                                            | LED Ag Interior Fixtures, 2,001-4,000 Lumens               | \$54                |
|                                                                                                            | LED Ag Interior Fixtures, 4,001-6,000 Lumens               | \$125               |
| LED Agricultural                                                                                           | LED Ag Interior Fixtures, 6,001-8,000 Lumens               | \$190               |
| Interior Fixtures                                                                                          | LED Ag Interior Fixtures, 8,001-12,000 Lumens              | \$298               |
|                                                                                                            | LED Ag Interior Fixtures, 12,001-16,000 Lumens             | \$450               |
|                                                                                                            | LED Ag Interior Fixtures, 16,001-20,000 Lumens             | \$595               |
| LED Ag Interior Fixtures, > ,000 Lumens                                                                    |                                                            | \$998               |
|                                                                                                            | LED Exterior Fixtures, <=5,000 Lumens                      | \$190               |
|                                                                                                            | LED Exterior Fixtures, 5,001-10,000 Lumens                 | \$287               |
| LED Exterior Fixtures                                                                                      | LED Exterior Fixtures, 10,001-15,000 Lumens                | \$391               |
|                                                                                                            | LED Exterior Fixtures, > 15,000 Lumens                     | \$793               |

### Table D-142: LED Incremental Costs<sup>604</sup>

<sup>&</sup>lt;sup>604</sup> Watt, lumen, lamp life, and ballast factor assumptions for efficient measures are based upon Consortium for Energy Efficiency (CEE) Commercial Lighting Qualifying Product Lists alongside past Efficiency Vermont projects and PGE refrigerated case study. Watt, lumen, lamp life, and ballast factor assumptions for baseline fixtures are based upon manufacturer specification sheets. Baseline cost data comes from lighting suppliers, past Efficiency Vermont projects, and professional judgment. Efficient cost data comes from 2012 DOE "Energy Savings Potential of Solid-State Lighting in General Illumination Applications", Table A.1. See "LED Lighting Systems TRM Reference Tables.xlsx" for more information and specific product links.

### D.6.1.8. Future Studies

This measure category constitutes over 90% of C&I savings historically in Energy Smart. As a result, this category should be a primary focus of EM&V research. The TPE recommends the following:

- Conduct metering studies for commercial facilities not captured in EM&V to-date.
- Conduct a cost study to update incremental costs to reflect New Orleans prices, sales tax rates, and labor costs.
- Conduct focused metering for lighting that is not listed in Energy Start or CEE lists.
- Conduct a market assessment for advanced lighting controls; mature lighting programs have begun further incorporation of Wi-Fi-enabled control schemes where lighting is incorporated into the Energy Management System (EMS). The TPE recommends a market assessment for advanced lighting control adoption in New Orleans.
- Conduct preliminary research to assess whether certain lighting categories would be better-served with a midstream program approach.

## D.6.2. Lighting Controls

### D.6.2.1. Measure Description

Automatic lighting controls save energy by switching off or dimming lights when they are not necessary. Some lighting control techniques, such as using photocell controls, can be coupled with a variety of control strategies, including daylighting controls, occupancy controls, timer controls, and time clocks.

## D.6.2.1.1. Stepped Lighting Control Systems

When switching systems are used with entire circuits of lights, as opposed to individual light fixtures, the control protocol is usually described in terms of steps, with each "step" referring to a percentage of full lighting power.

## D.6.2.1.2. Continuous Dimming Control Systems

Continuous dimming control systems are designed to adjust electric lighting to maintain a designated light level. Continuous dimming systems eliminate distracting and abrupt changes in light levels, provide appropriate light levels at all times, and provide an increased range of available light level. Cost is the major disadvantage of this control.

## D.6.2.1.3. Occupancy Sensors

Occupancy sensors use motion detection to control lights in response to the presence or absence of occupants in a space. Many different varieties of sensors are available, including passive infrared (PIR), Ultrasound detecting, dual-technology, and integral occupancy sensors. Occupancy sensors are most effective in spaces with sporadic or unpredictable occupancy levels.

## D.6.2.1.4. Daylighting

Daylighting controls switch or dim electric lights in response to the presence or absence of daylight illumination in the space. Advanced daylighting controls incorporate occupancy and daylighting sensors into the same control.

## D.6.2.2. Baseline and Efficiency Standards

IECC 2003 (Section 805.2) and IECC 2009 (Section 505.1) specify the conditions under which light reduction and automatic controls are mandatory for new construction and affected retrofit projects. See the Measure Baseline section under the lighting efficiency measure for a discussion of updated lighting fixture wattages.

There are no minimum efficiency requirements for lighting controls.

# D.6.2.3. Estimated Useful Life (EUL)

According to DEER 2014, the estimated useful life (EUL) is eight years for Daylighting Sensors and eight years for Occupancy Sensors.

### D.6.2.4. Deemed Savings

Due to the myriad of possible lighting configurations upon which occupancy sensors may be installed, the TPE has opted to not include deemed savings percontrol. Such a value would require too many assumptions and is likely to be too inaccurate to provide a fixed estimate. If the needed data cannot be collected by program implementers, then the project in question is ineligible for savings. The data requested to calculate deemed savings is consistent with what program implementers have historically collected in implementing Energy Smart programs and align with industry best practices for deemed savings for commercial lighting.

## D.6.2.5. Calculation of Deemed Savings

## D.6.2.5.1. Measure/Technology Review

There have been many in-depth studies performed on the energy savings associated with occupancy and daylighting controls. Research by various organizations – including the Illuminating Engineering Society (IES), Canada National Research Council (CNRC), New Buildings Institute (NBI), Lighting Research Center (LRC) and multiple utilities – was included in this review. A summary of the findings of these reports are located in Table D-143 and Table D-144.

| Location        | IES <sup>605</sup> | CNRC <sup>606</sup> | NBI <sup>607</sup> | LRC <sup>608</sup> |
|-----------------|--------------------|---------------------|--------------------|--------------------|
| Break Room      | 22%                | -                   | -                  | -                  |
| Classroom       | 45%                | 63%                 | 25%                | -                  |
| Conference Room | 43%                | -                   | -                  | -                  |
| Corridor        | -                  | 24%                 | -                  | -                  |
| Office          | 32%                | 44%                 | 35-45%             | 43%                |
| Restroom        | 41%                | -                   | -                  | -                  |

Table D-143: Lighting Controls – Energy Saving Estimates for Occupancy Sensors

<sup>&</sup>lt;sup>605</sup> IES HB-9-2000. "Illuminating Engineering Society Lighting Handbook 9<sup>th</sup> Edition". 2000.

<sup>&</sup>lt;sup>606</sup> Canada National Research Center, "Energy Savings from Photosensors and Occupant Sensors/Wall Switches". September 2009.

<sup>&</sup>lt;sup>607</sup> New Buildings Institute. 2010. <u>http://buildings.newbuildings.org/</u>.

<sup>&</sup>lt;sup>608</sup> Lighting Research Center (LRC), Solid State Lighting Program. <u>http://www.lrc.rpi.edu/researchareas/leds.asp</u>.

Table D-144: Lighting Controls – Energy Saving Estimates for Daylighting Sensors

| Location       | CNRC | NBI    | SoCal<br>Edison <sup>609</sup> | LRC    |
|----------------|------|--------|--------------------------------|--------|
| Classroom      | 16%  | 40%    | -                              | -      |
| Corridor       | 25%  | -      | -                              | -      |
| Office         | 22%  | 35-40% | 74%                            | 24-59% |
| Grocery Stores | -    | 40%    | -                              | -      |
| Big Box Retail | -    | 60%    | -                              | -      |

Lighting energy savings can be calculated using the following formula. The kWh savings for each combination of fixture type, fixture location, building type, and refrigeration type must be calculated separately:

$$kW_{savings} = N_{fixt} \times \frac{W_{fixt}}{1000} \times CF \times IEF_{D}$$
$$kWh_{savings} = N_{fixt} \times \frac{W_{fixt}}{1000} \times (1 - PAF) \times AOH \times IEF_{E}$$

Where:

 $N_{fixt}$  = Number of fixtures

 $W_{fixt}$  = Rated wattage of post-retrofit fixtures (Appendix E)

Note: If the fixture was retrofitted, use the installed fixture wattage; if fixture was not retrofitted, use the existing fixture wattage

*PAF* = Stipulated power adjustment factor based on control type (Table D-145)

CF = Peak demand coincidence factor = 0.26<sup>610</sup>

*AOH* = Annual operating hours for specified building type (Table D-137)

 $IEF_D$  = Interactive effects factor for demand savings (Table D-138)

 $IEF_E$  = Interactive effects factor for energy savings (Table D-138)

<sup>&</sup>lt;sup>609</sup> Southern California Edison, "Energy Design Resources: Design Brief Lighting Controls". February 2000.

<sup>&</sup>lt;sup>610</sup> RLW Analytics, *"2005 Coincidence Factor Study,"* Connecticut Energy Conservation Management Board. January 4, 2007. Default value applicable to all building types. This coincidence factor is a combination of the savings factor and peak coincidence factor.

| Control Type                                                    | Power Adjustment<br>Factor (PAF) |
|-----------------------------------------------------------------|----------------------------------|
| No controls measures                                            | 1.00                             |
| Daylighting Control – Continuous Dimming                        | 0.70                             |
| Daylighting Control – Multiple Step Dimming                     | 0.80                             |
| Daylighting Control – ON/OFF (Indoor)                           | 0.90                             |
| Daylighting Control – ON/OFF (Outdoor) 612                      | 1.00                             |
| Occupancy Sensor                                                | 0.70                             |
| Occupancy Sensor w/ Daylighting Control – Continuous Dimming    | 0.60                             |
| Occupancy Sensor w/ Daylighting Control – Multiple Step Dimming | 0.65                             |
| Occupancy Sensor w/ Daylighting Control – ON/OFF                | 0.65                             |

Table D-145: Lighting Controls – Power Adjustment Factors<sup>611</sup>

### D.6.2.6. Incremental Costs

Incremental costs for lighting controls should use the full project cost. If not available, use the table below.

<sup>&</sup>lt;sup>611</sup> ASHRAE 90.1-1989, Section 6.4.2.8 specifies that exterior lighting not intended for 24-hour continuous use shall be automatically switched by timer, photocell, or a combination of timer and photocell. This is consistent with current specifications in ASHRAE 90.1-2010, Section 9.4.1.3, which specifies that lighting for all exterior applications shall have automatic controls capable of turning off exterior lighting when sufficient daylight is available or when the lighting is not required during nighttime hours.

<sup>&</sup>lt;sup>612</sup> ASHRAE 90.1-1989, Section 6.4.2.8 specifies that exterior lighting not intended for 24-hour continuous use shall be automatically switched by timer, photocell, or a combination of timer and photocell. This is consistent with current specifications in ASHRAE 90.1-2010, Section 9.4.1.3, which specifies that lighting for all exterior applications shall have automatic controls capable of turning off exterior lighting when sufficient daylight is available or when the lighting is not required during nighttime hours.

| Control Type                                                    | Power Adjustment<br>Factor (PAF) |
|-----------------------------------------------------------------|----------------------------------|
| Daylighting Control – Continuous Dimming                        | \$274 <sup>613</sup>             |
| Daylighting Control – Multiple Step Dimming                     | \$274                            |
| Daylighting Control – ON/OFF (Indoor)                           | \$274                            |
| Daylighting Control – ON/OFF (Outdoor) 614                      | \$274                            |
| Occupancy Sensor                                                | \$42 <sup>615</sup>              |
| Occupancy Sensor w/ Daylighting Control – Continuous Dimming    | \$316                            |
| Occupancy Sensor w/ Daylighting Control – Multiple Step Dimming | \$316                            |
| Occupancy Sensor w/ Daylighting Control – ON/OFF                | \$316                            |

#### Table D-146: Lighting Controls – Incremental Costs

615 DEER 2014

<sup>&</sup>lt;sup>613</sup> Consistent with the Multi-level Fixture measure with reference to Goldberg et al, State of Wisconsin Public Service Commission of Wisconsin, Focus on Energy Evaluation, Business Programs: Incremental Cost Study, KEMA, October 28, 2009. Also consistent with field experience of about \$250 per fixture and \$25 install labor.

<sup>&</sup>lt;sup>614</sup> ASHRAE 90.1-1989, Section 6.4.2.8 specifies that exterior lighting not intended for 24-hour continuous use shall be automatically switched by timer, photocell, or a combination of timer and photocell. This is consistent with current specifications in ASHRAE 90.1-2010, Section 9.4.1.3, which specifies that lighting for all exterior applications shall have automatic controls capable of turning off exterior lighting when sufficient daylight is available or when the lighting is not required during nighttime hours.

# D.6.3. Bi-Level Lighting Fixtures in Parking Garages

### D.6.3.1. Measure Description

Automated bi-level lighting fixture with motion sensors installed in a parking garage. The fixture provides lower levels of lighting during unoccupied periods. This measure covers savings from operational changes. Savings are fixture operation only. Retrofit savings from fixture replacement should be calculated using section D.6.1 Commercial Lighting Efficiency.

## D.6.3.2. Baseline and Efficiency Standards

Savings for retrofit only. The baseline equipment is assumed to be an uncontrolled lighting system operating continuously in an unconditioned space. Parking garage lighting zones must be controlled by a device that reduces power by a minimum of 30% after 20 minutes of vacancy<sup>616</sup>. Lighting must comply with IECC 2009 guidelines and must otherwise comply with program eligibility requirements.

## D.6.3.3. Estimated Useful Life (EUL)

The average lifetime of this measure is 8 years, which is consistent with the DEER 2014 EUL for occupancy and daylighting sensors.

## D.6.3.4. Percent Time in Reduced Power State

The average percentage of time spent in high (occupied) and low-power (unoccupied) states was derived from an analysis of metered studies of commercial bi-level retrofit projects conducted for the DOE<sup>617</sup>, and case studies by the California Energy Commission<sup>618</sup>.

| Factor                                                           | DOE<br>Study | CEC<br>Case<br>Study 1 | CEC<br>Case<br>Study 2 | CEC<br>Case<br>Study 3 | Value used for<br>New Orleans |
|------------------------------------------------------------------|--------------|------------------------|------------------------|------------------------|-------------------------------|
| Percent time luminaries operate in low<br>power or "dimmed" mode | 45%          | 60%                    | 52%                    | 47%                    | 51%                           |

Table D-147: Estimated Percent Time in "Low Power" (unoccupied) State

<sup>616</sup> ASHRAE 90.1

<sup>&</sup>lt;sup>617</sup> PG&E Emerging Technologies Program, 2009. "Application Assessment of Bi-Level LED Parking Lot Lighting." <u>https://www1.eere.energy.gov/buildings/publications/pdfs/ssl/gateway\_raleys.pdf</u>

<sup>&</sup>lt;sup>618</sup> CEC PIER Buildings Program, "Bi-level LED Parking Garage Luminaries." <u>https://cltc.ucdavis.edu/sites/default/files/files/publication/case-study-bi-level-led-garage-luminaires.pdf</u>

#### D.6.3.5. Calculation of Deemed Savings

#### D.6.3.5.1. Energy Savings

Annual Energy Savings = 
$$\frac{(CL_{High} \times 8,760) - (CL_{Low} \times \%_{Low} \times 8,760)}{1,000}$$
Peak Demand Reduction = 
$$\frac{CL_{High} - CL_{Low} \times \%_{Low}}{1,000}$$

Where:

 $CL_{High}$  = Connected load at full power (watts)

 $CL_{Low}$  = Connected load at low power or "dimmed" mode (fixture-dependent,  $\leq$ 70% of full power) (watts)

8,760 = Annual hours of continuous operation

 $\%_{Low}$  = Percent time in lower power or "dimmed" mode (51%)

#### D.6.3.6. Incremental Cost

The incremental cost is \$107.75.619

### D.6.3.7. Future Studies

Given sufficient participation, the TPE recommends a metering study be conducted to measure percent time in high/low operating modes, as well as peak CF in New Orleans parking structures. Fixture receipts from projects should be recorded so that should the chapter receive a future update, cost information can be used to supplement the incremental cost estimate.

<sup>&</sup>lt;sup>619</sup> Due to lack of prior studies, the TPE conducted a brief benchmark study comparing bi-level LED fixtures marketed as parking garage fixtures with comparable standard or 'always-on' fixtures.

## D.6.4. LED Refrigerated Case Lighting

### D.6.4.1. Measure Description

This measure relates to the installation of LED lamps with and without motion sensors in vertical display refrigerators, coolers, and freezers replacing T8 or T12 linear fluorescent lamp technology. LED lamps should be systems intended for this application. LED lamps not only provide the same light output with lower connected wattages, but also produce less waste heat which decreases the cooling load on the refrigeration system and energy needed by the refrigerator compressor. Additional savings can be achieved from the installation of a motion sensor which automatically dims the lighting system when the space is unoccupied. Retrofit projects must completely remove the existing fluorescent fixture end connectors and ballasts to qualify, though wiring may be reused. Eligible fixtures include new, replacement, and retrofit. Savings and assumptions are based on a per door basis.

### D.6.4.2. Baseline and Efficiency Standards

The baseline equipment is assumed to be T8 or T12 linear fluorescent lamps without occupancy sensors.

#### D.6.4.3. Estimated Useful Life (EUL)

The expected measure life is assumed to be 8 years.<sup>620</sup>

#### D.6.4.4. Calculation of Deemed Savings

D.6.4.4.1. Energy Savings  $kWh Savings = \frac{Watts_{base} - Watts_{efficient} \times N_{doors} \times Hours \times ESF \times IEF}{1.000}$ 

Where:

 $Watts_{base}$  = Connected wattage of baseline fixtures for each door

*Watts<sub>efficient</sub>* = Connected wattage of efficient fixtures for each door

 $N_{doors} =$  Number of doors

*Hours* = Annual operating hours  $(6,205)^1$ 

ESF = Energy Savings Factor (No occupancy sensors = 1.00, Occupancy sensors =  $1.43^{621}$ )

<sup>&</sup>lt;sup>620</sup> Theobald, M. A., Emerging Technologies Program: Application Assessment Report #0608, LED Supermarket Case Lighting Grocery Store, Northern California, Pacific Gas and Electric Company, January 2006. Assumes annual operating hours of 6,205. <a href="http://www.etcc-ca.com/images/stories/pdf/ETCC\_Report\_204.pdf">http://www.etcc-ca.com/images/stories/pdf/ETCC\_Report\_204.pdf</a>>. The lifetime of the motion sensors is assumed to be equal to the lifetime of the LED lighting.

<sup>&</sup>lt;sup>621</sup> D. Bisbee, Sacramento Municipal Utilities District, "Customer Advanced Technologies Program Technology Evaluation Report: LED Freezer Case Lighting Systems", July 2008.

*IEF* = Interactive Effects Factor. Waste heat factor for energy to account for cooling savings from efficient lighting (1.25)

#### o Demand Reduction

$$kW \ Reduction = \frac{Watts_{base} - Watts_{efficient} \times N_{doors} \times CF \times ESF \times IEF}{1,000}$$

Where:

 $Watts_{base}$  = Connected wattage of baseline fixtures for each door

*Watts<sub>efficient</sub>* = Connected wattage of efficient fixtures for each door

 $N_{doors} =$  Number of doors

- *ESF* = Energy Savings Factor (No occupancy sensors = 1.00, Occupancy sensors = 1.43<sup>622</sup>)
- CF = peak coincidence factor  $(0.99)^{623}$
- IEF = Interactive Effects Factor. Waste heat factor for energy to account for cooling savings from efficient lighting (1.25)

#### D.6.4.5. Incremental Cost

The incremental capital cost for lighting fixtures is \$250 per door (retrofit), and \$150 (time of sale, new construction)<sup>624</sup>.

If a motion sensor is installed, add an additional cost of \$130 per 25ft of case<sup>625</sup>.

<sup>&</sup>lt;sup>622</sup> D. Bisbee, Sacramento Municipal Utilities District, "Customer Advanced Technologies Program Technology Evaluation Report: LED Freezer Case Lighting Systems", July 2008.

<sup>&</sup>lt;sup>623</sup> Pennsylvania Statewide Act 129 2014 Commercial & Residential Lighting Metering Study. Prepared for Pennsylvania Public Utilities Commission. January 13, 2015. https://www.puc.pa.gov/pcdocs/1340978.pdf.

<sup>&</sup>lt;sup>624</sup> Based on a review of TRM incremental cost assumptions from Oregon and Vermont, supplemented with completed project information from New York.

<sup>&</sup>lt;sup>625</sup> "LED Case Lighting With and Without Motion Sensors" presentation, Michele Friedrich, PECI, January 2010

## D.6.5. Light Emitting Diode (LED) Traffic Signals

### D.6.5.1. Measure Description

This measure involves the installation of LED traffic signals, typically available in red, yellow, green, and pedestrian format, at a traffic light serving any intersection in retrofit applications. New construction applications are not eligible for this measure, as incandescent traffic signals are not compliant with the current federal standard<sup>626</sup>, effective January 1, 2006.

## D.6.5.2. Baseline and Efficiency Standards

For all retrofit projects, the baseline is a standard incandescent fixture.

Due to the increased federal standard for traffic signals, the ENERGY STAR® LED Traffic Signal specification was suspended effective May 1, 2007.<sup>627</sup> ENERGY STAR® chose to suspend the specification rather than revise it due to minimal additional savings that would result from a revised specification. Because the ENERGY STAR® specification no longer exists, the efficiency standard is considered to be an equivalent LED fixture for the same application. The equivalent LED fixture must be compliant with the federal standard. There is no current federal standard for yellow "ball" or "arrow" fixtures.

| Measure                      | Nominal<br>Wattage | Maximum<br>Wattage |
|------------------------------|--------------------|--------------------|
| 12" Red Ball                 | 17                 | 11                 |
| 12" Green Ball               | 15                 | 15                 |
| 8" Red Ball                  | 13                 | 8                  |
| 8" Green Ball                | 12                 | 12                 |
| 12" Red Arrow                | 12                 | 9                  |
| 8" Green Arrow               | 11                 | 11                 |
| Combination Walking Man/Hand | 16                 | 13                 |
| Walking Man                  | 12                 | 9                  |

Table D-148: Federal Standard Maximum Nominal Wattages628, Wattages629, andDeemed savings

<sup>&</sup>lt;sup>626</sup> Current federal standards for traffic and pedestrian signals can be found at the DOE website at: <u>http://www1.eere.energy.gov/buildings/appliance\_standards/product.aspx/productid/32</u>.

<sup>&</sup>lt;sup>627</sup> Memorandums related to this decision can be found on the ENERGY STAR<sup>®</sup> website at: <u>https://www.energystar.gov/index.cfm?c=archives.traffic\_signal\_spec</u>.

<sup>&</sup>lt;sup>628</sup> Nominal wattage is defined as power consumed by the module when it is operated within a chamber at a temperature of 25 °C after the signal has been operated for 60 minutes.

 $<sup>^{629}</sup>$  Maximum wattage is the wattage at which power consumed by the module after being operated for 60 minutes while mounted in a temperature testing chamber so that the lensed portion of the module is outside the chamber, all portions of the module behind the lens are within the chamber at a temperature of 74 °C, and the air temperature in front of the lens is maintained at a minimum of 49 °C.

| Measure     | Nominal<br>Wattage | Maximum<br>Wattage |
|-------------|--------------------|--------------------|
| Orange Hand | 16                 | 13                 |

Typical incandescent and LED traffic signal fixture wattages can be found in the following table. These fixture wattages should be used in the absence of project specific fixture wattages.

| Measure                                                                                               | Incandescent.<br>Wattage <sup>630</sup> | LED<br>Wattage <sup>631</sup> | kWh<br>Savings | kW<br>Savings |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------|----------------|---------------|
| Replace 12" Red Incandescent Ball with 12" Red LED Ball                                               |                                         | 9                             | 664.44         | 0.0756        |
| Replace 12" Yellow Incandescent Ball with 12" Yellow LED<br>Ball                                      | 149                                     | 17                            | 34.716         | 0.0040        |
| Replace 12" Green Incandescent Ball with 12" Green LED Ball                                           |                                         | 11                            | 517.638        | 0.0593        |
| Replace 8" Red Incandescent Ball with 8" Red LED Ball                                                 |                                         | 6                             | 379.68         | 0.0432        |
| Replace 8" Yellow Incandescent Ball with 8" Yellow LED<br>Ball                                        | 86                                      | 12                            | 19.462         | 0.0022        |
| Replace 8" Green Incandescent Ball with 8" Green LED Ball                                             |                                         | 6                             | 300.08         | 0.0344        |
| Replace 12" Red Incandescent Arrow with 12" Red LED Arrow                                             |                                         | 5                             | 955.833        | 0.1095        |
| Replace 12" Yellow Incandescent Arrow with 12" Yellow LED Arrow                                       | 128                                     | 8                             | 31.56          | 0.0036        |
| Replace 12" Green Incandescent Arrow with 12" Green<br>LED Arrow                                      |                                         | 5                             | 89.298         | 0.0098        |
| Replace Large (16"x18") Incandescent Pedestrian Signal with LED Pedestrian Signal (with Countdown)    | 149                                     | 17                            | 1140.744       | 0.1307        |
| Replace Small (12"x12") Incandescent Pedestrian Signal with LED Pedestrian Signal (with Countdown)    | 107                                     | 10                            | 838.274        | 0.0960        |
| Replace Large (16"x18") Incandescent Pedestrian Signal with LED Pedestrian Signal (without Countdown) | 116 <sup>632</sup>                      | 6                             | 950.62         | 0.1089        |
| Replace Small (12"x12") Incandescent Pedestrian Signal with LED Pedestrian Signal (without Countdown) | 68 <sup>633</sup>                       | 5                             | 544.446        | 0.0624        |

Table D-149: Incandescent/LED Traffic Signal Fixture Wattages

## D.6.5.3. Estimated Useful Life (EUL)

According to the Northwest Power & Conservation Council Regional Technical Forum, the estimated useful life (EUL) is 5 to 6 years, as shown in the following table.

<sup>&</sup>lt;sup>630</sup> Northwest Power & Conservation Council: Regional Technical Forum. Commercial LED Traffic Signals measure workbook. <u>http://rtf.nwcouncil.org/measures/measure.asp?id=114&decisionid=37</u>.

<sup>&</sup>lt;sup>631</sup> Typical practice for estimating fixture wattages is to take an average of the three leading manufacturers: GE, Philips, and Sylvania. Of the three, GE is the only manufacturer providing LED traffic signals. Other manufacturers excluded from averages. <u>http://www.gelightingsolutions.com/products--solutions/transportation-led-lighting/traffic-signals</u>.

<sup>&</sup>lt;sup>632</sup> Average high wattage A19, A21, and A23 incandescent fixture from Philips and Sylvania.

<sup>633</sup> Ibid.

| Measure                                                                           | EUL <sup>634</sup><br>(Years) |
|-----------------------------------------------------------------------------------|-------------------------------|
| Replace 12" Red Incandescent Ball with 12" Red LED Ball                           |                               |
| Replace 12" Yellow Incandescent Ball with 12" Yellow LED Ball                     |                               |
| Replace 12" Green Incandescent Ball with 12" Green LED Ball                       |                               |
| Replace 8" Red Incandescent Ball with 8" Red LED Ball                             |                               |
| Replace 8" Yellow Incandescent Ball with 8" Yellow LED Ball                       | 6                             |
| Replace 8" Green Incandescent Ball with 8" Green LED Ball                         |                               |
| Replace 12" Red Incandescent Arrow with 12" Red LED Arrow                         |                               |
| Replace 12" Yellow Incandescent Arrow with 12" Yellow LED Arrow                   |                               |
| Replace 12" Green Incandescent Arrow with 12" Green LED Arrow                     |                               |
| Replace Large (16"x18") Incandescent Pedestrian Signal with LED Pedestrian Signal | - 5                           |
| Replace Small (12"x12") Incandescent Pedestrian Signal with LED Pedestrian Signal | 5                             |

# Table D-150: Estimated Useful Life by Measure

<sup>&</sup>lt;sup>634</sup> Northwest Power & Conservation Council: Regional Technical Forum. Commercial LED Traffic Signals measure workbook. <u>http://rtf.nwcouncil.org/measures/measure.asp?id=114&decisionid=37</u>. EUL is determined by LED Traffic Signal replacement schedule, which is set to precede earliest burnout. All fixtures will be replaced at the same time to minimize maintenance interruptions.

#### D.7. Other Measures

### D.7.1. Compressed Air Leak Repair

#### D.7.1.1. Measure Description

This measure consists of identifying and repairing air leaks in compressed air systems. A compressed air system is used in a commercial or industrial system for pneumatic controls of processes that require compressed air such as air dryers and cleaners. The air compressor is programed to maintain a set air pressure in the system during operating hours and air leaks in the system cause the pressure to drop requiring the system to cycle on or operate at a higher load to maintain the pressure causing the system efficiency to decrease. Air leaks are generally located at hose connections, valves, filters, condensate traps, and end use equipment. The most common method to repair a leak in the compressed air system is by tightening connections, replacing worn-out equipment, replacing cracked gaskets, and isolating unused equipment. This measure can only be applied to a compressed air leak repair cost that includes leak detection and repair.

### D.7.1.2. Baseline & Efficiency Standard

The savings values for compressed air leak repair are applicable for existing operational compressed air systems. New construction does not qualify for this measure since it is expected to have no air leaks in the system when newly constructed.

### D.7.1.3. Estimated Useful Life (EUL)

The effective useful life (EUL) for this measure is 3 years<sup>635</sup>.

#### D.7.1.4. Deemed Savings Values

Due to the large variability in potential energy savings, the TPE has opted to not include deemed savings per leak repair. Such a value would require too many assumptions and the calculated savings has a large range depending on the system pressure, operating hours, and most importantly the leakage rate.

#### D.7.1.5. Calculation of Deemed Savings

Annual electric kWh and peak kW savings can be calculated using the following equations and

Table D-115 summarizes the needed variables:

$$\Delta kWh = CFM \times kW_{cfm} \times AOH$$
$$CFM = TCFM \times (Leak\%_{pre} - Leak\%_{post})$$
$$\Delta kW = CFM \times kW_{cfm}$$

635

http://ilsagfiles.org/SAG\_files/Evaluation\_Documents/Draft%20Reports%20for%20Comment/ComEd\_Drafts\_EPY10 /ComEd\_EUL\_CY2019\_CompAir\_Evaluation\_Research\_Plan\_Draft\_2019-06-07.pdf

| Parameter | Description                                          | Value                |
|-----------|------------------------------------------------------|----------------------|
| CFM       | Average leak flow rate, cubic feet per minute        | Based on Table D-152 |
| kWcfm     | Average compressed air system efficiency, kW per CFM | 0.107 default,       |
| K VV ctm  | Average compressed an system enciency, kw per Crivi  | Table D-153          |
| АОН       | Annual hours of operation, hours per year            | 5702 default,        |
| AON       | Annual hours of operation, hours per year            | Table D-154          |
| TCFM      | Total system flow rate, cubic feet per minutes       | Site measured        |
| Leak%pre  | Baseline system leakage percentage                   | 25% default          |
| Leak%post | Repaired system leakage percentage                   | 10% default          |

Table D-151: Variables for the Deemed Savings Algorithm

Table D-152: Estimated Leakage Rate<sup>636</sup>

| Gauge Pressure | Diameter of Orifice |       |       |      |      |
|----------------|---------------------|-------|-------|------|------|
| Before Leak    | 1/64"               | 1/32" | 1/16" | 1/8" | 1/4" |
| 50             | 0.229               | 0.916 | 3.66  | 14.7 | 58.6 |
| 60             | 0.264               | 1.06  | 4.23  | 16.9 | 67.6 |
| 70             | 0.3                 | 1.2   | 4.79  | 19.2 | 76.7 |
| 80             | 0.335               | 1.34  | 5.36  | 21.4 | 85.7 |
| 90             | 0.37                | 1.48  | 5.92  | 23.7 | 94.8 |
| 100            | 0.406               | 1.62  | 6.49  | 26   | 104  |
| 150            | 0.582               | 2.37  | 9.45  | 37.5 | 150  |
| 200            | 0.761               | 3.1   | 12.35 | 49   | 196  |
| 300            | 0.995               | 4.88  | 18.08 | 71.8 | 287  |

Table D-153: Air Compressor Efficiency by Control Type<sup>637</sup>

| Control Type                          | Compressor<br>Efficiency | Weighted Average<br>Percentage |
|---------------------------------------|--------------------------|--------------------------------|
| Reciprocating - On/off control        | 0.184                    | 0%                             |
| Reciprocating - Load/Unload           | 0.136                    | 40%                            |
| Screw - Load/Unload                   | 0.152                    | 0%                             |
| Screw - Inlet Modulation              | 0.055                    | 0%                             |
| Screw - Inlet Modulation w/ Unloading | 0.055                    | 40%                            |
| Screw - Variable Displacement         | 0.153                    | 20%                            |
| Screw - VSD                           | 0.178                    | 0%                             |
| Unknown / Weighted Average            | 0.107                    |                                |

<sup>&</sup>lt;sup>636</sup> UE Systems Inc. Compressed Air Ultrasonic Leak Detection Guide

<sup>&</sup>lt;sup>637</sup> Illinois Technical Reference Manual Version 3.0 Section 4.7.1 VSD Air Compressor

| Building Type              | Hours/Days | EFLH     | Average Weight |
|----------------------------|------------|----------|----------------|
| Single shift               | 8/5        | 1,976    | 16%            |
| 2-shift                    | 16/5       | 3,952    | 23%            |
| 3-shift                    | 24/5       | 5,928    | 25%            |
| 4-shift                    | 24/7       | 8,320    | 36%            |
| Unknown / Weighted average |            | 5,702.32 |                |

Table D-154: Annual Operating Hours<sup>638</sup>

#### D.7.1.6. Incremental Cost

Actual program costs should be used. Deemed costs may be applied once programaverage cost estimates have been developed (minimum of 20 projects).

<sup>638</sup> Illinois Technical Reference Manual Version 3.0 Section 4.7.1 VSD Air Compressor

#### D.7.2.1. Measure Description

This measure consists of replacing at least 75 percent of the roof area with a cool roof. A cool roof is a material of low specific heat and high reflectivity. The primary action of structure heat rejection is the reflection of solar heat back into the atmosphere, but additional heat rejection is realized by the low specific heat of the material quickly radiating any accumulated heat within it out into the atmosphere. A cool roof is defined by ASHRAE 90.1 as a roof having a minimum solar reflectivity of 0.55 and a minimum thermal emittance of 0.75. ASHRAE 90.1-2007 provides an alternative approach allowing products with a minimum Solar Reflective Index (SRI) of 64. The Cool Roof Rating Council (www.coolroofs.org) maintains an SRI database.

#### D.7.2.2. Baseline & Efficiency Standard

The savings values for cool roof replacement repairs are applicable for all existing baseline roofs. The baseline efficiency is estimated with a solar reflectance of 0.23 and thermal emittance of 0.90.<sup>639</sup>

### D.7.2.3. Estimated Useful Life (EUL)

The effective useful life (EUL) for this measure is 15 years.<sup>640</sup>

#### D.7.2.4. Deemed Savings Values

Deemed savings values for annual electric energy use (kWh), peak demand (kW) are provided in the following tables, arranged by HVAC configuration.

| Building Type |                    | kWh/sq.<br>ft.² | kW/1000<br>ft.². |
|---------------|--------------------|-----------------|------------------|
|               | Primary School     | 0.0838          | 0.0065           |
| Education     | Secondary School   | 0.0753          | 0.0047           |
| Education     | Community College  | 0.1320          | 0.0372           |
|               | University         | 0.1438          | 0.0398           |
| Office        | Large              | 0.2346          | 0.0622           |
| Once          | Small              | 0.0983          | 0.0294           |
|               | 3-Story Large      | 0.1605          | 0.0428           |
| Retail        | Single-Story Large | 0.2685          | 0.0756           |
|               | Small - Retail     | 0.1125          | 0.0293           |
| Restaurant    | Fast Food          | 0.1099          | 0.0299           |

#### Table D-155: DX Cooling with Gas Heating

<sup>640</sup> DEER 2014 EUL tables

<sup>&</sup>lt;sup>639</sup> Average reflectance properties of roofing material as obtained from the publication *Laboratory Testing and Reflectance Properties of Roofing Material* by Florida Solar Energy Center and the predominant roof material used in west south central region for non-small commercial buildings as obtained from CBECS 2003, Table B4

| Bu         | Building Type      |        | kW/1000<br>ft. <sup>2</sup> |
|------------|--------------------|--------|-----------------------------|
|            | Primary School     | 0.0544 | 0.0065                      |
| Education  | Secondary School   | 0.0558 | 0.0047                      |
| Education  | Community College  | 0.1164 | 0.0348                      |
|            | University         | 0.1339 | 0.0398                      |
| Office     | Large              | 0.2168 | 0.0622                      |
| Office     | Small              | 0.0785 | 0.0295                      |
|            | 3-Story Large      | 0.1488 | 0.0428                      |
| Retail     | Single-Story Large | 0.2381 | 0.0750                      |
|            | Small - Retail     | 0.0808 | 0.0295                      |
| Restaurant | Fast Food          | 0.0743 | 0.0298                      |

Table D-156: DX Cooling with Electric Resistance Heating

Table D-157: Heat Pump

| Bu         | Building Type      |        | kW/1000<br>ft. <sup>2</sup> |
|------------|--------------------|--------|-----------------------------|
|            | Primary School     | 0.0718 | 0.0065                      |
| Education  | Secondary School   | 0.0684 | 0.0047                      |
| Education  | Community College  | 0.1312 | 0.0372                      |
|            | University         | 0.1431 | 0.0398                      |
| Office     | Large              | 0.2346 | 0.0622                      |
| Office     | Small              | 0.0785 | 0.0295                      |
|            | 3-Story Large      | 0.1605 | 0.0428                      |
| Retail     | Single-Story Large | 0.2566 | 0.0750                      |
|            | Small - Retail     | 0.0978 | 0.0295                      |
| Restaurant | Fast Food          | 0.0963 | 0.0298                      |

Table D-158: Chiller Loop Cooling W/ HW Boiler Loop Heating

| В         | Building Type     | kWh/ ft.² | kW/1000 ft. <sup>2</sup> |
|-----------|-------------------|-----------|--------------------------|
|           | Secondary School  | 0.1126    | 0.0111                   |
| Education | Community College | 0.0890    | 0.0228                   |
|           | University        | 0.1088    | 0.0331                   |
| Office    | Large             | 0.1780    | 0.0637                   |
| Retail    | 3-Story Large     | 0.1059    | 0.0301                   |

# D.7.2.5. Calculation of Deemed Savings

eQUEST was used to estimate energy savings for a series of models using the DOE EnergyPlus simulation engine. Since Cool Roof savings are sensitive to weather, available TMY3 weather data specific to New Orleans was used for the analysis. The

prototype building characteristics used in the building model are outlined in Appendix A.

## D.7.2.6. Incremental Cost

Actual measure cost should be used where available. If not available, the incremental cost of a installing a cool roof is \$8.45 per square foot. <sup>641</sup>

<sup>&</sup>lt;sup>641</sup> 2005 Database for Energy-Efficiency Resources (DEER), version 2005.2.01, "Technology and Measure Cost Data", California Public Utilities Commission, October 26, 2005

### D.7.3.1. Measure Description

This measure applies to buildings with exterior entryways that utilize overhead doors. All other air curtain applications, such as through sliding door entryways or conventional foot-traffic entryways, require custom analysis as air curtain designs must often accommodate other factors that may change their effectiveness.

The use of overhead doors within exterior entryways during the heating season leads to the exfiltration of warm air from the upper portion of the door opening and the infiltration of colder air from the lower portion of the door opening. This results in increase heating energy use to compensate for heat losses every time a door is opened. By reducing heat losses, air curtains can also enhance the physical comfort of employees or customers near the entryway as there will be reduced temperature fluctuations when the door is opened and closed. In addition, in some cases excess heating capacity may be installed in buildings to meet this larger heating load. The addition of air curtains to exterior entryways that currently utilize overhead doors will result in energy savings and enhanced personal comfort, and also possibly in reduced equipment sizing and corresponding costs.

The primary markets for this measure are commercial and industrial facilities with overhead doors in exterior entryways, including but not limited to the following building types: retail, manufacturing, and warehouse (non-refrigerated).

Limitations:

- For use in conditioned spaces with an overhead door in an exterior entryway. This
  measure does include other door types such doorways to commercial spaces such
  as retail.
- This measure should only be applied to spaces in which the overhead door separates a conditioned space and an unconditioned space.
- Installation must follow manufacturer recommendations to attain proper air velocity, discharge angle down to the floor level, and unit position.
- Certain heating systems may not be a good fit for air curtains, such as locations with undersized heating capacity. In these cases, the installation of an air curtain may not effectively reduce heating system cycling given the inappropriately sized heating capacity.
- Buildings with slightly positive to slightly negative (~5 Pa to -10 Pa). For all other scenarios, custom analysis is recommended.
- Measure assumes that wind speeds at near ground level are less than or equal to 12 mph for 90% of the heating or cooling season. For areas with more extreme weather, custom analysis is necessary.

#### D.7.3.2. Baseline and Efficiency Standards

No air curtain or other currently installed means to effectively reduce heat loss and air mixing during door openings, such as a vestibule or strip curtain.

Overhead air curtains designed for commercial and industrial applications that have been tested and certified in accordance with ANSI/AMCA 220 and installed following manufacturer guidelines. Measure is for standard models without added heating.

#### D.7.3.3. Estimated Useful Life (EUL)

The expected measure life is assumed to be 15 years.<sup>642</sup>

| D.7.3.4. | <b>Deemed Savings Values</b> |  |
|----------|------------------------------|--|
|----------|------------------------------|--|

| Door Size   | kWh/ft <sup>2</sup> | kW/ft <sup>2</sup> |
|-------------|---------------------|--------------------|
| Egress      | 293                 | 0.046              |
| 8'w x 8'h   | 309                 | 0.048              |
| 10'w x 10'h | 344                 | 0.053              |
| 10'w x 12'h | 365                 | 0.055              |
| 12'w x 14'h | 392                 | 0.059              |
| 16'w x 16'h | 417                 | 0.062              |

### D.7.3.5. Calculation of Deemed Savings

The following methodology is highly complex and requires significant data collection. It is hoped that simplifying steps can be made in future iterations based on metering and evaluation of installations. The data collected through implementing the measure in the way currently drafted will aid in simplifying efforts at a future date.

#### D.7.3.5.1. Energy Savings

$$kWh_{cooling} = \left[\frac{(Q_{tbc} - Q_{tac})}{EER} - (HP * 0.7457)\right] * t_{open} * CBP$$
$$kWh_{HP \ heating} = \left[\frac{(Q_{tbc} - Q_{tac})}{HSPF} - (HP * 0.7457)\right] * t_{open} * HBP$$
$$kWh_{Gas \ Heating} = -(HP * 0.7457) * t_{open} * HDD$$

Where:

 $Q_{tbc}$  = rate of total heat transfer through the open entryway, before air curtain (kBtu/hr)  $Q_{tac}$  = rate of total heat transfer through the open entryway, after air curtain (kBtu/hr) (see calculation in 'Heat Transfer Through Open Entryway with/without Air Curtain' sector

(see calculation in 'Heat Transfer Through Open Entryway with/without Air Curtain' sections below)

<sup>&</sup>lt;sup>642</sup> Navigant Consulting Inc, Measures and Assumptions for Demand Side Management (DSM) Planning: Appendix C: Substantiation Sheets, "Air Curtains – Single Door," Ontario Energy Board, (April 2009): C-137. 2014 Database for Energy-Efficient Resources, EUL/RUL (Effective/Remaining Useful Life) Values, February 4, 2014.

EER = energy efficiency ratio of the cooling equipment (kBtu/kWh)

*HP* = Input power for air curtain (hp)

| Door Size   | Fan HP |
|-------------|--------|
| 8'w x 8'h   | 1      |
| 10'w x 10'h | 1.5    |
| 10'w x 12'h | 4      |
| 12'w x 14'h | 6      |
| 16'w x 16'h | 12     |

Table D-159: Fan Horsepower

0.7457 = unit conversion factor, brake horsepower to electric power (kW/HP)

t<sub>open</sub> = average hours per day the door is open (hr/day)

CB = Cooling Balance Point, total days in year above balance point temperature 65 °F (day) = 239

*HSPF* = Heating System Performance Factor of heat pump equipment

HB = Heating Balance Point, total days in year above balance point temperature 65 °F (day) = 126

Heat Transfer Through Open Entryway without Air Curtain (Cooling Season)

$$Q_{tbc} = 4.5 * CFM_{tot} * \frac{h_{oc} - h_{ic}}{1,000 \frac{Btu}{kBtu}}$$

Where:

4.5 = unit conversion factor with density of air:  $60 \frac{min}{hr} * 0.075 \frac{lbm}{ft^3}, \left(\frac{lb*min}{ft*hr}\right)$ 

CFM<sub>tot</sub> = Total air flow through entryway (cfm), see calculation below

 $h_{oc}$  = average enthalpy of outside air during the cooling season (Btu/lb). See table below.<sup>643</sup>

Table D-160: Average Enthalpy of Outside Air

| Location    | 67 °F | 72 °F | 77 °F |
|-------------|-------|-------|-------|
| New Orleans | 35.7  | 36.6  | 37.7  |

 $h_{ic}$  = average enthalpy of indoor air, cooling season (Btu/lb). See the below table to determine the approximate indoor air enthalpy associated with an indoor temperature setpoint in indoor relative humidity. An estimate 26.6 Btu/lb associated with the 72 °F and 50% indoor relative humidity case can be used as an approximation if no other data is available. For other indoor temperature setpoints and RH, enthalpies may be interpolated.

<sup>&</sup>lt;sup>643</sup> Enthalpy values were calculated based on TMY3 dry bulb temperatures.

Table D-161: Average Humidity

| Humidity (%) | 67 °F | 72 °F | 77 °F |
|--------------|-------|-------|-------|
| 60           | 25.5  | 28.5  | 31.8  |
| 50           | 23.9  | 26.6  | 29.5  |
| 40           | 22.3  | 24.7  | 27.3  |

The total airflow through the entryway, CFM<sub>tot</sub>, includes both infiltration due to wind as well as thermal forces, as follows:

$$CFM_{tot} = \sqrt{(CFM_w)^2 + (CFM_t^2)}$$

Where:

 $CFM_w$  = Infiltration due to the wind (cfm)

 $CFM_t$  = Infiltration due to thermal forces (cfm)

The infiltration due to the wind is calculated as follows:

$$CFM_{w} = (v_{wc} * C_{wc}) * C_{v} * A_{d} * \left(88\frac{fpm}{mph}\right)$$

Where:

 $v_{wc}$  = average wind speed during the cooling season (mph) = 3.48<sup>644</sup>

 $C_{wc}$  = wind speed correction factor due to wind direction in cooling season, (%). Because wind direction is not constant, a wind speed correction factor is used to adjust for the amount of time during the cooling season prevailing winds can be expected to impact the entryway. =0.2395<sup>645</sup>

 $C_v$  = effectiveness of openings = 0.3, assumes diagonal wind<sup>646</sup>

 $A_d$  = area of the doorway (ft<sup>2</sup>) = user defined

The infiltration due to thermal forces is calculated as follows:

$$CFM_{t} = A_{d} * C_{dc} * \left(60\frac{sec}{min}\right) * \sqrt{2 * g * \frac{H}{2} * \frac{T_{oc} - T_{ic}}{459.7 + T_{oc}}}$$

Where:

 $C_{dc}$  = the discharge coefficient during the cooling season483

$$C_{dc} = 0.4 + 0.0025 * |T_{ic} - T_{oc}|$$

<sup>&</sup>lt;sup>644</sup> Average wind speeds were calculated based on the TMY3 wind speed data.

<sup>&</sup>lt;sup>645</sup> Mean of directional correction factors, Illinois TRM

<sup>&</sup>lt;sup>646</sup> ASHRAE, "Airflow Around Buildings," in 2013 ASHRAE Handbook – Fundamentals (2013): p 24.3

g = acceleration due to gravity = 32.2 ft/sec2

H = the height of the entryway (ft)

 $T_{ic}$  = Average indoor air temperature during cooling season = assumed HVAC setpoint of 72°F

 $_{Toc}$  = Average outdoor temp during cooling season (°F) = the average outdoor temperature is dependent on the CDD period and zone. See table below.<sup>647</sup>

Table D-162: Average Outdoor Air During Cooling Season

|              | Тос   |       |       |       |       |
|--------------|-------|-------|-------|-------|-------|
| Climate Zone | 62 °F | 67 °F | 72 °F | 77 °F | 82 °F |
| New Orleans  | 75.8  | 78.2  | 80.0  | 82.8  | 85.6  |

459.7 = conversion factor from  $^{\circ}$ F to  $^{\circ}$ R = calculation requires absolute temperature for values not calculated as a difference of temperatures.

Heat Transfer Through Open Entryway with Air Curtain (Cooling Season)

$$Q_{tac} = Q_{tbc} * (1 - E)$$

Where:

E = the effectiveness of the air curtain (%) = 0.60485

#### D.7.3.5.2. Demand Savings

$$\Delta kW = (\Delta kWh_{cooling} / (CDD * 24)) * CF$$

Where:

CF = Coincidence Factor for Commercial cooling = 91.30<sup>648</sup>

#### D.7.3.6. Incremental Cost

The incremental capital cost for overhead air curtains for exterior entryways are as follows, with an added average installation cost approximately equal to the capital cost.<sup>649</sup>

| Door Size   | Capital Cost |
|-------------|--------------|
| 8'w x 8'h   | \$3,600      |
| 10'w x 10'h | \$4,500      |
| 10'w x 12'h | \$5,400      |
| 12'w x 14'h | \$8,000      |
| 16'w x 16'h | \$13,300     |

Table D-163: Incremental Cost by Door Size

<sup>&</sup>lt;sup>647</sup> Average temperatures were calculated based on TMY3 wet bulb temperatures.

<sup>648</sup> IL TRM V5.0 Vol.2 Sec. 4.4.33 , Page 307

<sup>&</sup>lt;sup>649</sup> IL TRM V5.0 Vol.2 Sec. 4.4.33 , Page 301

#### D.7.4.1. Measure Description

This measure consists of the addition of solar film to the inside of glazing on the east and west windows of small commercial buildings less than 15,000 gross square feet (any direction except 45 degrees of true north). This measure is based on square footage of qualifying windows.

### D.7.4.2. Baseline and Efficiency Standards

This measure is applicable to existing commercial buildings with clear single- or doublepane glazing with a solar heat gain factor (SHGC) greater than 0.66. Existing Low E windows, windows with existing solar films or solar screens are not eligible for this measure.

In order to qualify for deemed savings, solar film should be applied to glass facing east or west. The SHGC of the films must be less than 0.50.

The windows must not be shaded by existing awnings, exterior curtains or blinds or any other shading device. They must be installed in a space conditioned by refrigerated air conditioning (central, window or wall unit).

The windows must meet all applicable codes and standards, including:

- ASTM-408: Standard Method for Total Normal Emittance by inspection meter.
- ASTM E-308: Standard Recommended Practice for Spectro-Photometry and Description of Color in CIE1931 (this is an indicator of luminous reflection and visibility).
- ASTM-E903: Standard Methods of Test for Solar Absorbance, Reflectance and Transmittance using an integrated sphere.
- ASTM G-90: Standard Practice for Performing Accelerated Outdoor Weatherizing for Non-Metallic Materials Using Concentrated Natural Light.
- ASTM G26: Xenon arc weathering to accelerate natural aging.
- ASTM E-84: Flammability for commercial and residential structures.

## D.7.4.3. Estimated Useful Life (EUL)

The average lifetime of this measure is 10 years, according to DEER 2008.

#### D.7.4.4. Deemed Savings Values

Deemed savings values for annual electric energy use (kWh) and peak demand (kW) are provided in the tables on the following pages.

|                             | DX Coils with Furnace |                           | Heat Pump         |                           | Electric Resistance |                           |
|-----------------------------|-----------------------|---------------------------|-------------------|---------------------------|---------------------|---------------------------|
| Direction of<br>Window Film | Energy<br>Savings     | Peak<br>Demand<br>Savings | Energy<br>Savings | Peak<br>Demand<br>Savings | Energy<br>Savings   | Peak<br>Demand<br>Savings |
|                             | kWh / sq.<br>ft.      | kW / 1000<br>sq. ft.      | kWh / sq.<br>ft.  | kW / 1000<br>sq. ft.      | kWh / sq.<br>ft.    | kW / 1000<br>sq. ft.      |
| East                        | 10.24                 | 2.54                      | 3.08              | 2.59                      | 5.04                | 2.59                      |
| West                        | 12.32                 | 5.29                      | 6.13              | 5.43                      | 7.76                | 5.43                      |

Table D-164: Window Film Deemed Savings by Direction and Heating Type

# D.7.4.5. Calculation of Deemed Savings

Deemed savings are applicable to commercial buildings and were calculated using two representative buildings: a strip mall and a small office building. Estimated savings for the east and west window surfaces were based on a small office building with equal window surfaces on all four sides and for strip malls having glazing on one side. The deemed savings values presented herein represent the average savings per square foot of glazing for windows in each weather zone facing east and west.

### D.7.4.6. Incremental Cost

The incremental cost is \$2-2.50 per square foot<sup>650</sup>.

<sup>650</sup> https://www.energystar.gov/ia/new\_homes/comments/Background2.pdf

#### D.7.5.1. Measure Description

Plug load occupancy sensors are devices that control low wattage devices (<150 watts) using an occupancy sensor. Common applications are computer monitors, desk lamps, printers, and other desktop equipment. Three wattage tiers were analyzed based on available products in the market: 25W, 50W, and 150W.

#### D.7.5.2. Baseline and Efficiency Standards

Table D-165: Plug Load Without Occupancy Sensors– Baseline Data

| Size<br>(watts) | Annual Energy<br>Consumption <sup>651</sup><br>(kWh/ unit) | Annual<br>Operating Hours | Demand<br>(kW/unit) |
|-----------------|------------------------------------------------------------|---------------------------|---------------------|
| 25              | 110                                                        | 4,400                     | 0.025               |
| 50              | 220                                                        | 4,400                     | 0.05                |
| 150             | 555                                                        | 3,700                     | 0.15                |

Table D-166 contains the annual energy consumption and demand for plug load occupancy sensors.

Table D-166: Plug Load Occupancy Sensors – Minimum Requirements

| Size<br>(watts) | Annual Energy<br>Consumption <sup>652</sup><br>(kWh/ unit) | Annual<br>Operating Hours | Demand¹<br>(kW/ unit) |
|-----------------|------------------------------------------------------------|---------------------------|-----------------------|
| 25              | 45                                                         | 1452                      | 0.025                 |
| 50              | 91                                                         | 1452                      | 0.050                 |
| 150             | 234                                                        | 1250                      | 0.150                 |

## D.7.5.3. Estimated Useful Life (EUL)

According to DEER 2014, the estimated useful life (EUL) is eight years.

<sup>&</sup>lt;sup>651</sup> Arkansas TRM

<sup>652</sup> Ibid.

#### D.7.5.4. Deemed Savings Values

Deemed measure costs and savings for various sized plug load occupancy sensors are provided in Table D-167.

| Measure     | Demand<br>Savings¹<br>(kW/ unit) | Annual<br>Energy<br>Savings <sup>1</sup><br>(kWh/ unit) |  |
|-------------|----------------------------------|---------------------------------------------------------|--|
| 25W sensor  | 0.000                            | 65                                                      |  |
| 50W sensor  | 0.000                            | 129                                                     |  |
| 150W sensor | 0.000                            | 321                                                     |  |

 Table D-167: Plug Load Occupancy Sensors – Deemed Savings Values

### D.7.5.5. Calculation of Deemed Savings

Four resources contained information on plug load occupancy sensors. The energy savings and amount of equipment controlled per sensor varied widely. The values for energy and demand savings are given in Table D-168.

| Available<br>Resource | Туре                                                         | Size | Annual Energy<br>Saving<br>(kWh/unit) | Demand<br>Savings<br>(kW/unit) |
|-----------------------|--------------------------------------------------------------|------|---------------------------------------|--------------------------------|
| PG&E 2003             | Plug load occupancy sensor                                   | 150  | 300                                   | 0.124                          |
| Quantec 2005          | Power strip occupancy sensor                                 | N/A  | 27                                    | 0.012                          |
| DEER 2005             | Plug load occupancy sensor                                   | 50   | 143                                   | 0.051                          |
| KEMA 2010             | Plug load occupancy sensor                                   | 50   | 221                                   | 0.025                          |
| NPCC 2005             | Cubicle occupancy sensor                                     | 25   | 55                                    | 0.025                          |
| PacifiCorp 2009       | Unitary savings included in<br>comprehensive potential study |      | 196                                   | 0.00                           |

Table D-168: Review of Plug Load Occupancy Sensor Measure Information

## D.7.5.6. Incremental Cost

The incremental cost is \$70.653

#### D.7.5.1. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure was not implemented in Energy Smart programs. If this measure is added to Energy Smart programs, the evaluation should include a field assessment to inventory the plug loads actually controlled.

<sup>653</sup> Ohio TRM.

#### D.7.6.1. Measure Description

This measure involves the installation of a multi-plug Advanced Power Strip (APS) that has the ability to automatically disconnect specific loads depending on the power draw of a specified or "master" load. A load sensor in the strip disconnects power from the control outlets when the master power draw is below a certain threshold. The energy savings calculated for this measure are derived by estimating the number of hours that devices in typical office workstations are in "off" or "standby" mode and the number of watts consumed by each device in each mode. When the master device (i.e. computer) is turned off, power supply is cut to other related equipment (i.e. monitors, printers, speakers, etc.), eliminating these loads.

Commercial deemed savings were developed based on reported plug load electricity consumption. The assumed mix of peripheral electronics, and related data, are presented in the following table.

Table *D-169* shows the assumed number of hours each device is typically in "off" mode. Given the assumption that the master device, a desktop computer, will only be in off mode during non-work hours, watts consumed by devices in standby-mode are not counted toward energy savings for a commercial APS. Workday and weekend day watts consumed in off mode are a function of hours multiplied by estimated watt consumption.

There are two deemed savings paths available: Savings can be estimated as follows: 1) per APS for an average complete system or 2) by individual peripheral device.

| Peripheral Device              | Workday<br>Daily<br>Off Hours <sup>654</sup> | Weekend<br>Daily<br>Off Hours | Off Power<br>(W) <sup>655,656</sup> | Workday<br>(W-hr)<br>[A] | Weekend<br>(W-hr)<br>[B] |
|--------------------------------|----------------------------------------------|-------------------------------|-------------------------------------|--------------------------|--------------------------|
| Coffee Maker                   | 16                                           | 24                            | 1.14                                | 18.24                    | 27.36                    |
| Computer: Desktop              | 16                                           | 24                            | 3.3                                 | 52.80                    | 79.20                    |
| Computer: Laptop               | 16                                           | 24                            | 4.4                                 | 70.40                    | 105.60                   |
| Computer Monitor: CRT          | 16                                           | 24                            | 1.5                                 | 24.00                    | 36.00                    |
| Computer Monitor: LCD          | 16                                           | 24                            | 1.1                                 | 17.60                    | 26.40                    |
| Computer Speakers              | 16                                           | 24                            | 2.3                                 | 36.80                    | 55.20                    |
| Copier                         | 16                                           | 24                            | 1.5                                 | 24.00                    | 36.00                    |
| External Hard Drive            | 16                                           | 24                            | 3.0                                 | 48.00                    | 72.00                    |
| Fax Machine: Inkjet            | 16                                           | 24                            | 5.3                                 | 84.80                    | 127.20                   |
| Fax Machine: Laser             | 16                                           | 24                            | 2.2                                 | 35.20                    | 52.80                    |
| Media Player: Blu-Ray          | 16                                           | 24                            | 0.1                                 | 1.60                     | 2.40                     |
| Media Player: DVD              | 16                                           | 24                            | 2.0                                 | 32.00                    | 48.00                    |
| Media Player: DVD-R            | 16                                           | 24                            | 3.0                                 | 48.00                    | 72.00                    |
| Media Player: DVD/VCR          | 16                                           | 24                            | 4.0                                 | 64.00                    | 96.00                    |
| Media Player: VCR              | 16                                           | 24                            | 3.0                                 | 48.00                    | 72.00                    |
| Microwave                      | 16                                           | 24                            | 3.08                                | 49.28                    | 73.92                    |
| Modem: Cable                   | 0                                            | 24                            | 3.8                                 | 0.00                     | 91.20                    |
| Modem: DSL                     | 0                                            | 24                            | 1.4                                 | 0.00                     | 33.60                    |
| Multi-Function Printer: Inkjet | 16                                           | 24                            | 5.26                                | 84.16                    | 126.24                   |
| Multi-Function Printer: Laser  | 16                                           | 24                            | 3.12                                | 49.92                    | 74.88                    |
| Phone with Voicemail           | 16                                           | 24                            | 2.92                                | 46.72                    | 70.08                    |
| Printer: Inkjet                | 16                                           | 24                            | 1.3                                 | 20.80                    | 31.20                    |
| Printer: Laser                 | 16                                           | 24                            | 3.3                                 | 52.80                    | 79.20                    |
| Router                         | 16                                           | 24                            | 1.7                                 | 27.20                    | 40.80                    |
| Scanner                        | 16                                           | 24                            | 2.1                                 | 33.60                    | 50.40                    |
| Television: CRT                | 16                                           | 24                            | 1.6                                 | 25.60                    | 38.40                    |
| Television: LCD                | 16                                           | 24                            | 0.5                                 | 8.00                     | 12.00                    |
| Television: Plasma             | 16                                           | 24                            | 0.6                                 | 9.60                     | 14.40                    |
| Television: Projection         | 16                                           | 24                            | 7.0                                 | 112.00                   | 168.00                   |

Table D-169: Peripheral Watt Consumption Breakdown

<sup>&</sup>lt;sup>654</sup> Commercial hours of operation based on typical 8-hour workday schedule.

<sup>&</sup>lt;sup>655</sup> New York State Energy Research and Development Authority (NYSERDA), "Advanced Power Strip Research Report". August 2011.

<sup>&</sup>lt;sup>656</sup> Standby Power Summary Table, Lawrence Berkeley National Laboratory. <u>http://standby.lbl.gov/summary-table.html.</u>

#### D.7.6.2. Baseline and Efficiency Standards

The baseline case is the absence of an APS, where peripherals are plugged into a traditional surge protector or wall outlet. The baseline assumes a typical mix of office equipment, shown in

Table D-169.

### D.7.6.3. Estimated Useful Life (EUL)

The estimated useful life (EUL) is 10 years according to the New York State Energy Research and Development Authority (NYSERDA) Advanced Power Strip Research Report from August 2011.<sup>657</sup>

### D.7.6.4. Calculation of Deemed Savings

### D.7.6.4.1. Energy Savings

Energy savings for a 7-plug APS in use in a commercial setting are calculated using the following algorithm, where kWh saved are calculated and summed for all peripheral devices:

$$\Delta kWh = \frac{\sum (Workdays * A_i) + \sum ((365 - Workdays) * B_i)}{1,000}$$

Where:

*Workdays* = Average number of workdays per year<sup>658</sup> = 240 days

A = Watt-hours/day consumed in the "off" mode per workday

*B* = Watt-hours/day consumed in the "off" mode per weekend day

1,000 = Constant to convert watts to kilowatts

#### D.7.6.4.2. Demand Savings

No demand savings are awarded for this measure due to the assumption that typical office equipment will be operating throughout the workday.

#### D.7.6.5. Deemed Savings Values

Energy savings from an APS in an office setting are estimated to be 71.4 kWh using the above equation and assuming six unique peripheral devices. Energy savings per peripheral device are also available in the following table.

<sup>&</sup>lt;sup>657</sup> New York State Energy Research and Development Authority (NYSERDA): Advanced Power Strip Research Report, p. 30. August 2011.

<sup>&</sup>lt;sup>658</sup> Assuming 50 working weeks, deducting 2 weeks for federal holidays and another 2 weeks for vacation; 48 weeks x 5 days/week = 240 days

| Peripheral Device                                       | kWh Savings |
|---------------------------------------------------------|-------------|
| Coffee Maker                                            | 7.8         |
| Computer: Desktop                                       | 22.6        |
| Computer: Laptop                                        | 30.1        |
| Computer Monitor: CRT                                   | 10.3        |
| Computer Monitor: LCD                                   | 7.5         |
| Computer Speakers                                       | 15.7        |
| Copier                                                  | 10.3        |
| External Hard Drive                                     | 20.5        |
| Fax Machine: Inkjet                                     | 36.3        |
| Fax Machine: Laser                                      | 15.0        |
| Media Player: Blu-Ray                                   | 0.7         |
| Media Player: DVD                                       | 13.7        |
| Media Player: DVD-R                                     | 20.5        |
| Media Player: DVD/VCR                                   | 27.4        |
| Media Player: VCR                                       | 20.5        |
| Microwave                                               | 21.1        |
| Modem: Cable                                            | 11.4        |
| Modem: DSL                                              | 4.2         |
| Multi-Function Printer: Inkjet                          | 36.0        |
| Multi-Function Printer: Laser                           | 21.3        |
| Phone with Voicemail                                    | 20.0        |
| Printer: Inkjet                                         | 8.9         |
| Printer: Laser                                          | 22.6        |
| Router                                                  | 11.6        |
| Scanner                                                 | 14.4        |
| Television: CRT                                         | 10.9        |
| Television: LCD                                         | 3.4         |
| Television: Plasma                                      | 4.1         |
| Television: Projection                                  | 47.9        |
| Average APS: Small Business Whole System <sup>659</sup> | 61.2        |

Table D-170: Advanced Power Strips – Deemed Savings Values

<sup>&</sup>lt;sup>659</sup> Assuming Computer Monitor: LCD, Computer Speakers, Modem: Average, Printer: Average, and Scanner. Computer not included because it is assumed to be the controlling load. This average value is meant to apply to a typical small business application and should not be applied in other applications. For other applications, calculate the savings for each individual equipment type. kWh savings =  $7.5 + 15.7 + [(11.4 + 4.2) \div 2] + [(8.9 + 22.6) \div 2] + 14.4 = 61.2 kWh.$ 

#### D.7.6.6. Incremental Cost

The incremental cost is \$16 for a 5-plut and \$26 for a 7-plug strip<sup>660</sup>.

### D.7.6.1. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure was not implemented in Energy Smart programs. If this measure is added to Energy Smart programs, the evaluation should include a field assessment to inventory the plug loads actually controlled.

<sup>&</sup>lt;sup>660</sup> Price survey performed in NYSERDA Measure Characterization for Advanced Power Strips, p4

#### D.7.7. Computer Power Management

#### D.7.7.1. Measure Description

Computer Power Management (CPM) is the automated control of the power, or "sleep" settings of network desktop and notebook computer equipment. CPM involves using builtin features or add-on software programs to switch off displays and enable computers to enter a low power setting called sleep mode during periods of non-use. This measure applies to both ENERGY STAR® and conventional computer equipment and assumes that the same computer equipment is being used before and after CPM settings are activated. The power draw of a computer is assumed to be roughly equivalent during active and idle periods, so for the purposes of calculating savings, we will combine the terms active and idle as "active/idle" throughout the document.

### D.7.7.2. Baseline and Efficiency Standards

The baseline conditions are the estimated number of hours that the computer spends in idle and sleep mode before the power settings are actively managed. The efficient conditions are the estimated number of hours that the computer spends in active/idle and sleep mode after the power settings are actively managed. Operating hours may be estimated from metering, or the default hours provided in the calculation of deemed savings may be used.

#### D.7.7.3. Calculation of Deemed Savings

Deemed demand and annual savings are based on the ENERGY STAR® Low Carbon IT Savings calculator. The coincidence factor, default equipment wattages in Table D-171, and the active/idle and sleep hours are taken from assumptions in the ENERGY STAR® calculator with all equipment set to enter sleep mode after 15 minutes of inactivity.

$$kWh_{savings} = \frac{W_{active/idle} \left(hours_{active/idle}_{pre} - hours_{active/idle}_{pos}\right) + W_{sleep} \left(hours_{sleep}_{pre} - hours_{sleep}_{post}\right)}{1,000}$$

$$kW_{savings} = \frac{\left(W_{active/idle} - W_{sleep}\right) * CF}{1,000}$$

Where:

W<sub>active/idle</sub> = total wattage of the equipment, including computer and monitor, in active/idle mode; see Table D-171.

Hours<sub>active\_idle\_pre</sub> = annual number of hours the computer is in active/idle mode before computer management software is installed = 6,293

Hours<sub>active\_idle\_post</sub> = annual number of hours the computer is in active/idle mode after computer management software is installed = 1,173

 $W_{sleep}$ = total wattage of the equipment, including computer and monitor, in sleep mode; see Table D-171

Hours<sub>sleep\_pre</sub>= annual number of hours the computer is in sleep mode before computer management software is installed = 0

Hours<sub>sleep\_post</sub> = annual number of hours the computer is in sleep mode after computer management software is installed = 5,120

CF= Coincidence Factor<sup>661</sup> = 0.25

1,000 = W/kW conversion

Table D-171: Computer Power Management - Equipment Wattages

| Equipment                                 | Wsleep | <b>W</b> <sub>active/idle</sub> |
|-------------------------------------------|--------|---------------------------------|
| Conventional LCD Monitor                  | 1      | 32                              |
| Conventional Computer                     | 3      | 69                              |
| Conventional Notebook (including display) | 2      | 21                              |

Table D-172: Computer Power Management - Deemed Savings Values

| Equipment                                 | kWh savings | kW savings |
|-------------------------------------------|-------------|------------|
| Conventional LCD Monitor                  | 158.72      | 0.008      |
| Conventional Computer                     | 337.92      | 0.017      |
| Conventional Notebook (including display) | 97.28       | 0.005      |

# D.7.7.4. Estimated Useful Life (EUL)

The EUL of this measure is based on the useful life of the computer equipment which is being controlled. Computer technology may continue to function long after technological advances have diminished the usefulness of the equipment. The EUL for Computer Power Management is 4 years.<sup>662</sup>

<sup>&</sup>lt;sup>661</sup> The coincidence factor is the percentage of time the computer is assumed to be not in use during the hours 3pm to 6pm from the ENERGY STAR<sup>®</sup> calculator modeling study.

<sup>&</sup>lt;sup>662</sup> The Regional Technical Forum, Measure workbook for Commercial: Non-Res Network Computer Power Management. <u>http://rtf.nwcouncil.org/measures/measure.asp?id=95</u>. Accessed August 2013.

#### D.7.7.5. Incremental Cost

The incremental cost is \$29 per computer, including labor.<sup>663</sup>

#### D.7.7.1. Future Studies

At the time of authorship of the New Orleans TRM Version 3.0, this measure was not implemented in Energy Smart programs. If this measure is added to Energy Smart programs, the evaluation should include a field assessment to inventory the plug loads actually controlled.

<sup>&</sup>lt;sup>663</sup> Work Paper WPSCNROE0003 Revision 1, Power Management Software for Networked Computers. Southern California Edison

#### E.1.1. Residential

#### E.1.1.1. ENERGY STAR© Appliances

Unless otherwise noted, deemed savings values and inputs were derived form and found in the Energy Star calculators: https://www.energystar.gov/products/appliances.

#### E.1.1.2. Domestic Hot Water

#### E.1.1.2.1. Ambient Water Main (Tin) and Ambient Air Temperature (Tamb) Calculations based on New Orleans City Climate

Ambient Water Main (Tin) and Outside Air Temperature (Tamb) Calculations based on TMY3 New Orleans climate data

| New Orleans                                                       | Jan   | Feb  | Mar  | Apr  | Мау  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  | Annual<br>Avg |
|-------------------------------------------------------------------|-------|------|------|------|------|------|------|------|------|------|------|------|---------------|
| Month                                                             | 1     | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |               |
| Outside Air<br>Temperature<br>(T <sub>air</sub> )                 | 49.9  | 55.6 | 64.1 | 69.4 | 75.1 | 80.7 | 81.6 | 82.3 | 77.7 | 68.2 | 65.6 | 54.5 | 68.7          |
| Water Heater<br>Inlet Water<br>Temperature,<br>(T <sub>in</sub> ) | 66.0  | 64.2 | 65.2 | 68.6 | 73.6 | 78.9 | 83.1 | 85.2 | 84.4 | 81.2 | 76.3 | 70.9 | 74.8          |
| offset (district<br>water) =                                      | 6.00  |      |      |      |      |      |      |      |      |      |      |      |               |
| ratio =                                                           | 0.647 | ]    |      |      |      |      |      |      |      |      |      |      |               |
|                                                                   |       | ]    |      |      |      |      |      |      |      |      |      |      |               |

#### E.1.1.2.2. Estimated Hot Water Usage (By Tank Size)

The values in the table below are based off Table 136: Estimated Annual Hot Water Use (gal), Arkansas TRM 5.0, page 137.

| Tanks Size (gal) of Replaced Water Heater      | 40     | 50     | 65     | 80     |
|------------------------------------------------|--------|--------|--------|--------|
| El Dorado Estimated Annual Hot Water Use (gal) | 17,815 | 20,245 | 24,293 | 29,152 |

The TPE created a correction factor to compensate for the difference in the average water main temperatures between the two cities.

lag =

34.8

# $or = \frac{El \, Dorado \, Average \, Water \, Main \, Temperature}{El \, Dorado \, Average \, Water \, Main \, Temperature} = \frac{70.1}{El \, Dorado \, Average \, Water \, Main \, Temperature}$

The correction factor was applied to existing El Dorado hot water usage estimates resulting on values appropriate for New Orleans:

| Tanks Size (gal) of Replaced Water Heater        | 40     | 50     | 65     | 80     |
|--------------------------------------------------|--------|--------|--------|--------|
| New Orleans Estimated Annual Hot Water Use (gal) | 16,696 | 18,973 | 22,767 | 27,320 |

# E.1.1.2.3. Estimated Average Ambient Temperatures by Water Heater Installation Location

| Average ambient air temperature, New Orleans (TMY3)           | 68.78   |
|---------------------------------------------------------------|---------|
| Number of heating degree days, New Orleans (TMY3, base<br>65) | 126     |
| Number of cooling degree days, New Orleans (TMY3, base<br>65) | 239     |
| Ratio of conditioned/unconditioned                            | 1.00549 |

#### E.1.1.2.4. Heat Pump Water Heater Adjustment Factor

|              | Count | % of year |
|--------------|-------|-----------|
| Heating Days | 126   | 35%       |
| Cooling Days | 239   | 65%       |

#### PA% for conditioned space: 2.784%

|                 | COP-Heating | COP-Cooling | Calculated F Adj | Calculated Adj | Estimated<br>Adj |
|-----------------|-------------|-------------|------------------|----------------|------------------|
| Gas             | 20          | 3           | 1.201            | 0.856          | 0.917            |
| Heat Pump       | 2           | 3           | 1.046            | 0.983          | 1.201            |
| Elec.Resistance | 0.89        | 3           | 0.830            | 1.238          | 1.395            |

# E.1.1.2.5. Water Heater Jackets Deemed Savings Values

Estimated hot water usage (by tank size) Deemed water heating jacket savings are Table 143: Water Heater Jackets – Electric Heating Deemed Savings Values Arkansas TRM 5.0, page 144.

| Daily Total Insolation (BTU/ft2/day) (AR TRM 5.0) | 1,601 |
|---------------------------------------------------|-------|
| Average solar radiation El Dorado, AR (NREL)      | 1,407 |
| Average solar radiation New Orleans, LA (NREL)    | 1,405 |
| Correction factor                                 | 1.137 |
| New Orleans Solar radiation x Correction Factor = | 1,598 |

### E.1.1.2.6. Annual Average Daily Isolation

# E.1.1.2.7. Weather Zone Localization Factor for SEF

Average solar radiation New Orleans, LA (NREL): 4.33 kWh/m2/day = 1,405.254 BTU/ft2/day

Average solar radiation El Dorado, AR (AR TRM 5.0): 1,601 BTU/ft2/day

Latitude correction factor: 1.137

# E.1.1.3. Envelope

# E.1.1.3.1. Prototype Building Characteristics

Various building energy usage computer models have been used in development of deemed savings included in the TRM according to several factors:

- Building Type and Use. Prototype buildings support deemed savings development for measures to be implemented in the following building types: residential, converted residence (CR), commercial, and small commercial (SC).
- Model Vintage. Original prototypes date back to deemed savings developed in 2007/08 for use in the QuickStart programs. Prototype inputs have been updated for more recent models.
- Measure being modeled. Specific changes to a prototype are introduced to represent the specific measure being implemented in a given building.

In this Appendix, "top level" tables – those tables with the letter A followed only by a number in their table name (e.g. Table A1) provide the general characteristics of a given model prototype. "Supplemental tables" – (e.g. Table A1.a) – provide the specific changes introduced to a given prototype for the modeling of specific measures.

The following table applies to the Attic Knee Wall Insulation, Ceiling Insulation, Wall Insulation, Floor Insulation, Roof Deck Insulation, Air Infiltration, Radiant Barriers, ENERGY STAR® Windows, and Window Film measures. Unique modifications for each specific measure are listed in supplemental Tables A3.a through A3.h. BEopt<sup>TM</sup> – a residential building modeling platform developed by NREL – was used to estimate energy savings for these measures using the U.S. DOE EnergyPlus simulation engine.

| Shell Characteristic   | Value                                                        | Source(s)                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Site/Layout            |                                                              |                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| Conditioned Floor Area | 1,764 ft. <sup>2</sup>                                       | Average square footage of<br>conditioned (heated) space<br>between one story home and all<br>SFD homes in 2009 RECS microdata<br>for AR/LA/OK. <sup>664</sup>                                                                                                                             |  |  |  |  |  |
| Orientation            | Square building with faces on each cardinal direction        | LBNL: Nationally Representative<br>Housing Sample <sup>665</sup>                                                                                                                                                                                                                          |  |  |  |  |  |
| Number of Stories      | Single story with unfinished attic                           | Preponderance of SFD homes in<br>2009 RECS microdata are single<br>story                                                                                                                                                                                                                  |  |  |  |  |  |
|                        | Building Envelope                                            |                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| Foundation             | Slab-on-ground, no edge insulation                           | Preponderance of SFD homes in<br>2009 RECS microdata (62%) have<br>slab foundation Also a conservative<br>assumption for base energy usage.                                                                                                                                               |  |  |  |  |  |
| Slab Insulation        | None – no perimeter, under-slab,<br>or above-slab insulation | Not part of standard practice, also<br>no requirement for slab insulation<br>in residential code for relevant<br>weather regions except the NW<br>corner of state in IECC Climate Zone<br>4.                                                                                              |  |  |  |  |  |
| Ceiling Insulation     | R-12                                                         | Table 25 of BA Home Simulation<br>Protocols suggests R-9 is<br>appropriate for homes closed rafter<br>roofs built with 2 x 6 beams, R-15<br>for 2 x 10. Suspect 2 x 6 is more<br>likely, but some share of homes will<br>have had ceiling insulation<br>replaced/added. Select R-12 based |  |  |  |  |  |

# Residential Envelope Measures – Prototype Home Characteristics

<sup>&</sup>lt;sup>664</sup> 2009 RECS, Available at: http://www.eia.gov/consumption/residential/data/2009/

<sup>&</sup>lt;sup>665</sup> Simulating a Nationally Representative Housing Sample Using EnergyPlus, Available at: http://www.osti.gov/scitech/servlets/purl/1012239

|                                                  |                  | on the above information and<br>engineering judgment. <sup>666</sup>                                               |
|--------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------|
| Wall Insulation                                  | R-11             | BAHSP, p. 35 – value for homes<br>built 1980-1989                                                                  |
| Air Leakage                                      | 0.9 ACH          | Median ACH for older, low income housing. <sup>667</sup>                                                           |
|                                                  | Fenestration     |                                                                                                                    |
| Window Area                                      | 15% of wall area | American Housing Survey 2007 and<br>2008 was used to inform the value<br>for likely participants.                  |
| Window U-value (single<br>pane)                  | 1.12             | 2009 ASHRAE Fundamentals, Ch. 15<br>Table 4. Value for double-pane,<br>metal frame, fixed, clear glass<br>window.  |
| Window U-value (double<br>pane)                  | 0.65             | 2009 ASHRAE Fundamentals, Ch. 15<br>Table 4. Value for double-pane,<br>metal frame, fixed, clear glass<br>window.  |
| Window SHGC                                      | 0.79             | 2009 ASHRAE Fundamentals, Ch. 15<br>Table 10. Value for double-pane,<br>metal frame, fixed, clear glass<br>window. |
| Window SHGC                                      | 0.64             | 2009 ASHRAE Fundamentals, Ch. 15<br>Table 10. Value for double-pane,<br>metal frame, fixed, clear glass<br>window. |
|                                                  | HVAC             |                                                                                                                    |
| Efficiency Rating, Air<br>Conditioner            | 10 SEER          | Federal Standard in effect from<br>1990-2006. Representative of low-<br>efficiency program participant<br>homes.   |
| Efficiency Rating Space<br>Heating (Gas Furnace) | 78% AFUE         | Annual Fuel Utilization Efficiency –<br>base gas furnace efficiency                                                |

<sup>&</sup>lt;sup>666</sup> Building America Home Simulation Protocols (BAHSP), Available at: http://www.nrel.gov/docs/fy11osti/49246.pdf

<sup>&</sup>lt;sup>667</sup> Referenced information is from 2009 ASHRAE Fundamentals, Section 16.17 Residential Ventilation.

| Efficiency Rating Space<br>Heating (Electric Resistance<br>Heat) | COP 1.0                                                            | Coefficient of Performance for<br>central electric resistance heating<br>systems          |  |  |  |
|------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|
| Efficiency Rating Space<br>Heating (Heat Pump)                   | HSPF = 7.25                                                        | Average of Federal Standards: 1992<br>– 1/2006: 6.8 HSPF 1/2006 –<br>1/2015: 7.7 HSPF     |  |  |  |
| Thermostat Settings                                              | Heating: 71 F Cooling 76 F                                         | BAHSP, p. 49                                                                              |  |  |  |
| Duct Losses                                                      | 20%                                                                | Lower tier of air leakage for typical<br>homes as cited by ENERGY<br>STAR <sup>®668</sup> |  |  |  |
| Duct Insulation                                                  | R-4                                                                |                                                                                           |  |  |  |
|                                                                  | Domestic Hot Water                                                 |                                                                                           |  |  |  |
| Energy Factor, Electric<br>Storage                               | 0.9                                                                | BAHSP (p. 42) EWH with 50 gal tank, 3-inch insulation.                                    |  |  |  |
| Energy Factor, Gas Storage                                       | 0.59                                                               | BAHSP (p. 42), midpoint between options 2 and 3                                           |  |  |  |
| Lighting                                                         |                                                                    |                                                                                           |  |  |  |
| Share of Lighting by Type                                        | Lamps are 66% incandescent, 21%<br>CFL, 13% T-8 linear fluorescent | BAHSP (p. 16)                                                                             |  |  |  |

<sup>668</sup> ENERGY STAR®, Duct Sealing: http://www.energystar.gov/?c=home\_improvement.hm\_improvement\_ducts

| Shell Characteristic             | Value                                                                                | Source(s)                                                                                                                                                                             |  |  |  |
|----------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Ceiling Construction             | 2-foot-wide vaulted ceiling<br>around the perimeter of the<br>conditioned floor area | This modeling approach reduces simulation<br>distortions introduced by a large vaulted ceiling<br>area, while still exposing the attic knee walls to<br>the conditioned living space. |  |  |  |
| Base Knee Wall Insulation        | No existing insulation                                                               | Encountered insulation level drives eligibility for this measure                                                                                                                      |  |  |  |
| Improved Knee Wall<br>Insulation | (1) Insulate to R-19, or<br>(2) Insulate to R-30                                     | Efficiency Measure                                                                                                                                                                    |  |  |  |

# Insulation – Prototype Home Characteristics

#### Ceiling Insulation – Prototype Home Characteristics

| Shell Characteristic        | Value                                                                                                                | Source(s)                                                                       |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Base Ceiling Insulation     | Five ranges of encountered<br>ceiling insulation:<br>R-0 to R-1 R-2 to R-4 R-5 to<br>R-8<br>R-9 to R-14 R-15 to R-22 | Insulation level as encountered by the EESP drives eligibility for this measure |
| Improved Ceiling Insulation | Insulate to R-38 & R-49                                                                                              | Efficiency measure – retrofit insulation level                                  |

## Wall Insulation – Prototype Home Characteristics

| Shell Characteristic     | Value       | Source(s)                                                                                                                                                                                 |
|--------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Base Wall Insulation     | R-0         | Insulation level as encountered by the EESP drives eligibility for this measure                                                                                                           |
| Improved Wall Insulation | R-13 & R-23 | 3.5" of fiberglass batt at R-3.7/in provides R-13<br>Full thickness of 4" cavity with open cell foam<br>provides R-13<br>Full thickness of 4" cavity with open cell foam<br>provides R-13 |

# Floor Insulation – Prototype Home Characteristics

| Shell Characteristic | Value | Source(s) |
|----------------------|-------|-----------|
|                      |       |           |

| Foundation              | Pier and beam with vented crawlspace | Floor Insulation not a relevant measure for homes with slab foundation          |  |  |  |
|-------------------------|--------------------------------------|---------------------------------------------------------------------------------|--|--|--|
| Base Floor Insulation   | R-0                                  | Insulation level as encountered by the EESP drives eligibility for this measure |  |  |  |
| Change Floor Insulation | R-19                                 | This brings existing homes in compliance with IECC 2009.                        |  |  |  |
| Crawlspace Insulation   | R-13                                 | This brings existing homes in compliance with IECC 2009.                        |  |  |  |

# Air Infiltration – Prototype Home Characteristics

| Shell Characteristic | Value    | Source(s)                                                                                                     |
|----------------------|----------|---------------------------------------------------------------------------------------------------------------|
| Base Air Leakage     | 0.9 ACH  | Median infiltration value of older low-income housing sample:                                                 |
| Change Air Leakage   | .035 ACH | Minimum allowable air exchanges assuming a<br>1,764 ft2 and 3-bedroom prototype home:<br>ASHRAE 62.2 P - 2010 |

#### Radiant Barriers – Prototype Home Characteristics

| Shell Characteristic      | Value                                                                                 | Source(s)                                      |  |  |
|---------------------------|---------------------------------------------------------------------------------------|------------------------------------------------|--|--|
| Ceiling Insulation Case 1 | ≤ R-19                                                                                | Assumed existing insulation level              |  |  |
| Ceiling Insulation Case 2 | > R-19                                                                                | Assumed existing insulation level              |  |  |
| Base roof deck            | No radiant barrier                                                                    | Existing condition applicable for this measure |  |  |
| Change roof deck          | Double-Sided, Foil:<br>Installed radiant barrier<br>meeting ENERGY STAR®<br>standards | Efficiency Measure                             |  |  |

#### Window Film – Prototype Home Characteristics

| Shell Characteristic                                      | Value                  | Source(s)                                                                                                               |
|-----------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Baseline Window<br>Characteristics – double-pane<br>model | 0.81 U-value/0.64 SHGC | U-value assuming metal framed, double-pane<br>clear glass windows<br>2009 ASHRAE Fundamentals, Ch.15 Tables 4 and<br>10 |

| Baseline Window<br>Characteristics – single-pane<br>model    | 1.12 U-value/0.79 SHGC | U-value assuming metal framed, single-pane<br>clear glass windows 2009 ASHRAE<br>Fundamentals, Ch.15 Tables 4 and 10 |
|--------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------|
| Change Case Window<br>Characteristics – double-pane<br>model | 0.81 U-value/0.49 SHGC | Efficiency Measure – values based on 3M product performance and technical data                                       |
| Change Case Window<br>Characteristics – single-pane<br>model | 1.12 U-value/0.40 SHGC | Efficiency Measure – values based on 3M product performance and technical data                                       |

#### E.1.2. Commercial

# E.1.2.1. Commercial Water Heating

| Ambient Water Main (Tin) and Outside Air Temperature (T <sub>amb</sub> ) Calculations |
|---------------------------------------------------------------------------------------|
| based on TMY3 New Orleans climate data                                                |

| New Orleans                                          | Jan   | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  | Annual<br>Avg |
|------------------------------------------------------|-------|------|------|------|------|------|------|------|------|------|------|------|---------------|
| Month                                                | 1     | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |               |
| Outside Air<br>Temperature<br>(T <sub>air</sub> )    | 49.9  | 55.6 | 64.1 | 69.4 | 75.1 | 80.7 | 81.6 | 82.3 | 77.7 | 68.2 | 65.6 | 54.5 | 68.7          |
| Water Heater<br>Inlet Water<br>Temperature,<br>(Tin) | 66.0  | 64.2 | 65.2 | 68.6 | 73.6 | 78.9 | 83.1 | 85.2 | 84.4 | 81.2 | 76.3 | 70.9 | 74.8          |
| offset (district<br>water) =                         | 6.00  |      |      |      |      |      |      |      |      |      |      |      |               |
| ratio =                                              | 0.647 |      |      |      |      |      |      |      |      |      |      |      |               |
| lag =                                                | 34.8  |      |      |      |      |      |      |      |      |      |      |      |               |

# E.1.2.2. Duct Efficiency Improvements, Duct Insulation (SC), Cool Roofs, & Window Awnings (SC) – Prototype Building Characteristics

| Building              | Building Type                    |                                  |                                       |  |  |  |  |  |  |  |
|-----------------------|----------------------------------|----------------------------------|---------------------------------------|--|--|--|--|--|--|--|
| Characteristic        | Small Office                     | Stand-Alone Retail               | Strip Mall                            |  |  |  |  |  |  |  |
| General               | ŝ                                | i li                             | 5.                                    |  |  |  |  |  |  |  |
| Ground Area (Sq. Ft.) | 7,500                            | 15,000                           | 7,500                                 |  |  |  |  |  |  |  |
| # of Stories          | 2                                | 1                                | 1                                     |  |  |  |  |  |  |  |
| Floor Area (Sq. Ft.)  | 15,000                           | 15,000                           | 7,500                                 |  |  |  |  |  |  |  |
| Roof                  |                                  | a d.                             |                                       |  |  |  |  |  |  |  |
| Construction          | Metal Frame, > 24 in. o.c.       | Metal Frame, >24 in. o.c.        | Metal Frame, > 24 in. o.c             |  |  |  |  |  |  |  |
| Ext. Finish           | Roof, Built up                   | Roof, Built up                   | Roof, Built up                        |  |  |  |  |  |  |  |
| Ext. Color            | Med (abs = 0.6)                  | Med (abs = 0.6)                  | Med (abs $= 0.6$ )                    |  |  |  |  |  |  |  |
| Ext. Insulation       | Varied                           | Varied                           | Varied                                |  |  |  |  |  |  |  |
| Add'l Insulation      | No batt or radiant barrier       | No batt or radiant barrier       | No batt or radiant barrier            |  |  |  |  |  |  |  |
| Walls                 |                                  | •                                |                                       |  |  |  |  |  |  |  |
| Construction          | Metal Frame, 2x6, 24 in.<br>o.c. | Metal Frame, 2x6, 16 in.<br>o.c. | Metal Frame, 2x4, 16 in.<br>o.c.      |  |  |  |  |  |  |  |
| Ext. Finish           | Wood/Plywood                     | CMU                              | Stucco/Gunite                         |  |  |  |  |  |  |  |
| Ext. Color            | Med (abs = 0.6)                  | Med (abs = 0.6)                  | Med (abs = $0.6$ )                    |  |  |  |  |  |  |  |
| Ext. Insulation       | 3/4 in. fiber bd sheathing (R-2) | 3/4 in. fiber bd sheathing (R-2) | 1/2 in. fiber bd sheathing<br>(R-1.3) |  |  |  |  |  |  |  |

| Building                                   | Building Type                     |                                   |                                  |  |
|--------------------------------------------|-----------------------------------|-----------------------------------|----------------------------------|--|
| Characteristic                             | Small Office                      | Stand-Alone Retail                | Strip Mall                       |  |
| Add'l Insulation                           | R-19 batt                         | R-11 batt                         | R-11 batt                        |  |
| Ceiling                                    |                                   | *                                 |                                  |  |
| Construction                               | Acoustic Tile                     | Acoustic Tile                     | Acoustic Tile                    |  |
| Insulation                                 | varied                            | varied                            | varied                           |  |
| Windows                                    | -                                 | -                                 |                                  |  |
| Glass Category                             | Double Clr/Tint 1/4",<br>1/2" air | Double Clr/Tint 1/4",<br>1/2" air | Double Clr/Tint 1/4", 1/2<br>air |  |
| Window Area                                | 70% of all walls                  | 70% of North wall; all others 0%  | 70% of East wall; all others 0%  |  |
| Lighting                                   | •                                 | •                                 | -                                |  |
| Lighting Density<br>(W/Sq. Ft.)            | 1.330                             | 2.030                             | 2.030                            |  |
| HVAC                                       | à.                                | ġ.                                |                                  |  |
| Cooling Source                             | DX Coils                          | DX Coils                          | DX Coils                         |  |
| System Type                                | Packaged Single Zone              | Packaged Single Zone              | Packaged Single Zone             |  |
| Typ. Unit Size                             | 11.25 - 20 tons                   | 5.4 – 7.5 tons                    | < 5.4 tons                       |  |
| EER (Base)                                 | 8.50 EER                          | 8.90 EER                          | 9.70 SEER                        |  |
| Heating Source                             | Furnace                           | Furnace                           | Furnace                          |  |
| Typ. Unit Size                             | > 225 kBTUh                       | <225 kBTUh                        | < 225 kBTUh                      |  |
| Efficiency (AFUE)                          | 0.806                             | 0.780                             | 0.780                            |  |
| Fans                                       |                                   |                                   |                                  |  |
| Min. Design Flow<br>(cfm/ft <sup>2</sup> ) | 0.50                              | 0.50                              | 0.50                             |  |
| Cycle Fans at Night?                       | Cycle Fans (no OA at night)       | Cycle Fans (no OA at night)       | Cycle Fans (no OA at night)      |  |
| DHW                                        |                                   | •                                 |                                  |  |
| Fuel                                       | Natural Gas                       | Natural Gas                       | Natural Gas                      |  |
| Туре                                       | Storage                           | Storage                           | Storage                          |  |
| Tank Insulation<br>R-Value                 | 12.00                             | 12.00                             | 12.00                            |  |
| Tank Capacity (gal)                        | 39                                | 21                                | 11                               |  |

#### E.1.2.3. HVAC

The tables below provide the eQuest Equivalent Full Load Hours (EFLH) model results for various building types found in New Orleans. EFLH values developed in eQuest were then normalized with El Dorado, AR EFLH.

|                      | El Dorado |       | New Orleans |       |
|----------------------|-----------|-------|-------------|-------|
| Building Type        | EFLH₀     | EFLHh | EFLH₀       | EFLHh |
| Fast Food            | 2,111     | 411   | 3,013       | 178   |
| Grocery              | 1,544     | 537   | 1,703       | 285   |
| Health Clinic        | 1,317     | 510   | 1,451       | 325   |
| Large Office         | 1,684     | 879   | 1,598       | 501   |
| Lodging              | 5,833     | 588   | 7,647       | 372   |
| Full Menu Restaurant | 2,070     | 509   | 2,900       | 217   |
| Retail               | 2,424     | 588   | 3,305       | 372   |
| School               | 1,209     | 420   | 1,672       | 167   |
| Small Office         | 1,564     | 115   | 2,098       | 37    |
| University           | 1,755     | 771   | 1,799       | 602   |

eQuest Model EFLH Results

#### EFHL Normalized Multipliers

|                      | El Dorado |       | New Orleans |       |
|----------------------|-----------|-------|-------------|-------|
| Building Type        | EFLH₀     | EFLHh | EFLH₀       | EFLHh |
| Fast Food            | 1.00      | 1.00  | 1.43        | 0.43  |
| Grocery              | 1.00      | 1.00  | 1.10        | 0.53  |
| Health Clinic        | 1.00      | 1.00  | 1.10        | 0.64  |
| Large Office         | 1.00      | 1.00  | 0.95        | 0.57  |
| Lodging              | 1.00      | 1.00  | 1.31        | 0.63  |
| Full Menu Restaurant | 1.00      | 1.00  | 1.40        | 0.43  |
| Retail               | 1.00      | 1.00  | 1.36        | 0.63  |
| School               | 1.00      | 1.00  | 1.38        | 0.40  |
| Small Office         | 1.00      | 1.00  | 1.34        | 0.33  |
| University           | 1.00      | 1.00  | 1.02        | 0.78  |

# E.1.2.4. Lighting

The table below shows logger counts, standard deviations, and compare original AR TRM6 hours with figures derived from direct monitoring.

| Facility or Space Type              | Count<br>of<br>Loggers | ARM<br>TRM 6<br>hours | New Orleans<br>Recommended Value |
|-------------------------------------|------------------------|-----------------------|----------------------------------|
| Leisure Dining: Bar Area            | 12                     |                       | 2,676.0                          |
| Corridor/Hallway/Stairwell          | 39                     |                       | 5,537.3                          |
| Education: College/University       |                        | 3,577.0               | 3,577.0                          |
| Education: K-12                     | 9                      | 2,777.0               | 2,333.5                          |
| Exterior                            |                        | 3,996.0               | 4,319.0                          |
| Food Sales: 24-Hour Supermarket     |                        | 6,900.0               | 6,900.0                          |
| Food Sales: Non 24-Hour Supermarket | 5                      | 4,706.0               | 2,058.2                          |
| Food Service: Fast Food             | 11                     | 6,188.0               | 6,473.4                          |
| Food Service: Sit-Down Restaurant   | 13                     | 4,368.0               | 4,730.6                          |
| Health Care: In-Patient             | 3                      | 5,730.0               | 4,019.4                          |
| Health Care: Nursing Home           |                        | 4,271.0               | 4,271.0                          |
| Health Care: Out-Patient            |                        | 3,386.0               | 3,386.0                          |
| Convenience Store (non-24 hour)     | 22                     |                       | 4,244.8                          |
| Lodging (Hotel/Motel/Dorm): Common  |                        |                       |                                  |
| Areas                               | 22                     | 6,630.0               | 4,126.9                          |
| Lodging (Hotel/Motel/Dorm): Room    | 13                     | 3 <i>,</i> 055.0      | 3,369.9                          |
| Manufacturing                       |                        | 5,740.0               | 5,740.0                          |
| Multi-family Housing: Common Areas  | 24                     | 4,772.0               | 5,703.4                          |
| Non-Warehouse Storage (Generic)     | 11                     |                       | 4,206.5                          |
| Office                              | 27                     | 3,737.0               | 5,158.5                          |
| Office (attached to other facility) | 36                     |                       | 4,728.4                          |
| Parking Structure                   |                        | 7,884.0               | 7,884.0                          |
| Public Assembly                     |                        | 2,638.0               | 2,638.0                          |
| Public Order and Safety             |                        | 3,472.0               | 3,472.0                          |
| Religious Gathering                 | 8                      | 1,824.0               | 3,174.3                          |
| Restroom (Generic)                  | 11                     |                       | 3,515.6                          |
| Retail: Enclosed Mall               |                        | 4,813.0               | 4,813.0                          |
| Retail: Freestanding                | 52                     | 3,668.0               | 3,514.8                          |
| Retail: Other                       | 4                      | 4,527.0               | 4,311.8                          |
| Retail: Strip Mall                  |                        | 3,965.0               | 3,965.0                          |
| Service: Excluding Food             |                        | 3,406.0               | 3,406.0                          |
| Warehouse: Non-Refrigerated         | 9                      | 3,501.0               | 2,416.7                          |
| Warehouse: Offices                  | 4                      |                       | 2,791.8                          |
| Warehouse: Refrigerated             |                        | 3,798.0               | 3,798.0                          |

#### Commercial Lighting Updates

# E.1.2.4.1. Lighting Power Density

ASHRAE 90.1-2007 Lighting Power Densities (LPD) – Building Area Method<sup>669</sup>

| Building Area Type         | LPD<br>(W/ft²) |
|----------------------------|----------------|
| Automotive Facility        | 0.9            |
| Convention Center          | 1.2            |
| Court House                | 1.2            |
| Dining: Bar Lounge/Leisure | 1.3            |
| Dining: Fast Food          | 1.4            |
| Dining: Family             | 1.6            |
| Dormitory                  | 1.0            |
| Exercise Center            | 1.0            |
| Gymnasium                  | 1.1            |
| Heathcare-Clinic           | 1.0            |
| Hospital                   | 1.2            |
| Hotel                      | 1.0            |
| Library                    | 1.3            |
| Manufacturing Facility     | 1.3            |
| Motel                      | 1.0            |
| Movie Theater              | 1.2            |
| Multifamily                | 0.7            |
| Museum                     | 1.1            |
| Office                     | 1.0            |
| Parking Garage             | 0.3            |
| Penitentiary               | 1.0            |
| Performing Arts Theater    | 1.6            |
| Police/Fire Station        | 1.0            |
| Post Office                | 1.1            |
| Religious Building         | 1.3            |
| Retail                     | 1.5            |
| School/University          | 1.2            |
| Sports Arena               | 1.1            |
| Town Hall                  | 1.1            |

<sup>&</sup>lt;sup>669</sup> ANSI/ASHRAE/IESNA Standard 90.1-2007, Table 9.5.1

| Transportation | 1.0 |
|----------------|-----|
| Warehouse      | 0.8 |
| Workshop       | 1.4 |

# ASHRAE 90.1-2007 Lighting Power Densities (LPD) – Space-by-Space Method by Space Types<sup>670</sup>

| Common Space Types <sup>671</sup> |                             |     |
|-----------------------------------|-----------------------------|-----|
| Office- Enclosed                  |                             | 1.1 |
| Office-Open Plan                  |                             | 1.1 |
| Conference/Meeting/Multipurpose   |                             | 1.3 |
| Classroom/Lecture/Training        |                             | 1.4 |
|                                   | For Penitentiary            | 1.3 |
| Lobby                             |                             | 1.3 |
|                                   | For Hotel                   | 1.1 |
|                                   | For Performing Arts Center  | 3.3 |
|                                   | For Motion Picture Theater  | 1.1 |
| Audiences/Seating Area            |                             | 0.9 |
|                                   | For Gymnasium               | 0.4 |
|                                   | For Exercise Center         | 0.3 |
|                                   | For Convention Center       | 0.7 |
|                                   | For Penitentiary            | 0.7 |
|                                   | For Religious Building      | 1.7 |
|                                   | For Sports Area             | 0.4 |
|                                   | For Performing Arts Theater | 2.6 |
|                                   | For Motion Picture Theater  | 1.2 |
|                                   | For Transportation          | 0.5 |
| Atrium- First Three Floors        |                             | 0.6 |

<sup>&</sup>lt;sup>670</sup> ANSI/ASHRAE/IESNA Standard 90.1-2007, Table 9.6.1

<sup>&</sup>lt;sup>671</sup> In cases where both a common space type and a building-specific space type are listed, the building-specific space type shall apply.

| 1                                | 1                             |     |
|----------------------------------|-------------------------------|-----|
| Atrium- Additional Floors        |                               | 0.2 |
| Lounge/Reception                 |                               | 1.2 |
|                                  | For Hospital                  | 0.8 |
| Dining Area                      |                               | 0.9 |
|                                  | For Penitentiary              | 1.3 |
|                                  | For Hotel                     | 1.3 |
|                                  | For Motel                     | 1.2 |
|                                  | For Bar Lounge/Leisure Dining | 1.4 |
|                                  | For Family Dining             | 2.1 |
| Food Preparation                 |                               | 1.2 |
| Laboratory                       |                               | 1.4 |
| Restrooms                        |                               | 0.9 |
| Dressing/Locker/Fitting Room     |                               | 0.6 |
| Corridor/Transition              |                               | 0.5 |
|                                  | For Hospital                  | 1.0 |
|                                  | For Manufacturing Facility    | 0.5 |
| Stairs- Active                   |                               | 0.6 |
| Active Storage                   |                               | 0.8 |
|                                  | For Hospital                  | 0.9 |
| Inactive Storage                 |                               | 0.3 |
|                                  | For Museum                    | 0.8 |
| Electrical/Mechanical            |                               | 1.5 |
| Workshop                         |                               | 1.9 |
| Sales Area (for accent lighting) |                               | 1.7 |

ASHRAE 90.1-2007 Lighting Power Densities (LPD) – Space-by-Space Method by Building-Specific Space Types<sup>672</sup>

| Building-Specific Space Types <sup>673</sup> | LPD (W/ft <sup>2</sup> ) |  |
|----------------------------------------------|--------------------------|--|
|----------------------------------------------|--------------------------|--|

<sup>&</sup>lt;sup>672</sup> ANSI/ASHRAE/IESNA Standard 90.1-2007, Table 9.6.1

<sup>&</sup>lt;sup>673</sup> In cases where both a common space type and a building-specific space type are listed, the building-specific space type shall apply.

|                                        | Playing Area                             | 1.4 |
|----------------------------------------|------------------------------------------|-----|
| Gymnasium/Exercise Center              | Exercise Area                            | 0.9 |
| Courthouse/Police Station/Penitentiary | Courtroom                                | 1.9 |
|                                        | Confinement Cells                        | 0.9 |
|                                        | Judges' Chambers                         | 1.3 |
|                                        | Engine Room                              | 0.8 |
| Fire Stations                          | Sleeping Quarters                        | 0.3 |
| Post Office- Sorting Area              |                                          | 1.2 |
| Convention Center- Exhibit Space       |                                          | 1.3 |
|                                        | Card File and Cataloging                 | 1.1 |
| ibrary                                 | Stacks                                   | 1.7 |
|                                        | Reading Area                             | 1.2 |
|                                        | Emergency                                | 2.7 |
|                                        | Recovery                                 | 0.8 |
|                                        | Nurses' Station                          | 1.0 |
|                                        | Exam/Treatment                           | 1.5 |
|                                        | Pharmacy                                 | 1.2 |
|                                        | Patient Room                             | 0.7 |
| Hospital                               | Operating Room                           | 2.2 |
|                                        | Nursery                                  | 0.6 |
|                                        | Medical Supply                           | 1.4 |
|                                        | Physical Therapy                         | 0.9 |
|                                        | Radiology                                | 0.4 |
|                                        | Laundry-Washing                          | 0.6 |
| Automotive- Service/Repair             |                                          | 0.7 |
|                                        | Low Bay *<25ft floor to ceiling height)  | 1.2 |
|                                        | High Bay (>25ft floor to ceiling height) | 1.7 |
| Manufacturing                          | Detailed manufacturing                   | 2.1 |
|                                        | Equipment Room                           | 1.2 |
|                                        | Control Room                             | 0.5 |
| Hotel/Motel Guest Rooms                |                                          | 1.1 |
| Dormitory- Living Quarters             |                                          | 1.1 |
| N 4                                    | General Exhibition                       | 1   |
| Museum                                 | Restoration                              | 1.7 |
| Bank/Office- Banking Activity Area     |                                          |     |

|                             | Worship Pulpit, Choir            | 2.4 |
|-----------------------------|----------------------------------|-----|
| Religious Building          | Fellowship Hall                  | 0.9 |
| Retail                      | Sales Area (for accent lighting) | 1.7 |
|                             | Mall Concourse                   | 1.7 |
|                             | Ring Sports Area                 | 2.7 |
| Sports Arena                | Court Sports Area                | 2.3 |
|                             | Indoor Playing Field Area        | 1.4 |
|                             | Fine Material Storage            | 1.4 |
| Warehouse                   | Medium/Bulky Material Storage    | 0.9 |
| Parking Garage- Garage Area |                                  | 0.2 |
|                             | Airport- Concourse               | 0.6 |
| Transportation              | Air/Train/Bus- Baggage Area      | 1.0 |
|                             | Terminal- Ticket Counter         | 1.5 |

ASHRAE 90.1-2007 Lighting Power Densities (LPD) – Building Exteriors<sup>674,675</sup>

| Tradable/<br>Non-tradable | Exterior Space Type                              |                     | LPD                               |
|---------------------------|--------------------------------------------------|---------------------|-----------------------------------|
|                           | Uncovered Parking Areas- Parking lots and drives |                     | 0.15 Wft <sup>2</sup>             |
| Surfaces                  | Building Grounds                                 | Walkways <10ft wide | 1.0 W/linear ft                   |
|                           |                                                  | Walkways >10ftwide  | 0.02 W/ft <sup>2</sup>            |
|                           |                                                  | Stairways           | 1 ft <sup>2</sup>                 |
|                           | Building Entrances and Exits                     | Main entries        | 30 W/linear ft<br>(of door width) |

<sup>&</sup>lt;sup>674</sup> ANSI/ASHRAE/IESNA Standard 90.1-2007, Table 9.4.5

<sup>&</sup>lt;sup>675</sup> Exterior Building Lighting Power: The total exterior lighting power allowance for all exterior building applications is the sum of the individual lighting power densities permitted in Table 4 for these application plus an additional unrestricted allowance of 5% of that sum. The trade-offs are allowed only among exterior lighting applications listed in Table 4 "Tradable Surfaces" section.

|                         |                                                                    | Other doors                                                          | 20 W/linear ft<br>(of door width) |
|-------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------|
|                         | Canopies and Overhangs- Canopie                                    | s (free standing, attached & overhangs)                              | 1.25 W/ft <sup>2</sup>            |
|                         |                                                                    | Open areas (including vehicle sales lots)                            | 0.5 W/ft <sup>2</sup>             |
|                         | Outdoor Sales                                                      | Street frontage for vehicle sales lots (in addition to above)        | 20 W/linear ft.                   |
|                         |                                                                    | For each illuminated wall or surface OR                              | 0.2 W/ft <sup>2</sup>             |
|                         | Building Facades                                                   | For each illuminated wall or surface<br>length                       | 5.0 W/linear ft                   |
|                         | Automated Teller Machines and                                      | Per location                                                         | 270 W                             |
|                         | Night Depositories                                                 | Per additional ATM per location                                      | 90 W                              |
| Nontradable<br>Surfaces | Entrances and Gatehouse Insp<br>Uncovered areas (for covered area  | ection Stations at Guarded Facilities-<br>as use Canopies/Overhangs) | 1.25 W/ft <sup>2</sup>            |
|                         | Loading Areas for Emergency Servi<br>areas use Canopies/Overhangs) | ice Vehicles- Uncovered areas (for covered                           | 0.5 W/ft <sup>2</sup>             |
|                         | Drive-up Windows at Fast Food Re                                   | estaurants- per drive-through                                        | 400 W                             |
|                         | Parking near 24-hour Retail Entrar                                 | nces- Per main entry                                                 | 800 W                             |

# E.1.2.4.1. Wattage Tables

The table below presents standard wattages.

# Standard Wattage Table

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term           | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W /<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|-----------------------|------------|-------------------|------------|-------------|-----|
| LED-SCRW        |              | Integrated Ballast LEDs                                           |                       |            |                   |            |             |     |
| LED001-<br>SCRW | LEDINT1W     | Integrated Ballast LED, (1) 1W screw-in lamp/base, any bulb shape | 1W LED - Int. Ballast | Electronic | N/A               | N/A        | 1           | 9   |
| LED002-<br>SCRW | LEDINT2W     | Integrated Ballast LED, (1) 2W screw-in lamp/base, any bulb shape | 2W LED - Int. Ballast | Electronic | N/A               | N/A        | 2           | 9   |
| LED003-<br>SCRW | LEDINT3W     | Integrated Ballast LED, (1) 3W screw-in lamp/base, any bulb shape | 3W LED - Int. Ballast | Electronic | N/A               | N/A        | 3           | 9   |
| LED004-<br>SCRW | LEDINT4W     | Integrated Ballast LED, (1) 4W screw-in lamp/base, any bulb shape | 4W LED - Int. Ballast | Electronic | N/A               | N/A        | 4           | 9   |
| LED005-<br>SCRW | LEDINT5W     | Integrated Ballast LED, (1) 5W screw-in lamp/base, any bulb shape | 5W LED - Int. Ballast | Electronic | N/A               | N/A        | 5           | 9   |
| LED006-<br>SCRW | LEDINT6W     | Integrated Ballast LED, (1) 6W screw-in lamp/base, any bulb shape | 6W LED - Int. Ballast | Electronic | N/A               | N/A        | 6           | 9   |
| LED007-<br>SCRW | LEDINT7W     | Integrated Ballast LED, (1) 7W screw-in lamp/base, any bulb shape | 7W LED - Int. Ballast | Electronic | N/A               | N/A        | 7           | 9   |
| LED008-<br>SCRW | LEDINT8W     | Integrated Ballast LED, (1) 8W screw-in lamp/base, any bulb shape | 8W LED - Int. Ballast | Electronic | N/A               | N/A        | 8           | 9   |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                        | Layman Term            | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|--------------------------------------------------------------------|------------------------|------------|-------------------|------------|------------|-----|
| LED009-<br>SCRW | LEDINT9W     | Integrated Ballast LED, (1) 9W screw-in lamp/base, any bulb shape  | 9W LED - Int. Ballast  | Electronic | N/A               | N/A        | 9          | 9   |
| LED010-<br>SCRW | LEDINT10W    | Integrated Ballast LED, (1) 10W screw-in lamp/base, any bulb shape | 10W LED - Int. Ballast | Electronic | N/A               | N/A        | 10         | 9   |
| LED011-<br>SCRW | LEDINT11W    | Integrated Ballast LED, (1) 11W screw-in lamp/base, any bulb shape | 11W LED - Int. Ballast | Electronic | N/A               | N/A        | 11         | 9   |
| LED012-<br>SCRW | LEDINT12W    | Integrated Ballast LED, (1) 12W screw-in lamp/base, any bulb shape | 12W LED - Int. Ballast | Electronic | N/A               | N/A        | 12         | 9   |
| LED013-<br>SCRW | LEDINT13W    | Integrated Ballast LED, (1) 13W screw-in lamp/base, any bulb shape | 13W LED - Int. Ballast | Electronic | N/A               | N/A        | 13         | 9   |
| LED014-<br>SCRW | LEDINT14W    | Integrated Ballast LED, (1) 14W screw-in lamp/base, any bulb shape | 14W LED - Int. Ballast | Electronic | N/A               | N/A        | 14         | 9   |
| LED015-<br>SCRW | LEDINT15W    | Integrated Ballast LED, (1) 15W screw-in lamp/base, any bulb shape | 15W LED - Int. Ballast | Electronic | N/A               | N/A        | 15         | 9   |
| LED016-<br>SCRW | LEDINT16W    | Integrated Ballast LED, (1) 16W screw-in lamp/base, any bulb shape | 16W LED - Int. Ballast | Electronic | N/A               | N/A        | 16         | 9   |
| LED017-<br>SCRW | LEDINT17W    | Integrated Ballast LED, (1) 17W screw-in lamp/base, any bulb shape | 17W LED - Int. Ballast | Electronic | N/A               | N/A        | 17         | 9   |
| LED018-<br>SCRW | LEDINT18W    | Integrated Ballast LED, (1) 18W screw-in lamp/base, any bulb shape | 18W LED - Int. Ballast | Electronic | N/A               | N/A        | 18         | 9   |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                        | Layman Term            | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|--------------------------------------------------------------------|------------------------|------------|-------------------|------------|------------|-----|
| LED019-<br>SCRW | LEDINT19W    | Integrated Ballast LED, (1) 19W screw-in lamp/base, any bulb shape | 19W LED - Int. Ballast | Electronic | N/A               | N/A        | 19         | 9   |
| LED020-<br>SCRW | LEDINT20W    | Integrated Ballast LED, (1) 20W screw-in lamp/base, any bulb shape | 20W LED - Int. Ballast | Electronic | N/A               | N/A        | 20         | 9   |
| LED021-<br>SCRW | LEDINT21W    | Integrated Ballast LED, (1) 21W screw-in lamp/base, any bulb shape | 21W LED - Int. Ballast | Electronic | N/A               | N/A        | 21         | 9   |
| LED022-<br>SCRW | LEDINT22W    | Integrated Ballast LED, (1) 22W screw-in lamp/base, any bulb shape | 22W LED - Int. Ballast | Electronic | N/A               | N/A        | 22         | 9   |
| LED023-<br>SCRW | LEDINT23W    | Integrated Ballast LED, (1) 23W screw-in lamp/base, any bulb shape | 23W LED - Int. Ballast | Electronic | N/A               | N/A        | 23         | 9   |
| LED024-<br>SCRW | LEDINT24W    | Integrated Ballast LED, (1) 24W screw-in lamp/base, any bulb shape | 24W LED - Int. Ballast | Electronic | N/A               | N/A        | 24         | 9   |
| LED025-<br>SCRW | LEDINT25W    | Integrated Ballast LED, (1) 25W screw-in lamp/base, any bulb shape | 25W LED - Int. Ballast | Electronic | N/A               | N/A        | 25         | 9   |
| LED026-<br>SCRW | LEDINT26W    | Integrated Ballast LED, (1) 26W screw-in lamp/base, any bulb shape | 26W LED - Int. Ballast | Electronic | N/A               | N/A        | 26         | 9   |
| LED027-<br>SCRW | LEDINT27W    | Integrated Ballast LED, (1) 27W screw-in lamp/base, any bulb shape | 27W LED - Int. Ballast | Electronic | N/A               | N/A        | 27         | 9   |
| LED028-<br>SCRW | LEDINT28W    | Integrated Ballast LED, (1) 28W screw-in lamp/base, any bulb shape | 28W LED - Int. Ballast | Electronic | N/A               | N/A        | 28         | 9   |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                        | Layman Term            | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|--------------------------------------------------------------------|------------------------|------------|-------------------|------------|------------|-----|
| LED029-<br>SCRW | LEDINT29W    | Integrated Ballast LED, (1) 29W screw-in lamp/base, any bulb shape | 29W LED - Int. Ballast | Electronic | N/A               | N/A        | 29         | 9   |
| LED030-<br>SCRW | LEDINT30W    | Integrated Ballast LED, (1) 30W screw-in lamp/base, any bulb shape | 30W LED - Int. Ballast | Electronic | N/A               | N/A        | 30         | 9   |
| LED031-<br>SCRW | LEDINT31W    | Integrated Ballast LED, (1) 31W screw-in lamp/base, any bulb shape | 31W LED - Int. Ballast | Electronic | N/A               | N/A        | 31         | 9   |
| LED032-<br>SCRW | LEDINT32W    | Integrated Ballast LED, (1) 32W screw-in lamp/base, any bulb shape | 32W LED - Int. Ballast | Electronic | N/A               | N/A        | 32         | 9   |
| LED033-<br>SCRW | LEDINT33W    | Integrated Ballast LED, (1) 33W screw-in lamp/base, any bulb shape | 33W LED - Int. Ballast | Electronic | N/A               | N/A        | 33         | 9   |
| LED034-<br>SCRW | LEDINT34W    | Integrated Ballast LED, (1) 34W screw-in lamp/base, any bulb shape | 34W LED - Int. Ballast | Electronic | N/A               | N/A        | 34         | 9   |
| LED035-<br>SCRW | LEDINT35W    | Integrated Ballast LED, (1) 35W screw-in lamp/base, any bulb shape | 35W LED - Int. Ballast | Electronic | N/A               | N/A        | 35         | 9   |
| LED036-<br>SCRW | LEDINT36W    | Integrated Ballast LED, (1) 36W screw-in lamp/base, any bulb shape | 36W LED - Int. Ballast | Electronic | N/A               | N/A        | 36         | 9   |
| LED037-<br>SCRW | LEDINT37W    | Integrated Ballast LED, (1) 37W screw-in lamp/base, any bulb shape | 37W LED - Int. Ballast | Electronic | N/A               | N/A        | 37         | 9   |
| LED038-<br>SCRW | LEDINT38W    | Integrated Ballast LED, (1) 38W screw-in lamp/base, any bulb shape | 38W LED - Int. Ballast | Electronic | N/A               | N/A        | 38         | 9   |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                        | Layman Term            | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|--------------------------------------------------------------------|------------------------|------------|-------------------|------------|------------|-----|
| LED039-<br>SCRW | LEDINT39W    | Integrated Ballast LED, (1) 39W screw-in lamp/base, any bulb shape | 39W LED - Int. Ballast | Electronic | N/A               | N/A        | 39         | 9   |
| LED040-<br>SCRW | LEDINT40W    | Integrated Ballast LED, (1) 40W screw-in lamp/base, any bulb shape | 40W LED - Int. Ballast | Electronic | N/A               | N/A        | 40         | 9   |
| LED041-<br>SCRW | LEDINT41W    | Integrated Ballast LED, (1) 41W screw-in lamp/base, any bulb shape | 41W LED - Int. Ballast | Electronic | N/A               | N/A        | 41         | 9   |
| LED042-<br>SCRW | LEDINT42W    | Integrated Ballast LED, (1) 42W screw-in lamp/base, any bulb shape | 42W LED - Int. Ballast | Electronic | N/A               | N/A        | 42         | 9   |
| LED043-<br>SCRW | LEDINT43W    | Integrated Ballast LED, (1) 43W screw-in lamp/base, any bulb shape | 43W LED - Int. Ballast | Electronic | N/A               | N/A        | 43         | 9   |
| LED044-<br>SCRW | LEDINT44W    | Integrated Ballast LED, (1) 44W screw-in lamp/base, any bulb shape | 44W LED - Int. Ballast | Electronic | N/A               | N/A        | 44         | 9   |
| LED045-<br>SCRW | LEDINT45W    | Integrated Ballast LED, (1) 45W screw-in lamp/base, any bulb shape | 45W LED - Int. Ballast | Electronic | N/A               | N/A        | 45         | 9   |
| LED046-<br>SCRW | LEDINT46W    | Integrated Ballast LED, (1) 46W screw-in lamp/base, any bulb shape | 46W LED - Int. Ballast | Electronic | N/A               | N/A        | 46         | 9   |
| LED047-<br>SCRW | LEDINT47W    | Integrated Ballast LED, (1) 47W screw-in lamp/base, any bulb shape | 47W LED - Int. Ballast | Electronic | N/A               | N/A        | 47         | 9   |
| LED048-<br>SCRW | LEDINT48W    | Integrated Ballast LED, (1) 48W screw-in lamp/base, any bulb shape | 48W LED - Int. Ballast | Electronic | N/A               | N/A        | 48         | 9   |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                        | Layman Term                  | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|--------------------------------------------------------------------|------------------------------|------------|-------------------|------------|------------|-----|
| LED049-<br>SCRW | LEDINT49W    | Integrated Ballast LED, (1) 49W screw-in lamp/base, any bulb shape | 49W LED - Int. Ballast       | Electronic | N/A               | N/A        | 49         | 9   |
| LED050-<br>SCRW | LEDINT50W    | Integrated Ballast LED, (1) 50W screw-in lamp/base, any bulb shape | 50W LED - Int. Ballast       | Electronic | N/A               | N/A        | 50         | 9   |
| LED-FIXT        |              | Non-Integrated Ballast LEDs                                        |                              |            |                   |            |            |     |
| LED001-<br>FIXT | LED1W        | Non-Integrated Ballast LED, 1W, any bulb shape, any application    | 1W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 1          | 15  |
| LED002-<br>FIXT | LED2W        | Non-Integrated Ballast LED, 2W, any bulb shape, any application    | 2W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 2          | 15  |
| LED003-<br>FIXT | LED3W        | Non-Integrated Ballast LED, 3W, any bulb shape, any application    | 3W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 3          | 15  |
| LED004-<br>FIXT | LED4W        | Non-Integrated Ballast LED, 4W, any bulb shape, any application    | 4W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 4          | 15  |
| LED005-<br>FIXT | LED5W        | Non-Integrated Ballast LED, 5W, any bulb shape, any application    | 5W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 5          | 15  |
| LED006-<br>FIXT | LED6W        | Non-Integrated Ballast LED, 6W, any bulb shape, any application    | 6W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 6          | 15  |
| LED007-<br>FIXT | LED7W        | Non-Integrated Ballast LED, 7W, any bulb shape, any application    | 7W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 7          | 15  |
| LED008-<br>FIXT | LED8W        | Non-Integrated Ballast LED, 8W, any bulb shape, any application    | 8W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 8          | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                      | Layman Term                   | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|------------------------------------------------------------------|-------------------------------|------------|-------------------|------------|------------|-----|
| LED009-<br>FIXT | LED9W        | Non-Integrated Ballast LED, 9W, any bulb shape, any application  | 9W LED - Non-Int.<br>Ballast  | Electronic | N/A               | N/A        | 9          | 15  |
| LED010-<br>FIXT | LED10W       | Non-Integrated Ballast LED, 10W, any bulb shape, any application | 10W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 10         | 15  |
| LED011-<br>FIXT | LED11W       | Non-Integrated Ballast LED, 11W, any bulb shape, any application | 11W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 11         | 15  |
| LED012-<br>FIXT | LED12W       | Non-Integrated Ballast LED, 12W, any bulb shape, any application | 12W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 12         | 15  |
| LED013-<br>FIXT | LED13W       | Non-Integrated Ballast LED, 13W, any bulb shape, any application | 13W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 13         | 15  |
| LED014-<br>FIXT | LED14W       | Non-Integrated Ballast LED, 14W, any bulb shape, any application | 14W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 14         | 15  |
| LED015-<br>FIXT | LED15W       | Non-Integrated Ballast LED, 15W, any bulb shape, any application | 15W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 15         | 15  |
| LED016-<br>FIXT | LED16W       | Non-Integrated Ballast LED, 16W, any bulb shape, any application | 16W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 16         | 15  |
| LED017-<br>FIXT | LED17W       | Non-Integrated Ballast LED, 17W, any bulb shape, any application | 17W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 17         | 15  |
| LED018-<br>FIXT | LED18W       | Non-Integrated Ballast LED, 18W, any bulb shape, any application | 18W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 18         | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                      | Layman Term                   | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|------------------------------------------------------------------|-------------------------------|------------|-------------------|------------|------------|-----|
| LED019-<br>FIXT | LED19W       | Non-Integrated Ballast LED, 19W, any bulb shape, any application | 19W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 19         | 15  |
| LED020-<br>FIXT | LED20W       | Non-Integrated Ballast LED, 20W, any bulb shape, any application | 20W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 20         | 15  |
| LED021-<br>FIXT | LED21W       | Non-Integrated Ballast LED, 21W, any bulb shape, any application | 21W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 21         | 15  |
| LED022-<br>FIXT | LED22W       | Non-Integrated Ballast LED, 22W, any bulb shape, any application | 22W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 22         | 15  |
| LED023-<br>FIXT | LED23W       | Non-Integrated Ballast LED, 23W, any bulb shape, any application | 23W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 23         | 15  |
| LED024-<br>FIXT | LED24W       | Non-Integrated Ballast LED, 24W, any bulb shape, any application | 24W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 24         | 15  |
| LED025-<br>FIXT | LED25W       | Non-Integrated Ballast LED, 25W, any bulb shape, any application | 25W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 25         | 15  |
| LED026-<br>FIXT | LED26W       | Non-Integrated Ballast LED, 26W, any bulb shape, any application | 26W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 26         | 15  |
| LED027-<br>FIXT | LED27W       | Non-Integrated Ballast LED, 27W, any bulb shape, any application | 27W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 27         | 15  |
| LED028-<br>FIXT | LED28W       | Non-Integrated Ballast LED, 28W, any bulb shape, any application | 28W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 28         | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                      | Layman Term                   | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|------------------------------------------------------------------|-------------------------------|------------|-------------------|------------|------------|-----|
| LED029-<br>FIXT | LED29W       | Non-Integrated Ballast LED, 29W, any bulb shape, any application | 29W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 29         | 15  |
| LED030-<br>FIXT | LED30W       | Non-Integrated Ballast LED, 30W, any bulb shape, any application | 30W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 30         | 15  |
| LED031-<br>FIXT | LED31W       | Non-Integrated Ballast LED, 31W, any bulb shape, any application | 31W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 31         | 15  |
| LED032-<br>FIXT | LED32W       | Non-Integrated Ballast LED, 32W, any bulb shape, any application | 32W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 32         | 15  |
| LED033-<br>FIXT | LED33W       | Non-Integrated Ballast LED, 33W, any bulb shape, any application | 33W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 33         | 15  |
| LED034-<br>FIXT | LED34W       | Non-Integrated Ballast LED, 34W, any bulb shape, any application | 34W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 34         | 15  |
| LED035-<br>FIXT | LED35W       | Non-Integrated Ballast LED, 35W, any bulb shape, any application | 35W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 35         | 15  |
| LED036-<br>FIXT | LED36W       | Non-Integrated Ballast LED, 36W, any bulb shape, any application | 36W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 36         | 15  |
| LED037-<br>FIXT | LED37W       | Non-Integrated Ballast LED, 37W, any bulb shape, any application | 37W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 37         | 15  |
| LED038-<br>FIXT | LED38W       | Non-Integrated Ballast LED, 38W, any bulb shape, any application | 38W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 38         | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                      | Layman Term                   | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|------------------------------------------------------------------|-------------------------------|------------|-------------------|------------|------------|-----|
| LED039-<br>FIXT | LED39W       | Non-Integrated Ballast LED, 39W, any bulb shape, any application | 39W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 39         | 15  |
| LED040-<br>FIXT | LED40W       | Non-Integrated Ballast LED, 40W, any bulb shape, any application | 40W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 40         | 15  |
| LED041-<br>FIXT | LED41W       | Non-Integrated Ballast LED, 41W, any bulb shape, any application | 41W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 41         | 15  |
| LED042-<br>FIXT | LED42W       | Non-Integrated Ballast LED, 42W, any bulb shape, any application | 42W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 42         | 15  |
| LED043-<br>FIXT | LED43W       | Non-Integrated Ballast LED, 43W, any bulb shape, any application | 43W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 43         | 15  |
| LED044-<br>FIXT | LED44W       | Non-Integrated Ballast LED, 44W, any bulb shape, any application | 44W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 44         | 15  |
| LED045-<br>FIXT | LED45W       | Non-Integrated Ballast LED, 45W, any bulb shape, any application | 45W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 45         | 15  |
| LED046-<br>FIXT | LED46W       | Non-Integrated Ballast LED, 46W, any bulb shape, any application | 46W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 46         | 15  |
| LED047-<br>FIXT | LED47W       | Non-Integrated Ballast LED, 47W, any bulb shape, any application | 47W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 47         | 15  |
| LED048-<br>FIXT | LED48W       | Non-Integrated Ballast LED, 48W, any bulb shape, any application | 48W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 48         | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                      | Layman Term                   | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|------------------------------------------------------------------|-------------------------------|------------|-------------------|------------|------------|-----|
| LED049-<br>FIXT | LED49W       | Non-Integrated Ballast LED, 49W, any bulb shape, any application | 49W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 49         | 15  |
| LED050-<br>FIXT | LED50W       | Non-Integrated Ballast LED, 50W, any bulb shape, any application | 50W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 50         | 15  |
| LED051-<br>FIXT | LED51W       | Non-Integrated Ballast LED, 51W, any bulb shape, any application | 51W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 51         | 15  |
| LED052-<br>FIXT | LED52W       | Non-Integrated Ballast LED, 52W, any bulb shape, any application | 52W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 52         | 15  |
| LED053-<br>FIXT | LED53W       | Non-Integrated Ballast LED, 53W, any bulb shape, any application | 53W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 53         | 15  |
| LED054-<br>FIXT | LED54W       | Non-Integrated Ballast LED, 54W, any bulb shape, any application | 54W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 54         | 15  |
| LED055-<br>FIXT | LED55W       | Non-Integrated Ballast LED, 55W, any bulb shape, any application | 55W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 55         | 15  |
| LED056-<br>FIXT | LED56W       | Non-Integrated Ballast LED, 56W, any bulb shape, any application | 56W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 56         | 15  |
| LED057-<br>FIXT | LED57W       | Non-Integrated Ballast LED, 57W, any bulb shape, any application | 57W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 57         | 15  |
| LED058-<br>FIXT | LED58W       | Non-Integrated Ballast LED, 58W, any bulb shape, any application | 58W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 58         | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                      | Layman Term                   | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|------------------------------------------------------------------|-------------------------------|------------|-------------------|------------|------------|-----|
| LED059-<br>FIXT | LED59W       | Non-Integrated Ballast LED, 59W, any bulb shape, any application | 59W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 59         | 15  |
| LED060-<br>FIXT | LED60W       | Non-Integrated Ballast LED, 60W, any bulb shape, any application | 60W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 60         | 15  |
| LED061-<br>FIXT | LED61W       | Non-Integrated Ballast LED, 61W, any bulb shape, any application | 61W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 61         | 15  |
| LED062-<br>FIXT | LED62W       | Non-Integrated Ballast LED, 62W, any bulb shape, any application | 62W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 62         | 15  |
| LED063-<br>FIXT | LED63W       | Non-Integrated Ballast LED, 63W, any bulb shape, any application | 63W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 63         | 15  |
| LED064-<br>FIXT | LED64W       | Non-Integrated Ballast LED, 64W, any bulb shape, any application | 64W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 64         | 15  |
| LED065-<br>FIXT | LED65W       | Non-Integrated Ballast LED, 65W, any bulb shape, any application | 65W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 65         | 15  |
| LED066-<br>FIXT | LED66W       | Non-Integrated Ballast LED, 66W, any bulb shape, any application | 66W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 66         | 15  |
| LED067-<br>FIXT | LED67W       | Non-Integrated Ballast LED, 67W, any bulb shape, any application | 67W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 67         | 15  |
| LED068-<br>FIXT | LED68W       | Non-Integrated Ballast LED, 68W, any bulb shape, any application | 68W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 68         | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                      | Layman Term                   | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|------------------------------------------------------------------|-------------------------------|------------|-------------------|------------|------------|-----|
| LED069-<br>FIXT | LED69W       | Non-Integrated Ballast LED, 69W, any bulb shape, any application | 69W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 69         | 15  |
| LED070-<br>FIXT | LED70W       | Non-Integrated Ballast LED, 70W, any bulb shape, any application | 70W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 70         | 15  |
| LED071-<br>FIXT | LED71W       | Non-Integrated Ballast LED, 71W, any bulb shape, any application | 71W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 71         | 15  |
| LED072-<br>FIXT | LED72W       | Non-Integrated Ballast LED, 72W, any bulb shape, any application | 72W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 72         | 15  |
| LED073-<br>FIXT | LED73W       | Non-Integrated Ballast LED, 73W, any bulb shape, any application | 73W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 73         | 15  |
| LED074-<br>FIXT | LED74W       | Non-Integrated Ballast LED, 74W, any bulb shape, any application | 74W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 74         | 15  |
| LED075-<br>FIXT | LED75W       | Non-Integrated Ballast LED, 75W, any bulb shape, any application | 75W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 75         | 15  |
| LED076-<br>FIXT | LED76W       | Non-Integrated Ballast LED, 76W, any bulb shape, any application | 76W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 76         | 15  |
| LED077-<br>FIXT | LED77W       | Non-Integrated Ballast LED, 77W, any bulb shape, any application | 77W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 77         | 15  |
| LED078-<br>FIXT | LED78W       | Non-Integrated Ballast LED, 78W, any bulb shape, any application | 78W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 78         | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                      | Layman Term                   | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|------------------------------------------------------------------|-------------------------------|------------|-------------------|------------|------------|-----|
| LED079-<br>FIXT | LED79W       | Non-Integrated Ballast LED, 79W, any bulb shape, any application | 79W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 79         | 15  |
| LED080-<br>FIXT | LED80W       | Non-Integrated Ballast LED, 80W, any bulb shape, any application | 80W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 80         | 15  |
| LED081-<br>FIXT | LED81W       | Non-Integrated Ballast LED, 81W, any bulb shape, any application | 81W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 81         | 15  |
| LED082-<br>FIXT | LED82W       | Non-Integrated Ballast LED, 82W, any bulb shape, any application | 82W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 82         | 15  |
| LED083-<br>FIXT | LED83W       | Non-Integrated Ballast LED, 83W, any bulb shape, any application | 83W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 83         | 15  |
| LED084-<br>FIXT | LED84W       | Non-Integrated Ballast LED, 84W, any bulb shape, any application | 84W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 84         | 15  |
| LED085-<br>FIXT | LED85W       | Non-Integrated Ballast LED, 85W, any bulb shape, any application | 85W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 85         | 15  |
| LED086-<br>FIXT | LED86W       | Non-Integrated Ballast LED, 86W, any bulb shape, any application | 86W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 86         | 15  |
| LED087-<br>FIXT | LED87W       | Non-Integrated Ballast LED, 87W, any bulb shape, any application | 87W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 87         | 15  |
| LED088-<br>FIXT | LED88W       | Non-Integrated Ballast LED, 88W, any bulb shape, any application | 88W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 88         | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                      | Layman Term                   | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|------------------------------------------------------------------|-------------------------------|------------|-------------------|------------|------------|-----|
| LED089-<br>FIXT | LED89W       | Non-Integrated Ballast LED, 89W, any bulb shape, any application | 89W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 89         | 15  |
| LED090-<br>FIXT | LED90W       | Non-Integrated Ballast LED, 90W, any bulb shape, any application | 90W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 90         | 15  |
| LED091-<br>FIXT | LED91W       | Non-Integrated Ballast LED, 91W, any bulb shape, any application | 91W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 91         | 15  |
| LED092-<br>FIXT | LED92W       | Non-Integrated Ballast LED, 92W, any bulb shape, any application | 92W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 92         | 15  |
| LED093-<br>FIXT | LED93W       | Non-Integrated Ballast LED, 93W, any bulb shape, any application | 93W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 93         | 15  |
| LED094-<br>FIXT | LED94W       | Non-Integrated Ballast LED, 94W, any bulb shape, any application | 94W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 94         | 15  |
| LED095-<br>FIXT | LED95W       | Non-Integrated Ballast LED, 95W, any bulb shape, any application | 95W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 95         | 15  |
| LED096-<br>FIXT | LED96W       | Non-Integrated Ballast LED, 96W, any bulb shape, any application | 96W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 96         | 15  |
| LED097-<br>FIXT | LED97W       | Non-Integrated Ballast LED, 97W, any bulb shape, any application | 97W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 97         | 15  |
| LED098-<br>FIXT | LED98W       | Non-Integrated Ballast LED, 98W, any bulb shape, any application | 98W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 98         | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED099-<br>FIXT | LED99W       | Non-Integrated Ballast LED, 99W, any bulb shape, any application  | 99W LED - Non-Int.<br>Ballast  | Electronic | N/A               | N/A        | 99         | 15  |
| LED100-<br>FIXT | LED100W      | Non-Integrated Ballast LED, 100W, any bulb shape, any application | 100W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 100        | 15  |
| LED101-<br>FIXT | LED101W      | Non-Integrated Ballast LED, 101W, any bulb shape, any application | 101W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 101        | 15  |
| LED102-<br>FIXT | LED102W      | Non-Integrated Ballast LED, 102W, any bulb shape, any application | 102W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 102        | 15  |
| LED103-<br>FIXT | LED103W      | Non-Integrated Ballast LED, 103W, any bulb shape, any application | 103W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 103        | 15  |
| LED104-<br>FIXT | LED104W      | Non-Integrated Ballast LED, 104W, any bulb shape, any application | 104W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 104        | 15  |
| LED105-<br>FIXT | LED105W      | Non-Integrated Ballast LED, 105W, any bulb shape, any application | 105W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 105        | 15  |
| LED106-<br>FIXT | LED106W      | Non-Integrated Ballast LED, 106W, any bulb shape, any application | 106W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 106        | 15  |
| LED107-<br>FIXT | LED107W      | Non-Integrated Ballast LED, 107W, any bulb shape, any application | 107W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 107        | 15  |
| LED108-<br>FIXT | LED108W      | Non-Integrated Ballast LED, 108W, any bulb shape, any application | 108W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 108        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED109-<br>FIXT | LED109W      | Non-Integrated Ballast LED, 109W, any bulb shape, any application | 109W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 109        | 15  |
| LED110-<br>FIXT | LED110W      | Non-Integrated Ballast LED, 110W, any bulb shape, any application | 110W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 110        | 15  |
| LED111-<br>FIXT | LED111W      | Non-Integrated Ballast LED, 111W, any bulb shape, any application | 111W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 111        | 15  |
| LED112-<br>FIXT | LED112W      | Non-Integrated Ballast LED, 112W, any bulb shape, any application | 112W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 112        | 15  |
| LED113-<br>FIXT | LED113W      | Non-Integrated Ballast LED, 113W, any bulb shape, any application | 113W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 113        | 15  |
| LED114-<br>FIXT | LED114W      | Non-Integrated Ballast LED, 114W, any bulb shape, any application | 114W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 114        | 15  |
| LED115-<br>FIXT | LED115W      | Non-Integrated Ballast LED, 115W, any bulb shape, any application | 115W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 115        | 15  |
| LED116-<br>FIXT | LED116W      | Non-Integrated Ballast LED, 116W, any bulb shape, any application | 116W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 116        | 15  |
| LED117-<br>FIXT | LED117W      | Non-Integrated Ballast LED, 117W, any bulb shape, any application | 117W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 117        | 15  |
| LED118-<br>FIXT | LED118W      | Non-Integrated Ballast LED, 118W, any bulb shape, any application | 118W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 118        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED119-<br>FIXT | LED119W      | Non-Integrated Ballast LED, 119W, any bulb shape, any application | 119W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 119        | 15  |
| LED120-<br>FIXT | LED120W      | Non-Integrated Ballast LED, 120W, any bulb shape, any application | 120W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 120        | 15  |
| LED121-<br>FIXT | LED121W      | Non-Integrated Ballast LED, 121W, any bulb shape, any application | 121W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 121        | 15  |
| LED122-<br>FIXT | LED122W      | Non-Integrated Ballast LED, 122W, any bulb shape, any application | 122W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 122        | 15  |
| LED123-<br>FIXT | LED123W      | Non-Integrated Ballast LED, 123W, any bulb shape, any application | 123W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 123        | 15  |
| LED124-<br>FIXT | LED124W      | Non-Integrated Ballast LED, 124W, any bulb shape, any application | 124W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 124        | 15  |
| LED125-<br>FIXT | LED125W      | Non-Integrated Ballast LED, 125W, any bulb shape, any application | 125W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 125        | 15  |
| LED126-<br>FIXT | LED126W      | Non-Integrated Ballast LED, 126W, any bulb shape, any application | 126W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 126        | 15  |
| LED127-<br>FIXT | LED127W      | Non-Integrated Ballast LED, 127W, any bulb shape, any application | 127W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 127        | 15  |
| LED128-<br>FIXT | LED128W      | Non-Integrated Ballast LED, 128W, any bulb shape, any application | 128W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 128        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED129-<br>FIXT | LED129W      | Non-Integrated Ballast LED, 129W, any bulb shape, any application | 129W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 129        | 15  |
| LED130-<br>FIXT | LED130W      | Non-Integrated Ballast LED, 130W, any bulb shape, any application | 130W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 130        | 15  |
| LED131-<br>FIXT | LED131W      | Non-Integrated Ballast LED, 131W, any bulb shape, any application | 131W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 131        | 15  |
| LED132-<br>FIXT | LED132W      | Non-Integrated Ballast LED, 132W, any bulb shape, any application | 132W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 132        | 15  |
| LED133-<br>FIXT | LED133W      | Non-Integrated Ballast LED, 133W, any bulb shape, any application | 133W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 133        | 15  |
| LED134-<br>FIXT | LED134W      | Non-Integrated Ballast LED, 134W, any bulb shape, any application | 134W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 134        | 15  |
| LED135-<br>FIXT | LED135W      | Non-Integrated Ballast LED, 135W, any bulb shape, any application | 135W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 135        | 15  |
| LED136-<br>FIXT | LED136W      | Non-Integrated Ballast LED, 136W, any bulb shape, any application | 136W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 136        | 15  |
| LED137-<br>FIXT | LED137W      | Non-Integrated Ballast LED, 137W, any bulb shape, any application | 137W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 137        | 15  |
| LED138-<br>FIXT | LED138W      | Non-Integrated Ballast LED, 138W, any bulb shape, any application | 138W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 138        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED139-<br>FIXT | LED139W      | Non-Integrated Ballast LED, 139W, any bulb shape, any application | 139W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 139        | 15  |
| LED140-<br>FIXT | LED140W      | Non-Integrated Ballast LED, 140W, any bulb shape, any application | 140W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 140        | 15  |
| LED141-<br>FIXT | LED141W      | Non-Integrated Ballast LED, 141W, any bulb shape, any application | 141W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 141        | 15  |
| LED142-<br>FIXT | LED142W      | Non-Integrated Ballast LED, 142W, any bulb shape, any application | 142W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 142        | 15  |
| LED143-<br>FIXT | LED143W      | Non-Integrated Ballast LED, 143W, any bulb shape, any application | 143W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 143        | 15  |
| LED144-<br>FIXT | LED144W      | Non-Integrated Ballast LED, 144W, any bulb shape, any application | 144W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 144        | 15  |
| LED145-<br>FIXT | LED145W      | Non-Integrated Ballast LED, 145W, any bulb shape, any application | 145W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 145        | 15  |
| LED146-<br>FIXT | LED146W      | Non-Integrated Ballast LED, 146W, any bulb shape, any application | 146W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 146        | 15  |
| LED147-<br>FIXT | LED147W      | Non-Integrated Ballast LED, 147W, any bulb shape, any application | 147W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 147        | 15  |
| LED148-<br>FIXT | LED148W      | Non-Integrated Ballast LED, 148W, any bulb shape, any application | 148W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 148        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED149-<br>FIXT | LED149W      | Non-Integrated Ballast LED, 149W, any bulb shape, any application | 149W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 149        | 15  |
| LED150-<br>FIXT | LED150W      | Non-Integrated Ballast LED, 150W, any bulb shape, any application | 150W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 150        | 15  |
| LED151-<br>FIXT | LED151W      | Non-Integrated Ballast LED, 151W, any bulb shape, any application | 151W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 151        | 15  |
| LED152-<br>FIXT | LED152W      | Non-Integrated Ballast LED, 152W, any bulb shape, any application | 152W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 152        | 15  |
| LED153-<br>FIXT | LED153W      | Non-Integrated Ballast LED, 153W, any bulb shape, any application | 153W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 153        | 15  |
| LED154-<br>FIXT | LED154W      | Non-Integrated Ballast LED, 154W, any bulb shape, any application | 154W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 154        | 15  |
| LED155-<br>FIXT | LED155W      | Non-Integrated Ballast LED, 155W, any bulb shape, any application | 155W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 155        | 15  |
| LED156-<br>FIXT | LED156W      | Non-Integrated Ballast LED, 156W, any bulb shape, any application | 156W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 156        | 15  |
| LED157-<br>FIXT | LED157W      | Non-Integrated Ballast LED, 157W, any bulb shape, any application | 157W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 157        | 15  |
| LED158-<br>FIXT | LED158W      | Non-Integrated Ballast LED, 158W, any bulb shape, any application | 158W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 158        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED159-<br>FIXT | LED159W      | Non-Integrated Ballast LED, 159W, any bulb shape, any application | 159W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 159        | 15  |
| LED160-<br>FIXT | LED160W      | Non-Integrated Ballast LED, 160W, any bulb shape, any application | 160W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 160        | 15  |
| LED161-<br>FIXT | LED161W      | Non-Integrated Ballast LED, 161W, any bulb shape, any application | 161W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 161        | 15  |
| LED162-<br>FIXT | LED162W      | Non-Integrated Ballast LED, 162W, any bulb shape, any application | 162W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 162        | 15  |
| LED163-<br>FIXT | LED163W      | Non-Integrated Ballast LED, 163W, any bulb shape, any application | 163W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 163        | 15  |
| LED164-<br>FIXT | LED164W      | Non-Integrated Ballast LED, 164W, any bulb shape, any application | 164W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 164        | 15  |
| LED165-<br>FIXT | LED165W      | Non-Integrated Ballast LED, 165W, any bulb shape, any application | 165W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 165        | 15  |
| LED166-<br>FIXT | LED166W      | Non-Integrated Ballast LED, 166W, any bulb shape, any application | 166W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 166        | 15  |
| LED167-<br>FIXT | LED167W      | Non-Integrated Ballast LED, 167W, any bulb shape, any application | 167W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 167        | 15  |
| LED168-<br>FIXT | LED168W      | Non-Integrated Ballast LED, 168W, any bulb shape, any application | 168W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 168        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED169-<br>FIXT | LED169W      | Non-Integrated Ballast LED, 169W, any bulb shape, any application | 169W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 169        | 15  |
| LED170-<br>FIXT | LED170W      | Non-Integrated Ballast LED, 170W, any bulb shape, any application | 170W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 170        | 15  |
| LED171-<br>FIXT | LED171W      | Non-Integrated Ballast LED, 171W, any bulb shape, any application | 171W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 171        | 15  |
| LED172-<br>FIXT | LED172W      | Non-Integrated Ballast LED, 172W, any bulb shape, any application | 172W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 172        | 15  |
| LED173-<br>FIXT | LED173W      | Non-Integrated Ballast LED, 173W, any bulb shape, any application | 173W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 173        | 15  |
| LED174-<br>FIXT | LED174W      | Non-Integrated Ballast LED, 174W, any bulb shape, any application | 174W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 174        | 15  |
| LED175-<br>FIXT | LED175W      | Non-Integrated Ballast LED, 175W, any bulb shape, any application | 175W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 175        | 15  |
| LED176-<br>FIXT | LED176W      | Non-Integrated Ballast LED, 176W, any bulb shape, any application | 176W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 176        | 15  |
| LED177-<br>FIXT | LED177W      | Non-Integrated Ballast LED, 177W, any bulb shape, any application | 177W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 177        | 15  |
| LED178-<br>FIXT | LED178W      | Non-Integrated Ballast LED, 178W, any bulb shape, any application | 178W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 178        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED179-<br>FIXT | LED179W      | Non-Integrated Ballast LED, 179W, any bulb shape, any application | 179W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 179        | 15  |
| LED180-<br>FIXT | LED180W      | Non-Integrated Ballast LED, 180W, any bulb shape, any application | 180W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 180        | 15  |
| LED181-<br>FIXT | LED181W      | Non-Integrated Ballast LED, 181W, any bulb shape, any application | 181W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 181        | 15  |
| LED182-<br>FIXT | LED182W      | Non-Integrated Ballast LED, 182W, any bulb shape, any application | 182W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 182        | 15  |
| LED183-<br>FIXT | LED183W      | Non-Integrated Ballast LED, 183W, any bulb shape, any application | 183W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 183        | 15  |
| LED184-<br>FIXT | LED184W      | Non-Integrated Ballast LED, 184W, any bulb shape, any application | 184W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 184        | 15  |
| LED185-<br>FIXT | LED185W      | Non-Integrated Ballast LED, 185W, any bulb shape, any application | 185W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 185        | 15  |
| LED186-<br>FIXT | LED186W      | Non-Integrated Ballast LED, 186W, any bulb shape, any application | 186W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 186        | 15  |
| LED187-<br>FIXT | LED187W      | Non-Integrated Ballast LED, 187W, any bulb shape, any application | 187W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 187        | 15  |
| LED188-<br>FIXT | LED188W      | Non-Integrated Ballast LED, 188W, any bulb shape, any application | 188W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 188        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED189-<br>FIXT | LED189W      | Non-Integrated Ballast LED, 189W, any bulb shape, any application | 189W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 189        | 15  |
| LED190-<br>FIXT | LED190W      | Non-Integrated Ballast LED, 190W, any bulb shape, any application | 190W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 190        | 15  |
| LED191-<br>FIXT | LED191W      | Non-Integrated Ballast LED, 191W, any bulb shape, any application | 191W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 191        | 15  |
| LED192-<br>FIXT | LED192W      | Non-Integrated Ballast LED, 192W, any bulb shape, any application | 192W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 192        | 15  |
| LED193-<br>FIXT | LED193W      | Non-Integrated Ballast LED, 193W, any bulb shape, any application | 193W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 193        | 15  |
| LED194-<br>FIXT | LED194W      | Non-Integrated Ballast LED, 194W, any bulb shape, any application | 194W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 194        | 15  |
| LED195-<br>FIXT | LED195W      | Non-Integrated Ballast LED, 195W, any bulb shape, any application | 195W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 195        | 15  |
| LED196-<br>FIXT | LED196W      | Non-Integrated Ballast LED, 196W, any bulb shape, any application | 196W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 196        | 15  |
| LED197-<br>FIXT | LED197W      | Non-Integrated Ballast LED, 197W, any bulb shape, any application | 197W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 197        | 15  |
| LED198-<br>FIXT | LED198W      | Non-Integrated Ballast LED, 198W, any bulb shape, any application | 198W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 198        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED199-<br>FIXT | LED199W      | Non-Integrated Ballast LED, 199W, any bulb shape, any application | 199W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 199        | 15  |
| LED200-<br>FIXT | LED200W      | Non-Integrated Ballast LED, 200W, any bulb shape, any application | 200W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 200        | 15  |
| LED201-<br>FIXT | LED201W      | Non-Integrated Ballast LED, 201W, any bulb shape, any application | 201W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 201        | 15  |
| LED202-<br>FIXT | LED202W      | Non-Integrated Ballast LED, 202W, any bulb shape, any application | 202W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 202        | 15  |
| LED203-<br>FIXT | LED203W      | Non-Integrated Ballast LED, 203W, any bulb shape, any application | 203W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 203        | 15  |
| LED204-<br>FIXT | LED204W      | Non-Integrated Ballast LED, 204W, any bulb shape, any application | 204W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 204        | 15  |
| LED205-<br>FIXT | LED205W      | Non-Integrated Ballast LED, 205W, any bulb shape, any application | 205W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 205        | 15  |
| LED206-<br>FIXT | LED206W      | Non-Integrated Ballast LED, 206W, any bulb shape, any application | 206W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 206        | 15  |
| LED207-<br>FIXT | LED207W      | Non-Integrated Ballast LED, 207W, any bulb shape, any application | 207W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 207        | 15  |
| LED208-<br>FIXT | LED208W      | Non-Integrated Ballast LED, 208W, any bulb shape, any application | 208W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 208        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED209-<br>FIXT | LED209W      | Non-Integrated Ballast LED, 209W, any bulb shape, any application | 209W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 209        | 15  |
| LED210-<br>FIXT | LED210W      | Non-Integrated Ballast LED, 210W, any bulb shape, any application | 210W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 210        | 15  |
| LED211-<br>FIXT | LED211W      | Non-Integrated Ballast LED, 211W, any bulb shape, any application | 211W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 211        | 15  |
| LED212-<br>FIXT | LED212W      | Non-Integrated Ballast LED, 212W, any bulb shape, any application | 212W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 212        | 15  |
| LED213-<br>FIXT | LED213W      | Non-Integrated Ballast LED, 213W, any bulb shape, any application | 213W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 213        | 15  |
| LED214-<br>FIXT | LED214W      | Non-Integrated Ballast LED, 214W, any bulb shape, any application | 214W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 214        | 15  |
| LED215-<br>FIXT | LED215W      | Non-Integrated Ballast LED, 215W, any bulb shape, any application | 215W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 215        | 15  |
| LED216-<br>FIXT | LED216W      | Non-Integrated Ballast LED, 216W, any bulb shape, any application | 216W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 216        | 15  |
| LED217-<br>FIXT | LED217W      | Non-Integrated Ballast LED, 217W, any bulb shape, any application | 217W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 217        | 15  |
| LED218-<br>FIXT | LED218W      | Non-Integrated Ballast LED, 218W, any bulb shape, any application | 218W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 218        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED219-<br>FIXT | LED219W      | Non-Integrated Ballast LED, 219W, any bulb shape, any application | 219W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 219        | 15  |
| LED220-<br>FIXT | LED220W      | Non-Integrated Ballast LED, 220W, any bulb shape, any application | 220W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 220        | 15  |
| LED221-<br>FIXT | LED221W      | Non-Integrated Ballast LED, 221W, any bulb shape, any application | 221W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 221        | 15  |
| LED222-<br>FIXT | LED222W      | Non-Integrated Ballast LED, 222W, any bulb shape, any application | 222W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 222        | 15  |
| LED223-<br>FIXT | LED223W      | Non-Integrated Ballast LED, 223W, any bulb shape, any application | 223W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 223        | 15  |
| LED224-<br>FIXT | LED224W      | Non-Integrated Ballast LED, 224W, any bulb shape, any application | 224W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 224        | 15  |
| LED225-<br>FIXT | LED225W      | Non-Integrated Ballast LED, 225W, any bulb shape, any application | 225W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 225        | 15  |
| LED226-<br>FIXT | LED226W      | Non-Integrated Ballast LED, 226W, any bulb shape, any application | 226W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 226        | 15  |
| LED227-<br>FIXT | LED227W      | Non-Integrated Ballast LED, 227W, any bulb shape, any application | 227W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 227        | 15  |
| LED228-<br>FIXT | LED228W      | Non-Integrated Ballast LED, 228W, any bulb shape, any application | 228W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 228        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED229-<br>FIXT | LED229W      | Non-Integrated Ballast LED, 229W, any bulb shape, any application | 229W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 229        | 15  |
| LED230-<br>FIXT | LED230W      | Non-Integrated Ballast LED, 230W, any bulb shape, any application | 230W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 230        | 15  |
| LED231-<br>FIXT | LED231W      | Non-Integrated Ballast LED, 231W, any bulb shape, any application | 231W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 231        | 15  |
| LED232-<br>FIXT | LED232W      | Non-Integrated Ballast LED, 232W, any bulb shape, any application | 232W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 232        | 15  |
| LED233-<br>FIXT | LED233W      | Non-Integrated Ballast LED, 233W, any bulb shape, any application | 233W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 233        | 15  |
| LED234-<br>FIXT | LED234W      | Non-Integrated Ballast LED, 234W, any bulb shape, any application | 234W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 234        | 15  |
| LED235-<br>FIXT | LED235W      | Non-Integrated Ballast LED, 235W, any bulb shape, any application | 235W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 235        | 15  |
| LED236-<br>FIXT | LED236W      | Non-Integrated Ballast LED, 236W, any bulb shape, any application | 236W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 236        | 15  |
| LED237-<br>FIXT | LED237W      | Non-Integrated Ballast LED, 237W, any bulb shape, any application | 237W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 237        | 15  |
| LED238-<br>FIXT | LED238W      | Non-Integrated Ballast LED, 238W, any bulb shape, any application | 238W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 238        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED239-<br>FIXT | LED239W      | Non-Integrated Ballast LED, 239W, any bulb shape, any application | 239W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 239        | 15  |
| LED240-<br>FIXT | LED240W      | Non-Integrated Ballast LED, 240W, any bulb shape, any application | 240W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 240        | 15  |
| LED241-<br>FIXT | LED241W      | Non-Integrated Ballast LED, 241W, any bulb shape, any application | 241W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 241        | 15  |
| LED242-<br>FIXT | LED242W      | Non-Integrated Ballast LED, 242W, any bulb shape, any application | 242W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 242        | 15  |
| LED243-<br>FIXT | LED243W      | Non-Integrated Ballast LED, 243W, any bulb shape, any application | 243W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 243        | 15  |
| LED244-<br>FIXT | LED244W      | Non-Integrated Ballast LED, 244W, any bulb shape, any application | 244W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 244        | 15  |
| LED245-<br>FIXT | LED245W      | Non-Integrated Ballast LED, 245W, any bulb shape, any application | 245W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 245        | 15  |
| LED246-<br>FIXT | LED246W      | Non-Integrated Ballast LED, 246W, any bulb shape, any application | 246W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 246        | 15  |
| LED247-<br>FIXT | LED247W      | Non-Integrated Ballast LED, 247W, any bulb shape, any application | 247W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 247        | 15  |
| LED248-<br>FIXT | LED248W      | Non-Integrated Ballast LED, 248W, any bulb shape, any application | 248W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 248        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED249-<br>FIXT | LED249W      | Non-Integrated Ballast LED, 249W, any bulb shape, any application | 249W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 249        | 15  |
| LED250-<br>FIXT | LED250W      | Non-Integrated Ballast LED, 250W, any bulb shape, any application | 250W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 250        | 15  |
| LED251-<br>FIXT | LED251W      | Non-Integrated Ballast LED, 251W, any bulb shape, any application | 251W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 251        | 15  |
| LED252-<br>FIXT | LED252W      | Non-Integrated Ballast LED, 252W, any bulb shape, any application | 252W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 252        | 15  |
| LED253-<br>FIXT | LED253W      | Non-Integrated Ballast LED, 253W, any bulb shape, any application | 253W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 253        | 15  |
| LED254-<br>FIXT | LED254W      | Non-Integrated Ballast LED, 254W, any bulb shape, any application | 254W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 254        | 15  |
| LED255-<br>FIXT | LED255W      | Non-Integrated Ballast LED, 255W, any bulb shape, any application | 255W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 255        | 15  |
| LED256-<br>FIXT | LED256W      | Non-Integrated Ballast LED, 256W, any bulb shape, any application | 256W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 256        | 15  |
| LED257-<br>FIXT | LED257W      | Non-Integrated Ballast LED, 257W, any bulb shape, any application | 257W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 257        | 15  |
| LED258-<br>FIXT | LED258W      | Non-Integrated Ballast LED, 258W, any bulb shape, any application | 258W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 258        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED259-<br>FIXT | LED259W      | Non-Integrated Ballast LED, 259W, any bulb shape, any application | 259W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 259        | 15  |
| LED260-<br>FIXT | LED260W      | Non-Integrated Ballast LED, 260W, any bulb shape, any application | 260W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 260        | 15  |
| LED261-<br>FIXT | LED261W      | Non-Integrated Ballast LED, 261W, any bulb shape, any application | 261W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 261        | 15  |
| LED262-<br>FIXT | LED262W      | Non-Integrated Ballast LED, 262W, any bulb shape, any application | 262W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 262        | 15  |
| LED263-<br>FIXT | LED263W      | Non-Integrated Ballast LED, 263W, any bulb shape, any application | 263W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 263        | 15  |
| LED264-<br>FIXT | LED264W      | Non-Integrated Ballast LED, 264W, any bulb shape, any application | 264W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 264        | 15  |
| LED265-<br>FIXT | LED265W      | Non-Integrated Ballast LED, 265W, any bulb shape, any application | 265W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 265        | 15  |
| LED266-<br>FIXT | LED266W      | Non-Integrated Ballast LED, 266W, any bulb shape, any application | 266W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 266        | 15  |
| LED267-<br>FIXT | LED267W      | Non-Integrated Ballast LED, 267W, any bulb shape, any application | 267W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 267        | 15  |
| LED268-<br>FIXT | LED268W      | Non-Integrated Ballast LED, 268W, any bulb shape, any application | 268W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 268        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED269-<br>FIXT | LED269W      | Non-Integrated Ballast LED, 269W, any bulb shape, any application | 269W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 269        | 15  |
| LED270-<br>FIXT | LED270W      | Non-Integrated Ballast LED, 270W, any bulb shape, any application | 270W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 270        | 15  |
| LED271-<br>FIXT | LED271W      | Non-Integrated Ballast LED, 271W, any bulb shape, any application | 271W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 271        | 15  |
| LED272-<br>FIXT | LED272W      | Non-Integrated Ballast LED, 272W, any bulb shape, any application | 272W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 272        | 15  |
| LED273-<br>FIXT | LED273W      | Non-Integrated Ballast LED, 273W, any bulb shape, any application | 273W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 273        | 15  |
| LED274-<br>FIXT | LED274W      | Non-Integrated Ballast LED, 274W, any bulb shape, any application | 274W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 274        | 15  |
| LED275-<br>FIXT | LED275W      | Non-Integrated Ballast LED, 275W, any bulb shape, any application | 275W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 275        | 15  |
| LED276-<br>FIXT | LED276W      | Non-Integrated Ballast LED, 276W, any bulb shape, any application | 276W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 276        | 15  |
| LED277-<br>FIXT | LED277W      | Non-Integrated Ballast LED, 277W, any bulb shape, any application | 277W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 277        | 15  |
| LED278-<br>FIXT | LED278W      | Non-Integrated Ballast LED, 278W, any bulb shape, any application | 278W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 278        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED279-<br>FIXT | LED279W      | Non-Integrated Ballast LED, 279W, any bulb shape, any application | 279W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 279        | 15  |
| LED280-<br>FIXT | LED280W      | Non-Integrated Ballast LED, 280W, any bulb shape, any application | 280W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 280        | 15  |
| LED281-<br>FIXT | LED281W      | Non-Integrated Ballast LED, 281W, any bulb shape, any application | 281W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 281        | 15  |
| LED282-<br>FIXT | LED282W      | Non-Integrated Ballast LED, 282W, any bulb shape, any application | 282W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 282        | 15  |
| LED283-<br>FIXT | LED283W      | Non-Integrated Ballast LED, 283W, any bulb shape, any application | 283W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 283        | 15  |
| LED284-<br>FIXT | LED284W      | Non-Integrated Ballast LED, 284W, any bulb shape, any application | 284W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 284        | 15  |
| LED285-<br>FIXT | LED285W      | Non-Integrated Ballast LED, 285W, any bulb shape, any application | 285W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 285        | 15  |
| LED286-<br>FIXT | LED286W      | Non-Integrated Ballast LED, 286W, any bulb shape, any application | 286W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 286        | 15  |
| LED287-<br>FIXT | LED287W      | Non-Integrated Ballast LED, 287W, any bulb shape, any application | 287W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 287        | 15  |
| LED288-<br>FIXT | LED288W      | Non-Integrated Ballast LED, 288W, any bulb shape, any application | 288W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 288        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED289-<br>FIXT | LED289W      | Non-Integrated Ballast LED, 289W, any bulb shape, any application | 289W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 289        | 15  |
| LED290-<br>FIXT | LED290W      | Non-Integrated Ballast LED, 290W, any bulb shape, any application | 290W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 290        | 15  |
| LED291-<br>FIXT | LED291W      | Non-Integrated Ballast LED, 291W, any bulb shape, any application | 291W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 291        | 15  |
| LED292-<br>FIXT | LED292W      | Non-Integrated Ballast LED, 292W, any bulb shape, any application | 292W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 292        | 15  |
| LED293-<br>FIXT | LED293W      | Non-Integrated Ballast LED, 293W, any bulb shape, any application | 293W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 293        | 15  |
| LED294-<br>FIXT | LED294W      | Non-Integrated Ballast LED, 294W, any bulb shape, any application | 294W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 294        | 15  |
| LED295-<br>FIXT | LED295W      | Non-Integrated Ballast LED, 295W, any bulb shape, any application | 295W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 295        | 15  |
| LED296-<br>FIXT | LED296W      | Non-Integrated Ballast LED, 296W, any bulb shape, any application | 296W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 296        | 15  |
| LED297-<br>FIXT | LED297W      | Non-Integrated Ballast LED, 297W, any bulb shape, any application | 297W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 297        | 15  |
| LED298-<br>FIXT | LED298W      | Non-Integrated Ballast LED, 298W, any bulb shape, any application | 298W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 298        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED299-<br>FIXT | LED299W      | Non-Integrated Ballast LED, 299W, any bulb shape, any application | 299W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 299        | 15  |
| LED300-<br>FIXT | LED300W      | Non-Integrated Ballast LED, 300W, any bulb shape, any application | 300W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 300        | 15  |
| LED301-<br>FIXT | LED301W      | Non-Integrated Ballast LED, 301W, any bulb shape, any application | 301W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 301        | 15  |
| LED302-<br>FIXT | LED302W      | Non-Integrated Ballast LED, 302W, any bulb shape, any application | 302W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 302        | 15  |
| LED303-<br>FIXT | LED303W      | Non-Integrated Ballast LED, 303W, any bulb shape, any application | 303W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 303        | 15  |
| LED304-<br>FIXT | LED304W      | Non-Integrated Ballast LED, 304W, any bulb shape, any application | 304W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 304        | 15  |
| LED305-<br>FIXT | LED305W      | Non-Integrated Ballast LED, 305W, any bulb shape, any application | 305W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 305        | 15  |
| LED306-<br>FIXT | LED306W      | Non-Integrated Ballast LED, 306W, any bulb shape, any application | 306W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 306        | 15  |
| LED307-<br>FIXT | LED307W      | Non-Integrated Ballast LED, 307W, any bulb shape, any application | 307W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 307        | 15  |
| LED308-<br>FIXT | LED308W      | Non-Integrated Ballast LED, 308W, any bulb shape, any application | 308W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 308        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED309-<br>FIXT | LED309W      | Non-Integrated Ballast LED, 309W, any bulb shape, any application | 309W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 309        | 15  |
| LED310-<br>FIXT | LED310W      | Non-Integrated Ballast LED, 310W, any bulb shape, any application | 310W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 310        | 15  |
| LED311-<br>FIXT | LED311W      | Non-Integrated Ballast LED, 311W, any bulb shape, any application | 311W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 311        | 15  |
| LED312-<br>FIXT | LED312W      | Non-Integrated Ballast LED, 312W, any bulb shape, any application | 312W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 312        | 15  |
| LED313-<br>FIXT | LED313W      | Non-Integrated Ballast LED, 313W, any bulb shape, any application | 313W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 313        | 15  |
| LED314-<br>FIXT | LED314W      | Non-Integrated Ballast LED, 314W, any bulb shape, any application | 314W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 314        | 15  |
| LED315-<br>FIXT | LED315W      | Non-Integrated Ballast LED, 315W, any bulb shape, any application | 315W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 315        | 15  |
| LED316-<br>FIXT | LED316W      | Non-Integrated Ballast LED, 316W, any bulb shape, any application | 316W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 316        | 15  |
| LED317-<br>FIXT | LED317W      | Non-Integrated Ballast LED, 317W, any bulb shape, any application | 317W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 317        | 15  |
| LED318-<br>FIXT | LED318W      | Non-Integrated Ballast LED, 318W, any bulb shape, any application | 318W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 318        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED319-<br>FIXT | LED319W      | Non-Integrated Ballast LED, 319W, any bulb shape, any application | 319W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 319        | 15  |
| LED320-<br>FIXT | LED320W      | Non-Integrated Ballast LED, 320W, any bulb shape, any application | 320W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 320        | 15  |
| LED321-<br>FIXT | LED321W      | Non-Integrated Ballast LED, 321W, any bulb shape, any application | 321W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 321        | 15  |
| LED322-<br>FIXT | LED322W      | Non-Integrated Ballast LED, 322W, any bulb shape, any application | 322W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 322        | 15  |
| LED323-<br>FIXT | LED323W      | Non-Integrated Ballast LED, 323W, any bulb shape, any application | 323W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 323        | 15  |
| LED324-<br>FIXT | LED324W      | Non-Integrated Ballast LED, 324W, any bulb shape, any application | 324W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 324        | 15  |
| LED325-<br>FIXT | LED325W      | Non-Integrated Ballast LED, 325W, any bulb shape, any application | 325W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 325        | 15  |
| LED326-<br>FIXT | LED326W      | Non-Integrated Ballast LED, 326W, any bulb shape, any application | 326W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 326        | 15  |
| LED327-<br>FIXT | LED327W      | Non-Integrated Ballast LED, 327W, any bulb shape, any application | 327W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 327        | 15  |
| LED328-<br>FIXT | LED328W      | Non-Integrated Ballast LED, 328W, any bulb shape, any application | 328W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 328        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED329-<br>FIXT | LED329W      | Non-Integrated Ballast LED, 329W, any bulb shape, any application | 329W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 329        | 15  |
| LED330-<br>FIXT | LED330W      | Non-Integrated Ballast LED, 330W, any bulb shape, any application | 330W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 330        | 15  |
| LED331-<br>FIXT | LED331W      | Non-Integrated Ballast LED, 331W, any bulb shape, any application | 331W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 331        | 15  |
| LED332-<br>FIXT | LED332W      | Non-Integrated Ballast LED, 332W, any bulb shape, any application | 332W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 332        | 15  |
| LED333-<br>FIXT | LED333W      | Non-Integrated Ballast LED, 333W, any bulb shape, any application | 333W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 333        | 15  |
| LED334-<br>FIXT | LED334W      | Non-Integrated Ballast LED, 334W, any bulb shape, any application | 334W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 334        | 15  |
| LED335-<br>FIXT | LED335W      | Non-Integrated Ballast LED, 335W, any bulb shape, any application | 335W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 335        | 15  |
| LED336-<br>FIXT | LED336W      | Non-Integrated Ballast LED, 336W, any bulb shape, any application | 336W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 336        | 15  |
| LED337-<br>FIXT | LED337W      | Non-Integrated Ballast LED, 337W, any bulb shape, any application | 337W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 337        | 15  |
| LED338-<br>FIXT | LED338W      | Non-Integrated Ballast LED, 338W, any bulb shape, any application | 338W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 338        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED339-<br>FIXT | LED339W      | Non-Integrated Ballast LED, 339W, any bulb shape, any application | 339W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 339        | 15  |
| LED340-<br>FIXT | LED340W      | Non-Integrated Ballast LED, 340W, any bulb shape, any application | 340W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 340        | 15  |
| LED341-<br>FIXT | LED341W      | Non-Integrated Ballast LED, 341W, any bulb shape, any application | 341W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 341        | 15  |
| LED342-<br>FIXT | LED342W      | Non-Integrated Ballast LED, 342W, any bulb shape, any application | 342W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 342        | 15  |
| LED343-<br>FIXT | LED343W      | Non-Integrated Ballast LED, 343W, any bulb shape, any application | 343W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 343        | 15  |
| LED344-<br>FIXT | LED344W      | Non-Integrated Ballast LED, 344W, any bulb shape, any application | 344W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 344        | 15  |
| LED345-<br>FIXT | LED345W      | Non-Integrated Ballast LED, 345W, any bulb shape, any application | 345W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 345        | 15  |
| LED346-<br>FIXT | LED346W      | Non-Integrated Ballast LED, 346W, any bulb shape, any application | 346W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 346        | 15  |
| LED347-<br>FIXT | LED347W      | Non-Integrated Ballast LED, 347W, any bulb shape, any application | 347W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 347        | 15  |
| LED348-<br>FIXT | LED348W      | Non-Integrated Ballast LED, 348W, any bulb shape, any application | 348W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 348        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED349-<br>FIXT | LED349W      | Non-Integrated Ballast LED, 349W, any bulb shape, any application | 349W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 349        | 15  |
| LED350-<br>FIXT | LED350W      | Non-Integrated Ballast LED, 350W, any bulb shape, any application | 350W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 350        | 15  |
| LED351-<br>FIXT | LED351W      | Non-Integrated Ballast LED, 351W, any bulb shape, any application | 351W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 351        | 15  |
| LED352-<br>FIXT | LED352W      | Non-Integrated Ballast LED, 352W, any bulb shape, any application | 352W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 352        | 15  |
| LED353-<br>FIXT | LED353W      | Non-Integrated Ballast LED, 353W, any bulb shape, any application | 353W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 353        | 15  |
| LED354-<br>FIXT | LED354W      | Non-Integrated Ballast LED, 354W, any bulb shape, any application | 354W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 354        | 15  |
| LED355-<br>FIXT | LED355W      | Non-Integrated Ballast LED, 355W, any bulb shape, any application | 355W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 355        | 15  |
| LED356-<br>FIXT | LED356W      | Non-Integrated Ballast LED, 356W, any bulb shape, any application | 356W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 356        | 15  |
| LED357-<br>FIXT | LED357W      | Non-Integrated Ballast LED, 357W, any bulb shape, any application | 357W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 357        | 15  |
| LED358-<br>FIXT | LED358W      | Non-Integrated Ballast LED, 358W, any bulb shape, any application | 358W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 358        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED359-<br>FIXT | LED359W      | Non-Integrated Ballast LED, 359W, any bulb shape, any application | 359W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 359        | 15  |
| LED360-<br>FIXT | LED360W      | Non-Integrated Ballast LED, 360W, any bulb shape, any application | 360W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 360        | 15  |
| LED361-<br>FIXT | LED361W      | Non-Integrated Ballast LED, 361W, any bulb shape, any application | 361W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 361        | 15  |
| LED362-<br>FIXT | LED362W      | Non-Integrated Ballast LED, 362W, any bulb shape, any application | 362W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 362        | 15  |
| LED363-<br>FIXT | LED363W      | Non-Integrated Ballast LED, 363W, any bulb shape, any application | 363W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 363        | 15  |
| LED364-<br>FIXT | LED364W      | Non-Integrated Ballast LED, 364W, any bulb shape, any application | 364W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 364        | 15  |
| LED365-<br>FIXT | LED365W      | Non-Integrated Ballast LED, 365W, any bulb shape, any application | 365W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 365        | 15  |
| LED366-<br>FIXT | LED366W      | Non-Integrated Ballast LED, 366W, any bulb shape, any application | 366W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 366        | 15  |
| LED367-<br>FIXT | LED367W      | Non-Integrated Ballast LED, 367W, any bulb shape, any application | 367W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 367        | 15  |
| LED368-<br>FIXT | LED368W      | Non-Integrated Ballast LED, 368W, any bulb shape, any application | 368W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 368        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED369-<br>FIXT | LED369W      | Non-Integrated Ballast LED, 369W, any bulb shape, any application | 369W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 369        | 15  |
| LED370-<br>FIXT | LED370W      | Non-Integrated Ballast LED, 370W, any bulb shape, any application | 370W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 370        | 15  |
| LED371-<br>FIXT | LED371W      | Non-Integrated Ballast LED, 371W, any bulb shape, any application | 371W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 371        | 15  |
| LED372-<br>FIXT | LED372W      | Non-Integrated Ballast LED, 372W, any bulb shape, any application | 372W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 372        | 15  |
| LED373-<br>FIXT | LED373W      | Non-Integrated Ballast LED, 373W, any bulb shape, any application | 373W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 373        | 15  |
| LED374-<br>FIXT | LED374W      | Non-Integrated Ballast LED, 374W, any bulb shape, any application | 374W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 374        | 15  |
| LED375-<br>FIXT | LED375W      | Non-Integrated Ballast LED, 375W, any bulb shape, any application | 375W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 375        | 15  |
| LED376-<br>FIXT | LED376W      | Non-Integrated Ballast LED, 376W, any bulb shape, any application | 376W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 376        | 15  |
| LED377-<br>FIXT | LED377W      | Non-Integrated Ballast LED, 377W, any bulb shape, any application | 377W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 377        | 15  |
| LED378-<br>FIXT | LED378W      | Non-Integrated Ballast LED, 378W, any bulb shape, any application | 378W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 378        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED379-<br>FIXT | LED379W      | Non-Integrated Ballast LED, 379W, any bulb shape, any application | 379W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 379        | 15  |
| LED380-<br>FIXT | LED380W      | Non-Integrated Ballast LED, 380W, any bulb shape, any application | 380W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 380        | 15  |
| LED381-<br>FIXT | LED381W      | Non-Integrated Ballast LED, 381W, any bulb shape, any application | 381W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 381        | 15  |
| LED382-<br>FIXT | LED382W      | Non-Integrated Ballast LED, 382W, any bulb shape, any application | 382W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 382        | 15  |
| LED383-<br>FIXT | LED383W      | Non-Integrated Ballast LED, 383W, any bulb shape, any application | 383W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 383        | 15  |
| LED384-<br>FIXT | LED384W      | Non-Integrated Ballast LED, 384W, any bulb shape, any application | 384W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 384        | 15  |
| LED385-<br>FIXT | LED385W      | Non-Integrated Ballast LED, 385W, any bulb shape, any application | 385W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 385        | 15  |
| LED386-<br>FIXT | LED386W      | Non-Integrated Ballast LED, 386W, any bulb shape, any application | 386W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 386        | 15  |
| LED387-<br>FIXT | LED387W      | Non-Integrated Ballast LED, 387W, any bulb shape, any application | 387W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 387        | 15  |
| LED388-<br>FIXT | LED388W      | Non-Integrated Ballast LED, 388W, any bulb shape, any application | 388W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 388        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED389-<br>FIXT | LED389W      | Non-Integrated Ballast LED, 389W, any bulb shape, any application | 389W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 389        | 15  |
| LED390-<br>FIXT | LED390W      | Non-Integrated Ballast LED, 390W, any bulb shape, any application | 390W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 390        | 15  |
| LED391-<br>FIXT | LED391W      | Non-Integrated Ballast LED, 391W, any bulb shape, any application | 391W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 391        | 15  |
| LED392-<br>FIXT | LED392W      | Non-Integrated Ballast LED, 392W, any bulb shape, any application | 392W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 392        | 15  |
| LED393-<br>FIXT | LED393W      | Non-Integrated Ballast LED, 393W, any bulb shape, any application | 393W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 393        | 15  |
| LED394-<br>FIXT | LED394W      | Non-Integrated Ballast LED, 394W, any bulb shape, any application | 394W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 394        | 15  |
| LED395-<br>FIXT | LED395W      | Non-Integrated Ballast LED, 395W, any bulb shape, any application | 395W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 395        | 15  |
| LED396-<br>FIXT | LED396W      | Non-Integrated Ballast LED, 396W, any bulb shape, any application | 396W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 396        | 15  |
| LED397-<br>FIXT | LED397W      | Non-Integrated Ballast LED, 397W, any bulb shape, any application | 397W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 397        | 15  |
| LED398-<br>FIXT | LED398W      | Non-Integrated Ballast LED, 398W, any bulb shape, any application | 398W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 398        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED399-<br>FIXT | LED399W      | Non-Integrated Ballast LED, 399W, any bulb shape, any application | 399W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 399        | 15  |
| LED400-<br>FIXT | LED400W      | Non-Integrated Ballast LED, 400W, any bulb shape, any application | 400W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 400        | 15  |
| LED401-<br>FIXT | LED401W      | Non-Integrated Ballast LED, 401W, any bulb shape, any application | 401W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 401        | 15  |
| LED402-<br>FIXT | LED402W      | Non-Integrated Ballast LED, 402W, any bulb shape, any application | 402W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 402        | 15  |
| LED403-<br>FIXT | LED403W      | Non-Integrated Ballast LED, 403W, any bulb shape, any application | 403W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 403        | 15  |
| LED404-<br>FIXT | LED404W      | Non-Integrated Ballast LED, 404W, any bulb shape, any application | 404W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 404        | 15  |
| LED405-<br>FIXT | LED405W      | Non-Integrated Ballast LED, 405W, any bulb shape, any application | 405W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 405        | 15  |
| LED406-<br>FIXT | LED406W      | Non-Integrated Ballast LED, 406W, any bulb shape, any application | 406W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 406        | 15  |
| LED407-<br>FIXT | LED407W      | Non-Integrated Ballast LED, 407W, any bulb shape, any application | 407W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 407        | 15  |
| LED408-<br>FIXT | LED408W      | Non-Integrated Ballast LED, 408W, any bulb shape, any application | 408W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 408        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED409-<br>FIXT | LED409W      | Non-Integrated Ballast LED, 409W, any bulb shape, any application | 409W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 409        | 15  |
| LED410-<br>FIXT | LED410W      | Non-Integrated Ballast LED, 410W, any bulb shape, any application | 410W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 410        | 15  |
| LED411-<br>FIXT | LED411W      | Non-Integrated Ballast LED, 411W, any bulb shape, any application | 411W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 411        | 15  |
| LED412-<br>FIXT | LED412W      | Non-Integrated Ballast LED, 412W, any bulb shape, any application | 412W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 412        | 15  |
| LED413-<br>FIXT | LED413W      | Non-Integrated Ballast LED, 413W, any bulb shape, any application | 413W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 413        | 15  |
| LED414-<br>FIXT | LED414W      | Non-Integrated Ballast LED, 414W, any bulb shape, any application | 414W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 414        | 15  |
| LED415-<br>FIXT | LED415W      | Non-Integrated Ballast LED, 415W, any bulb shape, any application | 415W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 415        | 15  |
| LED416-<br>FIXT | LED416W      | Non-Integrated Ballast LED, 416W, any bulb shape, any application | 416W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 416        | 15  |
| LED417-<br>FIXT | LED417W      | Non-Integrated Ballast LED, 417W, any bulb shape, any application | 417W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 417        | 15  |
| LED418-<br>FIXT | LED418W      | Non-Integrated Ballast LED, 418W, any bulb shape, any application | 418W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 418        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED419-<br>FIXT | LED419W      | Non-Integrated Ballast LED, 419W, any bulb shape, any application | 419W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 419        | 15  |
| LED420-<br>FIXT | LED420W      | Non-Integrated Ballast LED, 420W, any bulb shape, any application | 420W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 420        | 15  |
| LED421-<br>FIXT | LED421W      | Non-Integrated Ballast LED, 421W, any bulb shape, any application | 421W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 421        | 15  |
| LED422-<br>FIXT | LED422W      | Non-Integrated Ballast LED, 422W, any bulb shape, any application | 422W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 422        | 15  |
| LED423-<br>FIXT | LED423W      | Non-Integrated Ballast LED, 423W, any bulb shape, any application | 423W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 423        | 15  |
| LED424-<br>FIXT | LED424W      | Non-Integrated Ballast LED, 424W, any bulb shape, any application | 424W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 424        | 15  |
| LED425-<br>FIXT | LED425W      | Non-Integrated Ballast LED, 425W, any bulb shape, any application | 425W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 425        | 15  |
| LED426-<br>FIXT | LED426W      | Non-Integrated Ballast LED, 426W, any bulb shape, any application | 426W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 426        | 15  |
| LED427-<br>FIXT | LED427W      | Non-Integrated Ballast LED, 427W, any bulb shape, any application | 427W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 427        | 15  |
| LED428-<br>FIXT | LED428W      | Non-Integrated Ballast LED, 428W, any bulb shape, any application | 428W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 428        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED429-<br>FIXT | LED429W      | Non-Integrated Ballast LED, 429W, any bulb shape, any application | 429W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 429        | 15  |
| LED430-<br>FIXT | LED430W      | Non-Integrated Ballast LED, 430W, any bulb shape, any application | 430W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 430        | 15  |
| LED431-<br>FIXT | LED431W      | Non-Integrated Ballast LED, 431W, any bulb shape, any application | 431W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 431        | 15  |
| LED432-<br>FIXT | LED432W      | Non-Integrated Ballast LED, 432W, any bulb shape, any application | 432W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 432        | 15  |
| LED433-<br>FIXT | LED433W      | Non-Integrated Ballast LED, 433W, any bulb shape, any application | 433W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 433        | 15  |
| LED434-<br>FIXT | LED434W      | Non-Integrated Ballast LED, 434W, any bulb shape, any application | 434W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 434        | 15  |
| LED435-<br>FIXT | LED435W      | Non-Integrated Ballast LED, 435W, any bulb shape, any application | 435W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 435        | 15  |
| LED436-<br>FIXT | LED436W      | Non-Integrated Ballast LED, 436W, any bulb shape, any application | 436W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 436        | 15  |
| LED437-<br>FIXT | LED437W      | Non-Integrated Ballast LED, 437W, any bulb shape, any application | 437W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 437        | 15  |
| LED438-<br>FIXT | LED438W      | Non-Integrated Ballast LED, 438W, any bulb shape, any application | 438W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 438        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED439-<br>FIXT | LED439W      | Non-Integrated Ballast LED, 439W, any bulb shape, any application | 439W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 439        | 15  |
| LED440-<br>FIXT | LED440W      | Non-Integrated Ballast LED, 440W, any bulb shape, any application | 440W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 440        | 15  |
| LED441-<br>FIXT | LED441W      | Non-Integrated Ballast LED, 441W, any bulb shape, any application | 441W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 441        | 15  |
| LED442-<br>FIXT | LED442W      | Non-Integrated Ballast LED, 442W, any bulb shape, any application | 442W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 442        | 15  |
| LED443-<br>FIXT | LED443W      | Non-Integrated Ballast LED, 443W, any bulb shape, any application | 443W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 443        | 15  |
| LED444-<br>FIXT | LED444W      | Non-Integrated Ballast LED, 444W, any bulb shape, any application | 444W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 444        | 15  |
| LED445-<br>FIXT | LED445W      | Non-Integrated Ballast LED, 445W, any bulb shape, any application | 445W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 445        | 15  |
| LED446-<br>FIXT | LED446W      | Non-Integrated Ballast LED, 446W, any bulb shape, any application | 446W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 446        | 15  |
| LED447-<br>FIXT | LED447W      | Non-Integrated Ballast LED, 447W, any bulb shape, any application | 447W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 447        | 15  |
| LED448-<br>FIXT | LED448W      | Non-Integrated Ballast LED, 448W, any bulb shape, any application | 448W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 448        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED449-<br>FIXT | LED449W      | Non-Integrated Ballast LED, 449W, any bulb shape, any application | 449W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 449        | 15  |
| LED450-<br>FIXT | LED450W      | Non-Integrated Ballast LED, 450W, any bulb shape, any application | 450W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 450        | 15  |
| LED451-<br>FIXT | LED451W      | Non-Integrated Ballast LED, 451W, any bulb shape, any application | 451W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 451        | 15  |
| LED452-<br>FIXT | LED452W      | Non-Integrated Ballast LED, 452W, any bulb shape, any application | 452W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 452        | 15  |
| LED453-<br>FIXT | LED453W      | Non-Integrated Ballast LED, 453W, any bulb shape, any application | 453W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 453        | 15  |
| LED454-<br>FIXT | LED454W      | Non-Integrated Ballast LED, 454W, any bulb shape, any application | 454W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 454        | 15  |
| LED455-<br>FIXT | LED455W      | Non-Integrated Ballast LED, 455W, any bulb shape, any application | 455W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 455        | 15  |
| LED456-<br>FIXT | LED456W      | Non-Integrated Ballast LED, 456W, any bulb shape, any application | 456W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 456        | 15  |
| LED457-<br>FIXT | LED457W      | Non-Integrated Ballast LED, 457W, any bulb shape, any application | 457W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 457        | 15  |
| LED458-<br>FIXT | LED458W      | Non-Integrated Ballast LED, 458W, any bulb shape, any application | 458W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 458        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED459-<br>FIXT | LED459W      | Non-Integrated Ballast LED, 459W, any bulb shape, any application | 459W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 459        | 15  |
| LED460-<br>FIXT | LED460W      | Non-Integrated Ballast LED, 460W, any bulb shape, any application | 460W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 460        | 15  |
| LED461-<br>FIXT | LED461W      | Non-Integrated Ballast LED, 461W, any bulb shape, any application | 461W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 461        | 15  |
| LED462-<br>FIXT | LED462W      | Non-Integrated Ballast LED, 462W, any bulb shape, any application | 462W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 462        | 15  |
| LED463-<br>FIXT | LED463W      | Non-Integrated Ballast LED, 463W, any bulb shape, any application | 463W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 463        | 15  |
| LED464-<br>FIXT | LED464W      | Non-Integrated Ballast LED, 464W, any bulb shape, any application | 464W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 464        | 15  |
| LED465-<br>FIXT | LED465W      | Non-Integrated Ballast LED, 465W, any bulb shape, any application | 465W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 465        | 15  |
| LED466-<br>FIXT | LED466W      | Non-Integrated Ballast LED, 466W, any bulb shape, any application | 466W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 466        | 15  |
| LED467-<br>FIXT | LED467W      | Non-Integrated Ballast LED, 467W, any bulb shape, any application | 467W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 467        | 15  |
| LED468-<br>FIXT | LED468W      | Non-Integrated Ballast LED, 468W, any bulb shape, any application | 468W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 468        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED469-<br>FIXT | LED469W      | Non-Integrated Ballast LED, 469W, any bulb shape, any application | 469W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 469        | 15  |
| LED470-<br>FIXT | LED470W      | Non-Integrated Ballast LED, 470W, any bulb shape, any application | 470W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 470        | 15  |
| LED471-<br>FIXT | LED471W      | Non-Integrated Ballast LED, 471W, any bulb shape, any application | 471W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 471        | 15  |
| LED472-<br>FIXT | LED472W      | Non-Integrated Ballast LED, 472W, any bulb shape, any application | 472W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 472        | 15  |
| LED473-<br>FIXT | LED473W      | Non-Integrated Ballast LED, 473W, any bulb shape, any application | 473W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 473        | 15  |
| LED474-<br>FIXT | LED474W      | Non-Integrated Ballast LED, 474W, any bulb shape, any application | 474W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 474        | 15  |
| LED475-<br>FIXT | LED475W      | Non-Integrated Ballast LED, 475W, any bulb shape, any application | 475W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 475        | 15  |
| LED476-<br>FIXT | LED476W      | Non-Integrated Ballast LED, 476W, any bulb shape, any application | 476W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 476        | 15  |
| LED477-<br>FIXT | LED477W      | Non-Integrated Ballast LED, 477W, any bulb shape, any application | 477W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 477        | 15  |
| LED478-<br>FIXT | LED478W      | Non-Integrated Ballast LED, 478W, any bulb shape, any application | 478W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 478        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED479-<br>FIXT | LED479W      | Non-Integrated Ballast LED, 479W, any bulb shape, any application | 479W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 479        | 15  |
| LED480-<br>FIXT | LED480W      | Non-Integrated Ballast LED, 480W, any bulb shape, any application | 480W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 480        | 15  |
| LED481-<br>FIXT | LED481W      | Non-Integrated Ballast LED, 481W, any bulb shape, any application | 481W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 481        | 15  |
| LED482-<br>FIXT | LED482W      | Non-Integrated Ballast LED, 482W, any bulb shape, any application | 482W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 482        | 15  |
| LED483-<br>FIXT | LED483W      | Non-Integrated Ballast LED, 483W, any bulb shape, any application | 483W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 483        | 15  |
| LED484-<br>FIXT | LED484W      | Non-Integrated Ballast LED, 484W, any bulb shape, any application | 484W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 484        | 15  |
| LED485-<br>FIXT | LED485W      | Non-Integrated Ballast LED, 485W, any bulb shape, any application | 485W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 485        | 15  |
| LED486-<br>FIXT | LED486W      | Non-Integrated Ballast LED, 486W, any bulb shape, any application | 486W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 486        | 15  |
| LED487-<br>FIXT | LED487W      | Non-Integrated Ballast LED, 487W, any bulb shape, any application | 487W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 487        | 15  |
| LED488-<br>FIXT | LED488W      | Non-Integrated Ballast LED, 488W, any bulb shape, any application | 488W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 488        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED489-<br>FIXT | LED489W      | Non-Integrated Ballast LED, 489W, any bulb shape, any application | 489W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 489        | 15  |
| LED490-<br>FIXT | LED490W      | Non-Integrated Ballast LED, 490W, any bulb shape, any application | 490W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 490        | 15  |
| LED491-<br>FIXT | LED491W      | Non-Integrated Ballast LED, 491W, any bulb shape, any application | 491W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 491        | 15  |
| LED492-<br>FIXT | LED492W      | Non-Integrated Ballast LED, 492W, any bulb shape, any application | 492W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 492        | 15  |
| LED493-<br>FIXT | LED493W      | Non-Integrated Ballast LED, 493W, any bulb shape, any application | 493W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 493        | 15  |
| LED494-<br>FIXT | LED494W      | Non-Integrated Ballast LED, 494W, any bulb shape, any application | 494W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 494        | 15  |
| LED495-<br>FIXT | LED495W      | Non-Integrated Ballast LED, 495W, any bulb shape, any application | 495W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 495        | 15  |
| LED496-<br>FIXT | LED496W      | Non-Integrated Ballast LED, 496W, any bulb shape, any application | 496W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 496        | 15  |
| LED497-<br>FIXT | LED497W      | Non-Integrated Ballast LED, 497W, any bulb shape, any application | 497W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 497        | 15  |
| LED498-<br>FIXT | LED498W      | Non-Integrated Ballast LED, 498W, any bulb shape, any application | 498W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 498        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                       | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-------------------------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| LED499-<br>FIXT | LED499W      | Non-Integrated Ballast LED, 499W, any bulb shape, any application | 499W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 499        | 15  |
| LED500-<br>FIXT | LED500W      | Non-Integrated Ballast LED, 500W, any bulb shape, any application | 500W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 500        | 15  |
| LED505-<br>FIXT | LED505W      | Non-Integrated Ballast LED, 505W, any bulb shape, any application | 505W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 505        | 15  |
| LED510-<br>FIXT | LED510W      | Non-Integrated Ballast LED, 510W, any bulb shape, any application | 510W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 510        | 15  |
| LED515-<br>FIXT | LED515W      | Non-Integrated Ballast LED, 515W, any bulb shape, any application | 515W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 515        | 15  |
| LED520-<br>FIXT | LED520W      | Non-Integrated Ballast LED, 520W, any bulb shape, any application | 520W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 520        | 15  |
| LED525-<br>FIXT | LED525W      | Non-Integrated Ballast LED, 525W, any bulb shape, any application | 525W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 525        | 15  |
| LED530-<br>FIXT | LED530W      | Non-Integrated Ballast LED, 530W, any bulb shape, any application | 530W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 530        | 15  |
| LED535-<br>FIXT | LED535W      | Non-Integrated Ballast LED, 535W, any bulb shape, any application | 535W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 535        | 15  |
| LED540-<br>FIXT | LED540W      | Non-Integrated Ballast LED, 540W, any bulb shape, any application | 540W LED - Non-Int.<br>Ballast | Electronic | N/A               | N/A        | 540        | 15  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                                | Layman Term                    | BALLAST       | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|--------------------------------------------------------------------------------------------|--------------------------------|---------------|-------------------|------------|------------|-----|
| LED545-<br>FIXT | LED545W      | Non-Integrated Ballast LED, 545W, any bulb shape, any application                          | 545W LED - Non-Int.<br>Ballast | Electronic    | N/A               | N/A        | 545        | 15  |
| LED550-<br>FIXT | LED550W      | Non-Integrated Ballast LED, 550W, any bulb shape, any application                          | 550W LED - Non-Int.<br>Ballast | Electronic    | N/A               | N/A        | 550        | 15  |
| CF              |              | Compact Fluorescent Fixtures                                                               |                                |               |                   |            |            |     |
| CF2/1-<br>SCRW  | CF2W         | Compact Fluorescent, (1) 2W screw-in lamp/base w/ permanent disk installed, any bulb shape | 2W CFL                         | Mag. or Elec. | 1                 | 2          | 2          | 2.5 |
| CF3/1-<br>SCRW  | CF3W         | Compact Fluorescent, (1) 3W screw-in lamp/base w/ permanent disk installed, any bulb shape | 3W CFL                         | Mag. or Elec. | 1                 | 3          | 3          | 2.5 |
| CF4/1-<br>SCRW  | CF4W         | Compact Fluorescent, (1) 4W screw-in lamp/base w/ permanent disk installed, any bulb shape | 4W CFL                         | Mag. or Elec. | 1                 | 4          | 4          | 2.5 |
| CF5/1-<br>SCRW  | CF5W         | Compact Fluorescent, (1) 5W screw-in lamp/base w/ permanent disk installed, any bulb shape | 5W CFL                         | Mag. or Elec. | 1                 | 5          | 5          | 2.5 |
| CF6/1-<br>SCRW  | CF6W         | Compact Fluorescent, (1) 6W screw-in lamp/base w/ permanent disk installed, any bulb shape | 6W CFL                         | Mag. or Elec. | 1                 | 6          | 6          | 2.5 |
| CF7/1-<br>SCRW  | CF7W         | Compact Fluorescent, (1) 7W screw-in lamp/base w/ permanent disk installed, any bulb shape | 7W CFL                         | Mag. or Elec. | 1                 | 7          | 7          | 2.5 |
| CF8/1-<br>SCRW  | CF8W         | Compact Fluorescent, (1) 8W screw-in lamp/base w/ permanent disk installed, any bulb shape | 8W CFL                         | Mag. or Elec. | 1                 | 8          | 8          | 2.5 |
| CF9/1-<br>SCRW  | CF9W         | Compact Fluorescent, (1) 9W screw-in lamp/base w/ permanent disk installed, any bulb shape | 9W CFL                         | Mag. or Elec. | 1                 | 9          | 9          | 2.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                                 | Layman Term | BALLAST       | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|---------------------------------------------------------------------------------------------|-------------|---------------|-------------------|------------|------------|-----|
| CF10/1-<br>SCRW | CF10W        | Compact Fluorescent, (1) 10W screw-in lamp/base w/ permanent disk installed, any bulb shape | 10W CFL     | Mag. or Elec. | 1                 | 10         | 10         | 2.5 |
| CF11/1-<br>SCRW | CF11W        | Compact Fluorescent, (1) 11W screw-in lamp/base w/ permanent disk installed, any bulb shape | 11W CFL     | Mag. or Elec. | 1                 | 11         | 11         | 2.5 |
| CF12/1-<br>SCRW | CF12W        | Compact Fluorescent, (1) 12W screw-in lamp/base w/ permanent disk installed, any bulb shape | 12W CFL     | Mag. or Elec. | 1                 | 12         | 12         | 2.5 |
| CF13/1-<br>SCRW | CF13W        | Compact Fluorescent, (1) 13W screw-in lamp/base w/ permanent disk installed, any bulb shape | 13W CFL     | Mag. or Elec. | 1                 | 13         | 13         | 2.5 |
| CF14/1-<br>SCRW | CF14W        | Compact Fluorescent, (1) 14W screw-in lamp/base w/ permanent disk installed, any bulb shape | 14W CFL     | Mag. or Elec. | 1                 | 14         | 14         | 2.5 |
| CF15/1-<br>SCRW | CF15W        | Compact Fluorescent, (1) 15W screw-in lamp/base w/ permanent disk installed, any bulb shape | 15W CFL     | Mag. or Elec. | 1                 | 15         | 15         | 2.5 |
| CF16/1-<br>SCRW | CF16W        | Compact Fluorescent, (1) 16W screw-in lamp/base w/ permanent disk installed, any bulb shape | 16W CFL     | Mag. or Elec. | 1                 | 16         | 16         | 2.5 |
| CF17/1-<br>SCRW | CF17W        | Compact Fluorescent, (1) 17W screw-in lamp/base w/ permanent disk installed, any bulb shape | 17W CFL     | Mag. or Elec. | 1                 | 17         | 17         | 2.5 |
| CF18/1-<br>SCRW | CF18W        | Compact Fluorescent, (1) 18W screw-in lamp/base w/ permanent disk installed, any bulb shape | 18W CFL     | Mag. or Elec. | 1                 | 18         | 18         | 2.5 |
| CF19/1-<br>SCRW | CF19W        | Compact Fluorescent, (1) 19W screw-in lamp/base w/ permanent disk installed, any bulb shape | 19W CFL     | Mag. or Elec. | 1                 | 19         | 19         | 2.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                                 | Layman Term | BALLAST       | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|---------------------------------------------------------------------------------------------|-------------|---------------|-------------------|------------|------------|-----|
| CF20/1-<br>SCRW | CF20W        | Compact Fluorescent, (1) 20W screw-in lamp/base w/ permanent disk installed, any bulb shape | 20W CFL     | Mag. or Elec. | 1                 | 20         | 20         | 2.5 |
| CF21/1-<br>SCRW | CF21W        | Compact Fluorescent, (1) 21W screw-in lamp/base w/ permanent disk installed, any bulb shape | 21W CFL     | Mag. or Elec. | 1                 | 21         | 21         | 2.5 |
| CF22/1-<br>SCRW | CF22W        | Compact Fluorescent, (1) 22W screw-in lamp/base w/ permanent disk installed, any bulb shape | 22W CFL     | Mag. or Elec. | 1                 | 22         | 22         | 2.5 |
| CF23/1-<br>SCRW | CF23W        | Compact Fluorescent, (1) 23W screw-in lamp/base w/ permanent disk installed, any bulb shape | 23W CFL     | Mag. or Elec. | 1                 | 23         | 23         | 2.5 |
| CF24/1-<br>SCRW | CF24W        | Compact Fluorescent, (1) 24W screw-in lamp/base w/ permanent disk installed, any bulb shape | 24W CFL     | Mag. or Elec. | 1                 | 24         | 24         | 2.5 |
| CF25/1-<br>SCRW | CF25W        | Compact Fluorescent, (1) 25W screw-in lamp/base w/ permanent disk installed, any bulb shape | 25W CFL     | Mag. or Elec. | 1                 | 25         | 25         | 2.5 |
| CF26/1-<br>SCRW | CF26W        | Compact Fluorescent, (1) 26W screw-in lamp/base w/ permanent disk installed, any bulb shape | 26W CFL     | Mag. or Elec. | 1                 | 26         | 26         | 2.5 |
| CF27/1-<br>SCRW | CF27W        | Compact Fluorescent, (1) 27W screw-in lamp/base w/ permanent disk installed, any bulb shape | 27W CFL     | Mag. or Elec. | 1                 | 27         | 27         | 2.5 |
| CF28/1-<br>SCRW | CF28W        | Compact Fluorescent, (1) 28W screw-in lamp/base w/ permanent disk installed, any bulb shape | 28W CFL     | Mag. or Elec. | 1                 | 28         | 28         | 2.5 |
| CF29/1-<br>SCRW | CF29W        | Compact Fluorescent, (1) 29W screw-in lamp/base w/ permanent disk installed, any bulb shape | 29W CFL     | Mag. or Elec. | 1                 | 29         | 29         | 2.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                                 | Layman Term | BALLAST       | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|---------------------------------------------------------------------------------------------|-------------|---------------|-------------------|------------|------------|-----|
| CF30/1-<br>SCRW | CF30W        | Compact Fluorescent, (1) 30W screw-in lamp/base w/ permanent disk installed, any bulb shape | 30W CFL     | Mag. or Elec. | 1                 | 30         | 30         | 2.5 |
| CF31/1-<br>SCRW | CF31W        | Compact Fluorescent, (1) 31W screw-in lamp/base w/ permanent disk installed, any bulb shape | 31W CFL     | Mag. or Elec. | 1                 | 31         | 31         | 2.5 |
| CF32/1-<br>SCRW | CF32W        | Compact Fluorescent, (1) 32W screw-in lamp/base w/ permanent disk installed, any bulb shape | 32W CFL     | Mag. or Elec. | 1                 | 32         | 32         | 2.5 |
| CF33/1-<br>SCRW | CF33W        | Compact Fluorescent, (1) 33W screw-in lamp/base w/ permanent disk installed, any bulb shape | 33W CFL     | Mag. or Elec. | 1                 | 33         | 33         | 2.5 |
| CF34/1-<br>SCRW | CF34W        | Compact Fluorescent, (1) 34W screw-in lamp/base w/ permanent disk installed, any bulb shape | 34W CFL     | Mag. or Elec. | 1                 | 34         | 34         | 2.5 |
| CF35/1-<br>SCRW | CF35W        | Compact Fluorescent, (1) 35W screw-in lamp/base w/ permanent disk installed, any bulb shape | 35W CFL     | Mag. or Elec. | 1                 | 35         | 35         | 2.5 |
| CF36/1-<br>SCRW | CF36W        | Compact Fluorescent, (1) 36W screw-in lamp/base w/ permanent disk installed, any bulb shape | 36W CFL     | Mag. or Elec. | 1                 | 36         | 36         | 2.5 |
| CF37/1-<br>SCRW | CF37W        | Compact Fluorescent, (1) 37W screw-in lamp/base w/ permanent disk installed, any bulb shape | 37W CFL     | Mag. or Elec. | 1                 | 37         | 37         | 2.5 |
| CF38/1-<br>SCRW | CF38W        | Compact Fluorescent, (1) 38W screw-in lamp/base w/ permanent disk installed, any bulb shape | 38W CFL     | Mag. or Elec. | 1                 | 38         | 38         | 2.5 |
| CF39/1-<br>SCRW | CF39W        | Compact Fluorescent, (1) 39W screw-in lamp/base w/ permanent disk installed, any bulb shape | 39W CFL     | Mag. or Elec. | 1                 | 39         | 39         | 2.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                                 | Layman Term | BALLAST       | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|---------------------------------------------------------------------------------------------|-------------|---------------|-------------------|------------|------------|-----|
| CF40/1-<br>SCRW | CF40W        | Compact Fluorescent, (1) 40W screw-in lamp/base w/ permanent disk installed, any bulb shape | 40W CFL     | Mag. or Elec. | 1                 | 40         | 40         | 2.5 |
| CF41/1-<br>SCRW | CF41W        | Compact Fluorescent, (1) 41W screw-in lamp/base w/ permanent disk installed, any bulb shape | 41W CFL     | Mag. or Elec. | 1                 | 41         | 41         | 2.5 |
| CF42/1-<br>SCRW | CF42W        | Compact Fluorescent, (1) 42W screw-in lamp/base w/ permanent disk installed, any bulb shape | 42W CFL     | Mag. or Elec. | 1                 | 42         | 42         | 2.5 |
| CF43/1-<br>SCRW | CF43W        | Compact Fluorescent, (1) 43W screw-in lamp/base w/ permanent disk installed, any bulb shape | 43W CFL     | Mag. or Elec. | 1                 | 43         | 43         | 2.5 |
| CF44/1-<br>SCRW | CF44W        | Compact Fluorescent, (1) 44W screw-in lamp/base w/permanent disk installed, any bulb shape  | 44W CFL     | Mag. or Elec. | 1                 | 44         | 44         | 2.5 |
| CF45/1-<br>SCRW | CF45W        | Compact Fluorescent, (1) 45W screw-in lamp/base w/permanent disk installed, any bulb shape  | 45W CFL     | Mag. or Elec. | 1                 | 45         | 45         | 2.5 |
| CF46/1-<br>SCRW | CF46W        | Compact Fluorescent, (1) 46W screw-in lamp/base w/permanent disk installed, any bulb shape  | 46W CFL     | Mag. or Elec. | 1                 | 46         | 46         | 2.5 |
| CF47/1-<br>SCRW | CF47W        | Compact Fluorescent, (1) 47W screw-in lamp/base w/permanent disk installed, any bulb shape  | 47W CFL     | Mag. or Elec. | 1                 | 47         | 47         | 2.5 |
| CF48/1-<br>SCRW | CF48W        | Compact Fluorescent, (1) 48W screw-in lamp/base w/permanent disk installed, any bulb shape  | 48W CFL     | Mag. or Elec. | 1                 | 48         | 48         | 2.5 |
| CF49/1-<br>SCRW | CF49W        | Compact Fluorescent, (1) 49W screw-in lamp/base w/permanent disk installed, any bulb shape  | 49W CFL     | Mag. or Elec. | 1                 | 49         | 49         | 2.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                                | Layman Term | BALLAST       | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|--------------------------------------------------------------------------------------------|-------------|---------------|-------------------|------------|------------|-----|
| CF50/1-<br>SCRW | CF50W        | Compact Fluorescent, (1) 50W screw-in lamp/base w/permanent disk installed, any bulb shape | 50W CFL     | Mag. or Elec. | 1                 | 50         | 50         | 2.5 |
| CF51/1-<br>SCRW | CF51W        | Compact Fluorescent, (1) 51W screw-in lamp/base w/permanent disk installed, any bulb shape | 51W CFL     | Mag. or Elec. | 1                 | 51         | 51         | 2.5 |
| CF52/1-<br>SCRW | CF52W        | Compact Fluorescent, (1) 52W screw-in lamp/base w/permanent disk installed, any bulb shape | 52W CFL     | Mag. or Elec. | 1                 | 52         | 52         | 2.5 |
| CF53/1-<br>SCRW | CF53W        | Compact Fluorescent, (1) 53W screw-in lamp/base w/permanent disk installed, any bulb shape | 53W CFL     | Mag. or Elec. | 1                 | 53         | 53         | 2.5 |
| CF54/1-<br>SCRW | CF54W        | Compact Fluorescent, (1) 54W screw-in lamp/base w/permanent disk installed, any bulb shape | 54W CFL     | Mag. or Elec. | 1                 | 54         | 54         | 2.5 |
| CF55/1-<br>SCRW | CF55W        | Compact Fluorescent, (1) 55W screw-in lamp/base w/permanent disk installed, any bulb shape | 55W CFL     | Mag. or Elec. | 1                 | 55         | 55         | 2.5 |
| CF56/1-<br>SCRW | CF56W        | Compact Fluorescent, (1) 56W screw-in lamp/base w/permanent disk installed, any bulb shape | 56W CFL     | Mag. or Elec. | 1                 | 56         | 56         | 2.5 |
| CF57/1-<br>SCRW | CF57W        | Compact Fluorescent, (1) 57W screw-in lamp/base w/permanent disk installed, any bulb shape | 57W CFL     | Mag. or Elec. | 1                 | 57         | 57         | 2.5 |
| CF58/1-<br>SCRW | CF58W        | Compact Fluorescent, (1) 58W screw-in lamp/base w/permanent disk installed, any bulb shape | 58W CFL     | Mag. or Elec. | 1                 | 58         | 58         | 2.5 |
| CF59/1-<br>SCRW | CF59W        | Compact Fluorescent, (1) 59W screw-in lamp/base w/permanent disk installed, any bulb shape | 59W CFL     | Mag. or Elec. | 1                 | 59         | 59         | 2.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                                | Layman Term | BALLAST       | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|--------------------------------------------------------------------------------------------|-------------|---------------|-------------------|------------|------------|-----|
| CF60/1-<br>SCRW | CF60W        | Compact Fluorescent, (1) 60W screw-in lamp/base w/permanent disk installed, any bulb shape | 60W CFL     | Mag. or Elec. | 1                 | 60         | 60         | 2.5 |
| CF61/1-<br>SCRW | CF61W        | Compact Fluorescent, (1) 61W screw-in lamp/base w/permanent disk installed, any bulb shape | 61W CFL     | Mag. or Elec. | 1                 | 61         | 61         | 2.5 |
| CF62/1-<br>SCRW | CF62W        | Compact Fluorescent, (1) 62W screw-in lamp/base w/permanent disk installed, any bulb shape | 62W CFL     | Mag. or Elec. | 1                 | 62         | 62         | 2.5 |
| CF63/1-<br>SCRW | CF63W        | Compact Fluorescent, (1) 63W screw-in lamp/base w/permanent disk installed, any bulb shape | 63W CFL     | Mag. or Elec. | 1                 | 63         | 63         | 2.5 |
| CF64/1-<br>SCRW | CF64W        | Compact Fluorescent, (1) 64W screw-in lamp/base w/permanent disk installed, any bulb shape | 64W CFL     | Mag. or Elec. | 1                 | 64         | 64         | 2.5 |
| CF65/1-<br>SCRW | CF65W        | Compact Fluorescent, (1) 65W screw-in lamp/base w/permanent disk installed, any bulb shape | 65W CFL     | Mag. or Elec. | 1                 | 65         | 65         | 2.5 |
| CF66/1-<br>SCRW | CF66W        | Compact Fluorescent, (1) 66W screw-in lamp/base w/permanent disk installed, any bulb shape | 66W CFL     | Mag. or Elec. | 1                 | 66         | 66         | 2.5 |
| CF67/1-<br>SCRW | CF67W        | Compact Fluorescent, (1) 67W screw-in lamp/base w/permanent disk installed, any bulb shape | 67W CFL     | Mag. or Elec. | 1                 | 67         | 67         | 2.5 |
| CF68/1-<br>SCRW | CF68W        | Compact Fluorescent, (1) 68W screw-in lamp/base w/permanent disk installed, any bulb shape | 68W CFL     | Mag. or Elec. | 1                 | 68         | 68         | 2.5 |
| CF69/1-<br>SCRW | CF69W        | Compact Fluorescent, (1) 69W screw-in lamp/base w/permanent disk installed, any bulb shape | 69W CFL     | Mag. or Elec. | 1                 | 69         | 69         | 2.5 |

| Fixture<br>Code  | LAMP<br>CODE | DESCRIPTION                                                                                  | Layman Term | BALLAST       | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|------------------|--------------|----------------------------------------------------------------------------------------------|-------------|---------------|-------------------|------------|------------|-----|
| CF70/1-<br>SCRW  | CF70W        | Compact Fluorescent, (1) 70W screw-in lamp/base w/permanent disk installed, any bulb shape   | 70W CFL     | Mag. or Elec. | 1                 | 70         | 70         | 2.5 |
| CF71/1-<br>SCRW  | CF71W        | Compact Fluorescent, (1) 71W screw-in lamp/base w/permanent disk installed, any bulb shape   | 71W CFL     | Mag. or Elec. | 1                 | 71         | 71         | 2.5 |
| CF72/1-<br>SCRW  | CF72W        | Compact Fluorescent, (1) 72W screw-in lamp/base w/permanent disk installed, any bulb shape   | 72W CFL     | Mag. or Elec. | 1                 | 72         | 72         | 2.5 |
| CF73/1-<br>SCRW  | CF73W        | Compact Fluorescent, (1) 73W screw-in lamp/base w/permanent disk installed, any bulb shape   | 73W CFL     | Mag. or Elec. | 1                 | 73         | 73         | 2.5 |
| CF74/1-<br>SCRW  | CF74W        | Compact Fluorescent, (1) 74W screw-in lamp/base w/permanent disk installed, any bulb shape   | 74W CFL     | Mag. or Elec. | 1                 | 74         | 74         | 2.5 |
| CF75/1-<br>SCRW  | CF75W        | Compact Fluorescent, (1) 75W screw-in lamp/base w/permanent disk installed, any bulb shape   | 75W CFL     | Mag. or Elec. | 1                 | 75         | 75         | 2.5 |
| CF80/1-<br>SCRW  | CF80W        | Compact Fluorescent, (1) 80W screw-in lamp/base w/permanent disk installed, any bulb shape   | 80W CFL     | Mag. or Elec. | 1                 | 80         | 80         | 2.5 |
| CF85/1-<br>SCRW  | CF85W        | Compact Fluorescent, (1) 85W screw-in lamp/base w/permanent disk installed, any bulb shape   | 85W CFL     | Mag. or Elec. | 1                 | 85         | 85         | 2.5 |
| CF100/1-<br>SCRW | CF100W       | Compact Fluorescent, (1) 100W screw-in lamp/base w/ permanent disk installed, any bulb shape | 100W CFL    | Mag. or Elec. | 1                 | 100        | 100        | 2.5 |
| CF125/1-<br>SCRW | CF125W       | Compact Fluorescent, (1) 125W screw-in lamp/base w/ permanent disk installed, any bulb shape | 125W CFL    | Mag. or Elec. | 1                 | 125        | 125        | 2.5 |

| Fixture<br>Code  | LAMP<br>CODE | DESCRIPTION                                                                                              | Layman Term      | BALLAST       | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|------------------|--------------|----------------------------------------------------------------------------------------------------------|------------------|---------------|-------------------|------------|------------|-----|
| CF150/1-<br>SCRW | CF150W       | Compact Fluorescent, (1) 150W screw-in lamp/base w/ permanent disk installed, any bulb shape             | 150W CFL         | Mag. or Elec. | 1                 | 150        | 150        | 2.5 |
| CF200/1-<br>SCRW | CF200W       | Compact Fluorescent, (1) 200W screw-in lamp/base w/ permanent disk installed, any bulb shape             | 200W CFL         | Mag. or Elec. | 1                 | 200        | 200        | 2.5 |
| CFC2/1-<br>SCRW  | CFC2W        | Compact Fluorescent, Cold Cathode, (1) 2W screw-in lamp/base w/ permanent locking device, any bulb shape | 2W Cold Cathode  | Electronic    | 1                 | 2          | 2          | 4.5 |
| CFC2/2-<br>SCRW  | CFC2W        | Compact Fluorescent, Cold Cathode, (2) 2W screw-in lamp/base w/ permanent locking device, any bulb shape | 4W Cold Cathode  | Electronic    | 2                 | 2          | 4          | 4.5 |
| CFC3/1-<br>SCRW  | CFC3W        | Compact Fluorescent, Cold Cathode, (1) 3W screw-in lamp/base w/ permanent locking device, any bulb shape | 3W Cold Cathode  | Electronic    | 1                 | 3          | 3          | 4.5 |
| CFC3/2-<br>SCRW  | CFC3W        | Compact Fluorescent, Cold Cathode, (2) 3W screw-in lamp/base w/ permanent locking device, any bulb shape | 6W Cold Cathode  | Electronic    | 2                 | 3          | 6          | 4.5 |
| CFC4/1-<br>SCRW  | CFC4W        | Compact Fluorescent, Cold Cathode, (1) 4W screw-in lamp/base w/ permanent locking device, any bulb shape | 4W Cold Cathode  | Electronic    | 1                 | 4          | 4          | 4.5 |
| CFC4/2-<br>SCRW  | CFC4W        | Compact Fluorescent, Cold Cathode, (2) 4W screw-in lamp/base w/ permanent locking device, any bulb shape | 8W Cold Cathode  | Electronic    | 2                 | 4          | 8          | 4.5 |
| CFC5/1-<br>SCRW  | CFC5W        | Compact Fluorescent, Cold Cathode, (1) 5W screw-in lamp/base w/ permanent locking device, any bulb shape | 5W Cold Cathode  | Electronic    | 1                 | 5          | 5          | 4.5 |
| CFC5/2-<br>SCRW  | CFC5W        | Compact Fluorescent, Cold Cathode, (2) 5W screw-in lamp/base w/ permanent locking device, any bulb shape | 10W Cold Cathode | Electronic    | 2                 | 5          | 10         | 4.5 |

| Fixture<br>Code  | LAMP<br>CODE | DESCRIPTION                                                                                                  | Layman Term       | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|------------------|--------------|--------------------------------------------------------------------------------------------------------------|-------------------|------------|-------------------|------------|------------|-----|
| CFC8/1-<br>SCRW  | CFC8W        | Compact Fluorescent, Cold Cathode, (1) 8W screw-in lamp/base w/ permanent locking device, any bulb shape     | 8W Cold Cathode   | Electronic | 1                 | 8          | 8          | 4.5 |
| CFC8/2-<br>SCRW  | CFC8W        | Compact Fluorescent, Cold Cathode, (2) 8W screw-in lamp/base w/<br>permanent locking device, any bulb shape  | 16W Cold Cathode  | Electronic | 2                 | 8          | 16         | 4.5 |
| CFC13/1-<br>SCRW | CFC13W       | Compact Fluorescent, Cold Cathode, (1) 13W screw-in lamp/base w/<br>permanent locking device, any bulb shape | 13W Cold Cathode  | Electronic | 1                 | 13         | 13         | 4.5 |
| CFC18/1-<br>SCRW | CFC18W       | Compact Fluorescent, Cold Cathode, (1) 18W screw-in lamp/base w/<br>permanent locking device, any bulb shape | 18W Cold Cathode  | Electronic | 1                 | 18         | 18         | 4.5 |
| CFD10/1          | CFD10W       | Compact Fluorescent, 2D, (1) 10W lamp                                                                        | 1-Lamp 10W CFL 2D | Mag-STD    | 1                 | 10         | 16         | 16  |
| CFD10/1-L        | CFD10W       | Compact Fluorescent, 2D, (1) 10W lamp                                                                        | 1-Lamp 10W CFL 2D | Electronic | 1                 | 10         | 14         | 16  |
| CFD16/1          | CFD16W       | Compact Fluorescent, 2D, (1) 16W lamp                                                                        | 1-Lamp 16W CFL 2D | Mag-STD    | 1                 | 16         | 26         | 16  |
| CFD16/1-L        | CFD16W       | Compact Fluorescent, 2D, (1) 16W lamp                                                                        | 1-Lamp 16W CFL 2D | Electronic | 1                 | 16         | 18         | 16  |
| CFD21/1          | CFD21W       | Compact Fluorescent, 2D, (1) 21W lamp                                                                        | 1-Lamp 21W CFL 2D | Mag-STD    | 1                 | 21         | 26         | 16  |
| CFD21/1-L        | CFD21W       | Compact Fluorescent, 2D, (1) 21W lamp                                                                        | 1-Lamp 21W CFL 2D | Electronic | 1                 | 21         | 22         | 16  |
| CFD28/1          | CFD28W       | Compact Fluorescent, 2D, (1) 28W lamp                                                                        | 1-Lamp 28W CFL 2D | Mag-STD    | 1                 | 28         | 35         | 16  |
| CFD28/1-L        | CFD28W       | Compact Fluorescent, 2D, (1) 28W lamp                                                                        | 1-Lamp 28W CFL 2D | Electronic | 1                 | 28         | 29         | 16  |
| CFD38/1          | CFD38W       | Compact Fluorescent, 2D, (1) 38W lamp                                                                        | 1-Lamp 38W CFL 2D | Mag-STD    | 1                 | 38         | 46         | 16  |
| CFD38/1-L        | CFD38W       | Compact Fluorescent, 2D, (1) 38W lamp                                                                        | 1-Lamp 38W CFL 2D | Electronic | 1                 | 38         | 32         | 16  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                            | Layman Term                   | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|------------------------------------------------------------------------|-------------------------------|------------|-------------------|------------|------------|-----|
| CFG13/1-L       | CFG13W       | Compact Fluorescent, Multi, GU24 with Integrated Ballast, (1) 13W lamp | 1-Lamp 13W CFL Multi          | Electronic | 1                 | 13         | 13         | 16  |
| CFG18/1-L       | CFG18W       | Compact Fluorescent, Multi, GU24 with Integrated Ballast, (1) 18W lamp | 1-Lamp 18W CFL Multi          | Electronic | 1                 | 18         | 18         | 16  |
| CFG23/1-L       | CFG23W       | Compact Fluorescent, Multi, GU24 with Integrated Ballast, (1) 23W lamp | 1-Lamp 23W CFL Multi          | Electronic | 1                 | 23         | 23         | 16  |
| CFG26/1-L       | CFG26W       | Compact Fluorescent, Multi, GU24 with Integrated Ballast, (1) 26W lamp | 1-Lamp 26W CFL Multi          | Electronic | 1                 | 26         | 26         | 16  |
| CFG32/1-L       | CFG32W       | Compact Fluorescent, Multi, GU24 with Integrated Ballast, (1) 32W lamp | 1-Lamp 32W CFL Multi          | Electronic | 1                 | 32         | 32         | 16  |
| CFG42/1-L       | CFG42W       | Compact Fluorescent, Multi, GU24 with Integrated Ballast, (1) 42W lamp | 1-Lamp 42W CFL Multi          | Electronic | 1                 | 42         | 42         | 16  |
| CFM13/1-<br>L   | CFM13W       | Compact Fluorescent, Multi, 4-pin, (1) 13W lamp                        | 1-Lamp 13W CFL Multi<br>4-Pin | Electronic | 1                 | 13         | 16         | 16  |
| CFM13/2-<br>L   | CFM13W       | Compact Fluorescent, Multi, 4-pin, (2) 13W lamps                       | 2-Lamp 13W CFL Multi<br>4-Pin | Electronic | 2                 | 13         | 30         | 16  |
| CFM15/1-<br>L   | CFM15W       | Compact Fluorescent, Multi, 4-pin, (1) 15W lamp                        | 1-Lamp 15W CFL Multi<br>4-Pin | Electronic | 1                 | 15         | 18         | 16  |
| CFM18/1-<br>L   | CFM18W       | Compact Fluorescent, Multi, 4-pin, (1) 18W lamp                        | 1-Lamp 18W CFL Multi<br>4-Pin | Electronic | 1                 | 18         | 20         | 16  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                           | Layman Term                   | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-----------------------------------------------------------------------|-------------------------------|------------|-------------------|------------|------------|-----|
| CFM18/2-<br>L   | CFM18W       | Compact Fluorescent, Multi, 4-pin, (2) 18W lamps                      | 2-Lamp 18W CFL Multi<br>4-Pin | Electronic | 2                 | 18         | 40         | 16  |
| CFM21/1-<br>L   | CFM21W       | Compact Fluorescent, Multi, 4-pin, (1) 21W lamp                       | 1-Lamp 21W CFL Multi<br>4-Pin | Electronic | 1                 | 21         | 23         | 16  |
| CFM26/1-<br>L   | CFM26W       | Compact Fluorescent, Multi, 4-pin, (1) 26W lamp                       | 1-Lamp 26W CFL Multi<br>4-Pin | Electronic | 1                 | 26         | 29         | 16  |
| CFM26/2-<br>L   | CFM26W       | Compact Fluorescent, Multi, 4-pin, (2) 26W lamps                      | 2-Lamp 26W CFL Multi<br>4-Pin | Electronic | 2                 | 26         | 51         | 16  |
| CFM28/1-<br>L   | CFM28W       | Compact Fluorescent, Multi, 4-pin, (1) 28W lamp                       | 1-Lamp 28W CFL Multi<br>4-Pin | Electronic | 1                 | 28         | 31         | 16  |
| CFM32/1-<br>L   | CFM32W       | Compact Fluorescent, Multi, 4-pin, (1) 32W lamp                       | 1-Lamp 32W CFL Multi<br>4-Pin | Electronic | 1                 | 32         | 35         | 16  |
| CFM42/1-<br>L   | CFM42W       | Compact Fluorescent, Multi, 4-pin, (1) 42W lamp                       | 1-Lamp 42W CFL Multi<br>4-Pin | Electronic | 1                 | 42         | 46         | 16  |
| CFM42/2-<br>L   | CFM42W       | Compact Fluorescent, Multi, 4-pin, (2) 42W lamps                      | 2-Lamp 42W CFL Multi<br>4-Pin | Electronic | 2                 | 42         | 93         | 16  |
| CFM42/8-<br>L   | CFM42W       | Compact Fluorescent, Multi, 4-pin, (8) 42W lamps, (4) 2-lamp ballasts | 8-Lamp 42W CFL Multi<br>4-Pin | Electronic | 8                 | 42         | 372        | 16  |
| CFM57/1-<br>L   | CFM57W       | Compact Fluorescent, Multi, 4-pin, (1) 57W lamp                       | 1-Lamp 57W CFL Multi<br>4-Pin | Electronic | 1                 | 57         | 59         | 16  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                      | Layman Term                    | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|--------------------------------------------------|--------------------------------|------------|-------------------|------------|------------|-----|
| CFM60/1-<br>L   | CFM60W       | Compact Fluorescent, Multi, 4-pin, (1) 60W lamp  | 1-Lamp 60W CFL Multi<br>4-Pin  | Electronic | 1                 | 60         | 70         | 16  |
| CFM70/1-<br>L   | CFM70W       | Compact Fluorescent, Multi, 4-pin, (1) 70W lamp  | 1-Lamp 70W CFL Multi<br>4-Pin  | Electronic | 1                 | 70         | 73         | 16  |
| CFM85/1-<br>L   | CFM85W       | Compact Fluorescent, Multi, 4-pin, (1) 85W lamp  | 1-Lamp 85W CFL Multi<br>4-Pin  | Electronic | 1                 | 85         | 96         | 16  |
| CFM120/1<br>-L  | CFM120W      | Compact Fluorescent, Multi, 4-pin, (1) 120W lamp | 1-Lamp 120W CFL Multi<br>4-Pin | Electronic | 1                 | 120        | 135        | 16  |
| CFQ9/1          | CFQ9W        | Compact Fluorescent, Quad, (1) 9W lamp           | 1-Lamp 9W CFL Quad             | Mag-STD    | 1                 | 9          | 14         | 16  |
| CFQ9/2          | CFQ9W        | Compact Fluorescent, Quad, (2) 9W lamps          | 2-Lamp 9W CFL Quad             | Mag-STD    | 2                 | 9          | 23         | 16  |
| CFQ10/1         | CFQ10W       | Compact Fluorescent, quad, (1) 10W lamp          | 1-Lamp 10W CFL Quad            | Mag-STD    | 1                 | 10         | 15         | 16  |
| CFQ13/1         | CFQ13W       | Compact Fluorescent, quad, (1) 13W lamp          | 1-Lamp 13W CFL Quad            | Mag-STD    | 1                 | 13         | 17         | 16  |
| CFQ13/1-L       | CFQ13W       | Compact Fluorescent, quad, (1) 13W lamp, BF=1.05 | 1-Lamp 13W CFL Quad            | Electronic | 1                 | 13         | 15         | 16  |
| CFQ13/2         | CFQ13W       | Compact Fluorescent, quad, (2) 13W lamps         | 2-Lamp 13W CFL Quad            | Mag-STD    | 2                 | 13         | 31         | 16  |
| CFQ13/2-L       | CFQ13W       | Compact Fluorescent, quad, (2) 13W lamps, BF=1.0 | 2-Lamp 13W CFL Quad            | Electronic | 2                 | 13         | 28         | 16  |
| CFQ13/3         | CFQ13W       | Compact Fluorescent, quad, (3) 13W lamps         | 3-Lamp 13W CFL Quad            | Mag-STD    | 3                 | 13         | 48         | 16  |
| CFQ15/1         | CFQ15W       | Compact Fluorescent, quad, (1) 15W lamp          | 1-Lamp 15W CFL Quad            | Mag-STD    | 1                 | 15         | 20         | 16  |
| CFQ17/1         | CFQ17W       | Compact Fluorescent, quad, (1) 17W lamp          | 1-Lamp 17W CFL Quad            | Mag-STD    | 1                 | 17         | 24         | 16  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                      | Layman Term         | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|--------------------------------------------------|---------------------|------------|-------------------|------------|------------|-----|
| CFQ17/2         | CFQ17W       | Compact Fluorescent, quad, (2) 17W lamps         | 2-Lamp 17W CFL Quad | Mag-STD    | 2                 | 17         | 48         | 16  |
| CFQ18/1         | CFQ18W       | Compact Fluorescent, quad, (1) 18W lamp          | 1-Lamp 18W CFL Quad | Mag-STD    | 1                 | 18         | 26         | 16  |
| CFQ18/1-L       | CFQ18W       | Compact Fluorescent, quad, (1) 18W lamp, BF=1.0  | 1-Lamp 18W CFL Quad | Electronic | 1                 | 18         | 20         | 16  |
| CFQ18/2         | CFQ18W       | Compact Fluorescent, quad, (2) 18W lamps         | 2-Lamp 18W CFL Quad | Mag-STD    | 2                 | 18         | 45         | 16  |
| CFQ18/2-L       | CFQ18W       | Compact Fluorescent, quad, (2) 18W lamp, BF=1.0  | 2-Lamp 18W CFL Quad | Electronic | 2                 | 18         | 38         | 16  |
| CFQ18/4         | CFQ18W       | Compact Fluorescent, quad, (4) 18W lamps         | 4-Lamp 18W CFL Quad | Mag-STD    | 2                 | 18         | 90         | 16  |
| CFQ20/1         | CFQ20W       | Compact Fluorescent, quad, (1) 20W lamp          | 1-Lamp 20W CFL Quad | Mag-STD    | 1                 | 20         | 23         | 16  |
| CFQ20/2         | CFQ20W       | Compact Fluorescent, quad, (2) 20W lamps         | 2-Lamp 20W CFL Quad | Mag-STD    | 2                 | 20         | 46         | 16  |
| CFQ22/1         | CFQ22W       | Compact Fluorescent, Quad, (1) 22W lamp          | 1-Lamp 22W CFL Quad | Mag-STD    | 1                 | 22         | 24         | 16  |
| CFQ22/2         | CFQ22W       | Compact Fluorescent, Quad, (2) 22W lamps         | 2-Lamp 22W CFL Quad | Mag-STD    | 2                 | 22         | 48         | 16  |
| CFQ22/3         | CFQ22W       | Compact Fluorescent, Quad, (3) 22W lamps         | 3-Lamp 22W CFL Quad | Mag-STD    | 3                 | 22         | 72         | 16  |
| CFQ23/1         | CFQ23W       | Compact Fluorescent, Quad, (1) 23W lamp          | 1-Lamp 23W CFL Quad | Mag-STD    | 1                 | 23         | 27         | 16  |
| CFQ25/1         | CFQ25W       | Compact Fluorescent, Quad, (1) 25W lamp          | 1-Lamp 25W CFL Quad | Mag-STD    | 1                 | 25         | 33         | 16  |
| CFQ25/2         | CFQ25W       | Compact Fluorescent, Quad, (2) 25W lamps         | 2-Lamp 25W CFL Quad | Mag-STD    | 2                 | 25         | 66         | 16  |
| CFQ26/1         | CFQ26W       | Compact Fluorescent, quad, (1) 26W lamp          | 1-Lamp 26W CFL Quad | Mag-STD    | 1                 | 26         | 33         | 16  |
| CFQ26/1-L       | CFQ26W       | Compact Fluorescent, quad, (1) 26W lamp, BF=0.95 | 1-Lamp 26W CFL Quad | Electronic | 1                 | 26         | 27         | 16  |
| CFQ26/2         | CFQ26W       | Compact Fluorescent, quad, (2) 26W lamps         | 2-Lamp 26W CFL Quad | Mag-STD    | 2                 | 26         | 66         | 16  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                       | Layman Term         | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|---------------------------------------------------|---------------------|------------|-------------------|------------|------------|-----|
| CFQ26/2-L       | CFQ26W       | Compact Fluorescent, quad, (2) 26W lamps, BF=0.95 | 2-Lamp 26W CFL Quad | Electronic | 2                 | 26         | 50         | 16  |
| CFQ26/3         | CFQ26W       | Compact Fluorescent, quad, (3) 26W lamps          | 3-Lamp 26W CFL Quad | Mag-STD    | 3                 | 26         | 99         | 16  |
| CFQ26/6-L       | CFQ26W       | Compact Fluorescent, quad, (6) 26W lamps, BF=0.95 | 6-Lamp 26W CFL Quad | Electronic | 6                 | 26         | 150        | 16  |
| CFQ28/1         | CFQ28W       | Compact Fluorescent, quad, (1) 28W lamp           | 1-Lamp 28W CFL Quad | Mag-STD    | 1                 | 28         | 33         | 16  |
| CFQ28/1-L       | CFQ28W       | Compact Fluorescent, quad, (1) 28W lamp           | 1-Lamp 28W CFL Quad | Electronic | 1                 | 28         | 31         | 16  |
| CFQ28/2-L       | CFQ28W       | Compact Fluorescent, quad, (2) 28W lamps          | 2-Lamp 28W CFL Quad | Electronic | 2                 | 28         | 60         | 16  |
| CFT5/1          | CFT5W        | Compact Fluorescent, twin, (1) 5W lamp            | 1-Lamp 5W CFL Twin  | Mag-STD    | 1                 | 5          | 9          | 16  |
| CFT5/2          | CFT5W        | Compact Fluorescent, long twin, (2) 5W lamps      | 2-Lamp 5W CFL Twin  | Mag-STD    | 2                 | 5          | 18         | 16  |
| CFT7/1          | CFT7W        | Compact Fluorescent, twin, (1) 7W lamp            | 1-Lamp 7W CFL Twin  | Mag-STD    | 1                 | 7          | 10         | 16  |
| CFT7/2          | CFT7W        | Compact Fluorescent, twin, (2) 7W lamps           | 2-Lamp 7W CFL Twin  | Mag-STD    | 2                 | 7          | 21         | 16  |
| CFT9/1          | CFT9W        | Compact Fluorescent, twin, (1) 9W lamp            | 1-Lamp 9W CFL Twin  | Mag-STD    | 1                 | 9          | 12         | 16  |
| CFT9/2          | CFT9W        | Compact Fluorescent, twin, (2) 9W lamps           | 2-Lamp 9W CFL Twin  | Mag-STD    | 2                 | 9          | 23         | 16  |
| CFT9/3          | CFT9W        | Compact Fluorescent, twin, (3) 9 W lamps          | 3-Lamp 9W CFL Twin  | Mag-STD    | 3                 | 9          | 34         | 16  |
| CFT13/1         | CFT13W       | Compact Fluorescent, twin, (1) 13W lamp           | 1-Lamp 13W CFL Twin | Mag-STD    | 1                 | 13         | 17         | 16  |
| CFT13/1-L       | CFT13W       | Compact Fluorescent, twin, (1) 13W lamp           | 1-Lamp 13W CFL Twin | Electronic | 1                 | 13         | 15         | 16  |
| CFT13/2         | CFT13W       | Compact Fluorescent, twin, (2) 13W lamps          | 2-Lamp 13W CFL Twin | Mag-STD    | 2                 | 13         | 31         | 16  |
| CFT13/2-L       | CFT13W       | Compact Fluorescent, twin, (2) 13W lamps          | 2-Lamp 13W CFL Twin | Electronic | 2                 | 13         | 28         | 16  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                   | Layman Term         | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-----------------------------------------------|---------------------|------------|-------------------|------------|------------|-----|
| CFT13/3         | CFT13W       | Compact Fluorescent, twin, (3) 13 W lamps     | 3-Lamp 13W CFL Twin | Mag-STD    | 3                 | 13         | 48         | 16  |
| CFT18/1         | CFT18W       | Compact Fluorescent, Long twin., (1) 18W lamp | 1-Lamp 18W CFL Twin | Mag-STD    | 1                 | 18         | 24         | 16  |
| CFT18/1-L       | CFT18W       | Compact Fluorescent, twin, (1) 18W lamp       | 1-Lamp 18W CFL Twin | Electronic | 1                 | 18         | 20         | 16  |
| CFT18/2         | CFT18W       | Compact Fluorescent, twin, (2) 18 W lamps     | 2-Lamp 18W CFL Twin | Mag-STD    | 2                 | 18         | 38         | 16  |
| CFT22/1         | CFT22W       | Compact Fluorescent, twin, (1) 22W lamp       | 1-Lamp 22W CFL Twin | Mag-STD    | 1                 | 22         | 27         | 16  |
| CFT22/2         | CFT22W       | Compact Fluorescent, twin, (2) 22W lamps      | 2-Lamp 22W CFL Twin | Mag-STD    | 2                 | 22         | 54         | 16  |
| CFT22/4         | CFT22W       | Compact Fluorescent, twin, (4) 22W lamps      | 4-Lamp 22W CFL Twin | Mag-STD    | 4                 | 22         | 108        | 16  |
| CFT24/1         | CFT24W       | Compact Fluorescent, long twin, (1) 24W lamp  | 1-Lamp 24W CFL Twin | Mag-STD    | 1                 | 24         | 32         | 16  |
| CFT26/1         | CFT26W       | Compact Fluorescent, twin, (1) 26W lamp       | 1-Lamp 26W CFL Twin | Mag-STD    | 1                 | 26         | 32         | 16  |
| CFT26/1-L       | CFT26W       | Compact Fluorescent, twin, (1) 26W lamp       | 1-Lamp 26W CFL Twin | Electronic | 1                 | 26         | 27         | 16  |
| CFT26/2-L       | CFT26W       | Compact Fluorescent, twin, (2) 26W lamps      | 2-Lamp 26W CFL Twin | Electronic | 2                 | 26         | 51         | 16  |
| CFT28/1         | CFT28W       | Compact Fluorescent, twin, (1) 28W lamp       | 1-Lamp 28W CFL Twin | Mag-STD    | 1                 | 28         | 33         | 16  |
| CFT28/2         | CFT28W       | Compact Fluorescent, twin, (2) 28W lamps      | 2-Lamp 28W CFL Twin | Mag-STD    | 2                 | 28         | 66         | 16  |
| CFT32/1-L       | CFT32W       | Compact Fluorescent, twin, (1) 32W lamp       | 1-Lamp 32W CFL Twin | Electronic | 1                 | 32         | 34         | 16  |
| CFT32/2-L       | CFT32W       | Compact Fluorescent, twin, (2) 32W lamps      | 2-Lamp 32W CFL Twin | Electronic | 2                 | 32         | 62         | 16  |
| CFT32/6-L       | CFT32W       | Compact Fluorescent, twin, (6) 32W lamps      | 6-Lamp 32W CFL Twin | Electronic | 6                 | 32         | 186        | 16  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                    | Layman Term                 | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|------------------------------------------------|-----------------------------|------------|-------------------|------------|------------|-----|
| CFT36/1         | CFT36W       | Compact Fluorescent, long twin, (1) 36W lamp   | 1-Lamp 36W CFL Long<br>Twin | Mag-STD    | 1                 | 36         | 51         | 16  |
| CFT40/1         | CFT40W       | Compact Fluorescent, long twin, (1) 40W lamp   | 1-Lamp 40W CFL Long<br>Twin | Mag-STD    | 1                 | 40         | 46         | 16  |
| CFT40/1-L       | CFT40W       | Compact Fluorescent, long twin, (1) 40W lamp   | 1-Lamp 40W CFL Long<br>Twin | Electronic | 1                 | 40         | 43         | 16  |
| CFT40/2         | CFT40W       | Compact Fluorescent, long twin, (2) 40W lamps  | 2-Lamp 40W CFL Long<br>Twin | Mag-STD    | 2                 | 40         | 85         | 16  |
| CFT40/2-L       | CFT40W       | Compact Fluorescent, long twin, (2) 40W lamps  | 2-Lamp 40W CFL Long<br>Twin | Electronic | 2                 | 40         | 72         | 16  |
| CFT40/3         | CFT40W       | Compact Fluorescent, long twin, (3) 40 W lamps | 3-Lamp 40W CFL Long<br>Twin | Mag-STD    | 3                 | 40         | 133        | 16  |
| CFT40/3-L       | CFT40W       | Compact Fluorescent, long twin, (3) 40W lamps  | 3-Lamp 40W CFL Long<br>Twin | Electronic | 3                 | 40         | 105        | 16  |
| CFT40/5-L       | CFT40W       | Compact Fluorescent, long twin, (5) 40W lamps  | 5-Lamp 40W CFL Long<br>Twin | Electronic | 5                 | 40         | 177        | 16  |
| CFT50/1-L       | CFT50W       | Compact Fluorescent, long twin, (1) 50W lamp   | 1-Lamp 50W CFL Long<br>Twin | Electronic | 1                 | 50         | 54         | 16  |
| CFT50/2-L       | CFT50W       | Compact Fluorescent, long twin, (2) 50W lamps  | 1-Lamp 50W CFL Long<br>Twin | Electronic | 1                 | 50         | 108        | 16  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                          | Layman Term                 | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|------------------------------------------------------|-----------------------------|------------|-------------------|------------|------------|-----|
| CFT55/1-L       | CFT55W       | Compact Fluorescent, long twin, (1) 55W lamp         | 1-Lamp 55W CFL Long<br>Twin | Electronic | 1                 | 55         | 58         | 16  |
| CFT55/2-L       | CFT55W       | Compact Fluorescent, long twin, (2) 55W lamps        | 2-Lamp 55W CFL Long<br>Twin | Electronic | 2                 | 55         | 108        | 16  |
| CFT55/3-L       | CFT55W       | Compact Fluorescent, long twin, (3) 55W lamps        | 3-Lamp 55W CFL Long<br>Twin | Electronic | 3                 | 55         | 168        | 16  |
| CFT55/4-L       | CFT55W       | Compact Fluorescent, long twin, (4) 55W lamps        | 4-Lamp 55W CFL Long<br>Twin | Electronic | 4                 | 55         | 220        | 16  |
| CFT80/1-L       | CFT80W       | Compact Fluorescent, long twin, (1) 80W lamp         | 1-Lamp 80W CFL Long<br>Twin | Electronic | 1                 | 80         | 90         | 16  |
| ECF             |              | EXIT Sign Fixtures                                   |                             |            |                   |            |            |     |
| ECF5/1          | CFT5W        | EXIT Compact Fluorescent, (1) 5W lamp                | 1-Lamp 5W CFL Exit          | Mag-STD    | 1                 | 5          | 9          | 16  |
| ECF5/2          | CFT5W        | EXIT Compact Fluorescent, (2) 5W lamps               | 2-Lamp 5W CFL Exit          | Mag-STD    | 2                 | 5          | 20         | 16  |
| ECF6/1          | CFT6W        | EXIT Compact Fluorescent, (1) 6W lamp                | 1-Lamp 6W CFL Exit          | Mag-STD    | 1                 | 6          | 13         | 16  |
| ECF6/2          | CFT6W        | EXIT Compact Fluorescent, (2) 6W lamps, (2) ballasts | 2-Lamp 6W CFL Exit          | Mag-STD    | 2                 | 6          | 26         | 16  |
| ECF7/1          | CFT7W        | EXIT Compact Fluorescent, (1) 7W lamp                | 1-Lamp 7W CFL Exit          | Mag-STD    | 1                 | 7          | 10         | 16  |
| ECF7/2          | CFT7W        | EXIT Compact Fluorescent, (2) 7W lamps               | 2-Lamp 7W CFL Exit          | Mag-STD    | 2                 | 7          | 21         | 16  |
| ECF9/1          | CFT9W        | EXIT Compact Fluorescent, (1) 9W lamp                | 1-Lamp 9W CFL Exit          | Mag-STD    | 1                 | 9          | 12         | 16  |
| ECF9/2          | CFT9W        | EXIT Compact Fluorescent, (2) 9W lamps               | 2-Lamp 9W CFL Exit          | Mag-STD    | 2                 | 9          | 20         | 16  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                   | Layman Term                          | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|---------------------------------------------------------------|--------------------------------------|------------|-------------------|------------|------------|-----|
| EF2/2           | F2T1         | EXIT Sub-miniature T-1 Fluorescent, (2) lamps                 | 2-Lamp 2W T-1 Exit                   | Electronic | 2                 | 2          | 5          | 16  |
| EF6/1           | F6T5         | EXIT Miniature Bi-pin Fluorescent, (1) 6W lamp, (1) ballast   | 1-Lamp 6W Bi-Pin<br>Fluorescent Exit | Mag-STD    | 1                 | 6          | 9          | 16  |
| EF6/2           | F6T5         | EXIT Miniature Bi-pin Fluorescent, (2) 6W lamps, (2) ballasts | 2-Lamp 6W Bi-Pin<br>Fluorescent Exit | Mag-STD    | 2                 | 6          | 18         | 16  |
| EF8/1           | F8T5         | EXIT T5 Fluorescent, (1) 8W lamp                              | 1-Lamp 8W T-5 Exit                   | Mag-STD    | 1                 | 8          | 12         | 16  |
| EF8/2           | F8T5         | EXIT T5 Fluorescent, (2) 8W lamps                             | 2-Lamp 8W T-5 Exit                   | Mag-STD    | 2                 | 8          | 24         | 16  |
| EI5/1           | 15           | EXIT Incandescent, (1) 5W lamp                                | 1-Lamp 5W incandescent Exit          |            | 1                 | 5          | 5          | 1.5 |
| EI5/2           | 15           | EXIT Incandescent, (2) 5W lamps                               | 2-Lamp 5W incandescent Exit          |            | 2                 | 5          | 10         | 1.5 |
| EI7.5/1         | 17.5         | EXIT Tungsten, (1) 7.5 W lamp                                 | 1-Lamp 7.5W Tungsten<br>Exit         |            | 1                 | 7.5        | 8          | 1.5 |
| EI7.5/2         | 17.5         | EXIT Tungsten, (2) 7.5 W lamps                                | 2-Lamp 7.5W Tungsten<br>Exit         |            | 2                 | 7.5        | 15         | 1.5 |
| EI10/2          | 110          | EXIT Incandescent, (2) 10W lamps                              | 2-Lamp 10W incandescent Exit         |            | 2                 | 10         | 20         | 1.5 |
| EI15/1          | 115          | EXIT Incandescent, (1) 15W lamp                               | 1-Lamp 15W incandescent Exit         |            | 1                 | 15         | 15         | 1.5 |
| EI15/2          | 115          | EXIT Incandescent, (2) 15W lamps                              | 2-Lamp 15W<br>incandescent Exit      |            | 2                 | 15         | 30         | 1.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                      | Layman Term                    | BALLAST | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|----------------------------------|--------------------------------|---------|-------------------|------------|------------|-----|
| EI20/1          | 120          | EXIT Incandescent, (1) 20W lamp  | 1-Lamp 20W incandescent Exit   |         | 1                 | 20         | 20         | 1.5 |
| EI20/2          | 120          | EXIT Incandescent, (2) 20W lamps | 2-Lamp 20W incandescent Exit   |         | 2                 | 20         | 40         | 1.5 |
| EI25/1          | 125          | EXIT Incandescent, (1) 25W lamp  | 1-Lamp 25W incandescent Exit   |         | 1                 | 25         | 25         | 1.5 |
| EI25/2          | 125          | EXIT Incandescent, (2) 25W lamps | 2-Lamp 25W incandescent Exit   |         | 2                 | 25         | 50         | 1.5 |
| EI34/1          | 134          | EXIT Incandescent, (1) 34W lamp  | 1-Lamp 34W incandescent Exit   |         | 1                 | 34         | 34         | 1.5 |
| EI34/2          | 134          | EXIT Incandescent, (2) 34W lamps | 2-Lamp 34W incandescent Exit   |         | 2                 | 34         | 68         | 1.5 |
| EI40/1          | 140          | EXIT Incandescent, (1) 40W lamp  | 1-Lamp 40W incandescent Exit   |         | 1                 | 40         | 40         | 1.5 |
| EI40/2          | 140          | EXIT Incandescent, (2) 40W lamps | 2-Lamp 40W incandescent Exit   |         | 2                 | 40         | 80         | 1.5 |
| EI50/2          | 150          | EXIT Incandescent, (2) 50W lamps | 2-Lamp 50W incandescent Exit   |         | 2                 | 50         | 100        | 1.5 |
| EI6/1           | 656          | EXIT Incandescent, (1) 6 W lamp  | 1-Lamp 6W<br>incandescent Exit |         | 1                 | 6          | 6          | 1.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                                    | Layman Term                   | BALLAST   | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|------------------------------------------------------------------------------------------------|-------------------------------|-----------|-------------------|------------|------------|------|
| E16/2           | 656          | EXIT Incandescent, (2) 6 W lamps                                                               | 2-Lamp 6W incandescent Exit   |           | 2                 | 6          | 12         | 1.5  |
| ELED2/1         | LED2W        | EXIT Light Emitting Diode, (1) 2W lamp, Single Sided                                           | 1-Lamp 2W LED Exit            |           | 1                 | 2          | 6          | 15   |
| ELED2/2         | LED2W        | EXIT Light Emitting Diode, (2) 2W lamps, Dual Sided                                            | 2-Lamp 2W LED Exit            |           | 2                 | 2          | 9          | 15   |
| ELED3           | LED3W        | EXIT Light Emitting Diode, (1) 3W lamp, Single Sided                                           | 1-Lamp 3W LED Exit            |           | 1                 | 3          | 3          | 15   |
| EP              | POW          | EXIT Photoluminescent, 0W                                                                      | Photoluminescent Exit<br>Sign |           | 0                 | 0          | 0          | 15   |
| FT5             |              | T5 Linear Fluorescent Systems                                                                  |                               |           |                   |            |            |      |
| F22PS           | F13T5        | Fluorescent, (2) 21", Preheat T5 lamps, (1) Magnetic ballasts with integral starter, (BF=0.80) | 2' 2-Lamp T5                  | Mag-STD   | 2                 | 13         | 26         | 15.5 |
| F24PS           | F13T5        | Fluorescent, (4) 21", Preheat T5 lamps, (2) Magnetic ballasts with integral starter (BF=0.80)  | 2' 4-Lamp T5                  | Mag-STD   | 4                 | 13         | 53         | 15.5 |
| F21GPL-H        | F14T5        | Fluorescent (1) 22" (563mm) T-5 lamp; (1) Prog.Start or PRS Ballast,<br>HLO (.95 < BF < 1.1)   | 2' 1-Lamp T5                  | PRS Elec. | 1                 | 14         | 18         | 15.5 |
| F22GPL-H        | F14T5        | Fluorescent (2) 22" (563mm) T-5 lamps; (1) Prog.Start or PRS Ballast,<br>HLO (.95 < BF < 1.1)  | 2' 2-Lamp T5                  | PRS Elec. | 2                 | 14         | 33         | 15.5 |
| F23GPL-H        | F14T5        | Fluorescent (3) 22" (563mm)T-5 lamps; (1) Prog.Start or PRS Ballast,<br>HLO (.95 < BF < 1.1)   | 2' 3-Lamp T5                  | PRS Elec. | 3                 | 14         | 50         | 15.5 |
| F23GPL/2-<br>H  | F14T5        | Fluorescent (3) 22" (563mm)T-5 lamps; (2) Prog.Start or PRS Ballasts,<br>HLO (.95 < BF < 1.1)  | 2' 3-Lamp T5                  | PRS Elec. | 3                 | 14         | 51         | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                                       | Layman Term    | BALLAST   | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|---------------------------------------------------------------------------------------------------|----------------|-----------|-------------------|------------|------------|------|
| F24GPL/2-<br>H  | F14T5        | Fluorescent (4) 22" (563mm)T-5 lamps; (2) Prog.Start or PRS Ballasts,<br>HLO (.95 < BF < 1.1)     | 2' 4-Lamp T5   | PRS Elec. | 4                 | 14         | 66         | 15.5 |
| F31GPL-H        | F21T5        | Fluorescent (1) 34" (863mm) T-5 lamp; (1) Prog.Start or PRS Ballast,<br>HLO (.95 < BF < 1.1)      | 3' 1-Lamp T5   | PRS Elec. | 1                 | 21         | 25         | 15.5 |
| F32GPL-H        | F21T5        | Fluorescent (2) 34" (863mm) T-5 lamps; (1) Prog.Start or PRS Ballast,<br>HLO (.95 < BF < 1.1)     | 3' 2-Lamp T5   | PRS Elec. | 2                 | 21         | 48         | 15.5 |
| F33GPL/2-<br>H  | F21T5        | Fluorescent (3) 34" (863mm)T-5 lamps; (2) Prog.Start or PRS Ballasts,<br>HLO (.95 < BF < 1.1)     | 3' 3-Lamp T5   | PRS Elec. | 3                 | 21         | 73         | 15.5 |
| F34GPL/2-<br>H  | F21T5        | Fluorescent (4) 34" (863mm)T-5 lamps; (2) Prog.Start or PRS Ballasts,<br>HLO (.95 < BF < 1.1)     | 3' 4-Lamp T5   | PRS Elec. | 4                 | 21         | 96         | 15.5 |
| F21GPHL-<br>H   | F24T5/HO     | Fluorescent (1) 22" (563mm) T-5 HO lamp; (1) Prog.Start or PRS<br>Ballast, HLO (.95 < BF < 1.1)   | 2' 1-Lamp T5HO | PRS Elec. | 1                 | 24         | 27         | 15.5 |
| F22GPHL-<br>H   | F24T5/HO     | Fluorescent (2) 22" (563mm) T-5 HO lamps; (1) Prog.Start or PRS<br>Ballast, HLO (.95 < BF < 1.1)  | 2' 2-Lamp T5HO | PRS Elec. | 2                 | 24         | 52         | 15.5 |
| F23GPHL/<br>2-H | F24T5/HO     | Fluorescent (3) 22" (563mm)T-5 HO lamps; (2) Prog.Start or PRS Ballasts, HLO (.95 < BF < 1.1)     | 2' 3-Lamp T5HO | PRS Elec. | 3                 | 24         | 79         | 15.5 |
| F24GPHL/<br>2-H | F24T5/HO     | Fluorescent (4) 22" (563mm)T-5 HO lamps; (2) Prog.Start or PRS Ballasts, HLO (.95 < BF < 1.1)     | 2' 4-Lamp T5HO | PRS Elec. | 4                 | 24         | 104        | 15.5 |
| F26GPHL/<br>3-H | F24T5/HO     | Fluorescent (4) 22" (563mm) T-5 HO lamps; (3) Prog.Start or PRS<br>Ballasts, HLO (.95 < BF < 1.1) | 2' 6-Lamp T5HO | PRS Elec. | 6                 | 24         | 156        | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                                      | Layman Term  | BALLAST   | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|--------------------------------------------------------------------------------------------------|--------------|-----------|-------------------|------------|------------|------|
| F41GPL-H        | F28T5        | Fluorescent (1) 45.8" (1163mm) T-5 lamp; (1) PRS Electronic Ballast,<br>HLO (.95 < BF < 1.1)     | 4' 1-Lamp T5 | PRS Elec. | 1                 | 28         | 33         | 15.5 |
| F41GPL/T<br>2-H | F28T5        | Fluorescent (1) 45.8" (1163mm) T-5 lamp; Tandem 2-lamp PRS<br>Ballast,HLO (.95 < BF < 1.1)       | 4' 1-Lamp T5 | PRS Elec. | 1                 | 28         | 32         | 15.5 |
| F42GPL-H        | F28T5        | Fluorescent (2) 45.8" (1163mm) T-5 lamps; (1) PRS Electronic Ballast,<br>HLO (.95 < BF < 1.1)    | 4' 2-Lamp T5 | PRS Elec. | 2                 | 28         | 63         | 15.5 |
| F43GPL/2-<br>H  | F28T5        | Fluorescent (3) 45.8" (1163mm)T-5 lamps; (2) PRS Electronic Ballasts,<br>HLO (.95 < BF < 1.1)    | 4' 3-Lamp T5 | PRS Elec. | 3                 | 28         | 96         | 15.5 |
| F44GPL/2-<br>H  | F28T5        | Fluorescent (4) 45.8" (1163mm)T-5 lamps; (2) PRS Electronic Ballasts,<br>HLO (.95 < BF < 1.1)    | 4' 4-Lamp T5 | PRS Elec. | 4                 | 28         | 126        | 15.5 |
| F51GPL-H        | F35T5        | Fluorescent (1) 57.6" (1463mm) T-5 lamp; (1) Prog.Start or PRS<br>Ballast, HLO (.95 < BF < 1.1)  | 5' 1-Lamp T5 | PRS Elec. | 1                 | 35         | 40         | 15.5 |
| F52GPL-H        | F35T5        | Fluorescent (2) 57.6" (1463mm) T-5 lamps; (1) Prog.Start or PRS<br>Ballast, HLO (.95 < BF < 1.1) | 5' 2-Lamp T5 | PRS Elec. | 2                 | 35         | 78         | 15.5 |
| F53GPL/2-<br>H  | F35T5        | Fluorescent (3) 57.6" (1463mm)T-5 lamps; (2) Prog.Start or PRS<br>Ballasts, HLO (.95 < BF < 1.1) | 5' 3-Lamp T5 | PRS Elec. | 3                 | 35         | 118        | 15.5 |
| F54GPL/2-<br>H  | F35T5        | Fluorescent (4) 57.6" (1463mm)T-5 lamps; (2) Prog.Start or PRS<br>Ballasts, HLO (.95 < BF < 1.1) | 5' 4-Lamp T5 | PRS Elec. | 4                 | 35         | 156        | 15.5 |
| F31GPHL-<br>H   | F39T5/HO     | Fluorescent (1) 34" (863mm) T-5 HO lamp; (1) Prog.Start or PRS<br>Ballast, HLO (.95 < BF < 1.1)  | 3' 1-Lamp T5 | PRS Elec. | 1                 | 39         | 44         | 15.5 |

| Fixture<br>Code  | LAMP<br>CODE    | DESCRIPTION                                                                                            | Layman Term    | BALLAST   | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|------------------|-----------------|--------------------------------------------------------------------------------------------------------|----------------|-----------|-------------------|------------|------------|------|
| F32GPHL-<br>H    | F39T5/HO        | Fluorescent (2) 34" (863mm) T-5 HO lamps; (1) Prog.Start or PRS Ballast, HLO (.95 < BF < 1.1)          | 3' 2-Lamp T5   | PRS Elec. | 2                 | 39         | 86         | 15.5 |
| F33GPHL/<br>2-H  | F39T5/HO        | Fluorescent (3) 34" (863mm)T-5 HO lamps; (2) Prog.Start or PRS Ballasts, HLO (.95 < BF < 1.1)          | 3' 3-Lamp T5   | PRS Elec. | 3                 | 39         | 130        | 15.5 |
| F34GPHL/<br>2-H  | F39T5/HO        | Fluorescent (4) 34" (863mm)T-5 HO lamps; (2) Prog.Start or PRS<br>Ballasts, HLO (.95 < BF < 1.1)       | 3' 4-Lamp T5   | PRS Elec. | 4                 | 39         | 172        | 15.5 |
| F46GPRL/<br>2-H  | F45T5/HO-<br>RW | Fluorescent, (6) 45.8" T-5 HO reduced-wattage lamps, (2) PRS Electronic Ballasts, HLO (.95 < BF < 1.1) | 4' 6-Lamp T5HO | PRS Elec. | 6                 | 54         | 332        | 15.5 |
| F46GPRL/<br>3-H  | F45T5/HO-<br>RW | Fluorescent, (6) 45.8" T-5 HO reduced-wattage lamps, (3) PRS Electronic Ballasts, HLO (.95 < BF < 1.1) | 4' 6-Lamp T5HO | PRS Elec. | 6                 | 54         | 330        | 15.5 |
| F41GPHL-<br>H    | F54T5/HO        | Fluorescent (1) 45.8" T-5 HO lamp, (1) PRS Electronic Ballast, HLO (.95<br>< BF < 1.1)                 | 4' 1-Lamp T5HO | PRS Elec. | 1                 | 54         | 64         | 15.5 |
| F41GPHL/<br>T2-H | F54T5/HO        | Fluorescent (1) 45.8" T-5 HO lamp, Tandem 2-lamp PRS Ballast, HLO<br>(.95 < BF < 1.1)                  | 4' 1-Lamp T5HO | PRS Elec. | 1                 | 54         | 59         | 15.5 |
| F42GPHL-<br>H    | F54T5/HO        | Fluorescent (2) 45.8" T-5 HO lamps, (1) PRS Electronic Ballast, HLO (.95 < BF < 1.1)                   | 4' 2-Lamp T5HO | PRS Elec. | 2                 | 54         | 117        | 15.5 |
| F43GPHL-<br>H    | F54T5/HO        | Fluorescent, (3) 45.8" T-5 HO lamps, (1) PRS Electronic Ballast, HLO (.95 < BF < 1.1)                  | 4' 3-Lamp T5HO | PRS Elec. | 3                 | 54         | 181        | 15.5 |
| F43GPHL/<br>2-H  | F54T5/HO        | Fluorescent (3) 45.8" T-5 HO lamps, (2) PRS Electronic Ballasts, HLO (.95 < BF < 1.1)                  | 4' 3-Lamp T5HO | PRS Elec. | 3                 | 54         | 181        | 15.5 |

| Fixture<br>Code  | LAMP<br>CODE    | DESCRIPTION                                                                                         | Layman Term    | BALLAST   | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|------------------|-----------------|-----------------------------------------------------------------------------------------------------|----------------|-----------|-------------------|------------|------------|------|
| F44GPHL-<br>H    | F54T5/HO        | Fluorescent, (4) 45.8" T-5 HO lamps, (1) PRS Electronic Ballast, HLO (.95 < BF < 1.1)               | 4' 4-Lamp T5HO | PRS Elec. | 4                 | 54         | 230        | 15.5 |
| F44GPHL/<br>2-H  | F54T5/HO        | Fluorescent (4) 45.8" T-5 HO lamps, (2) PRS Electronic Ballasts, HLO (.95 < BF < 1.1)               | 4' 4-Lamp T5HO | PRS Elec. | 4                 | 54         | 234        | 15.5 |
| F45GPHL/<br>2-H  | F54T5/HO        | Fluorescent (5) 45.8" T-5 HO lamps, (2) PRS Electronic Ballast, HLO (.95 < BF < 1.1)                | 4' 5-Lamp T5HO | PRS Elec. | 5                 | 54         | 298        | 15.5 |
| F45GPRL/<br>2-H  | F54T5/HO-<br>RW | Fluorescent (5) 45.2" T-5 HO reduced-wattage lamp, (2) PRS Electronic Ballast, HLO (.95 < BF < 1.1) | 4' 5-Lamp T5HO | PRS Elec. | 5                 | 47-51      | 276        | 15.5 |
| F46GPHL/<br>2-H  | F54T5/HO        | Fluorescent, (6) 45.8" T-5 HO lamps, (2) PRS Electronic Ballasts, HLO (.95 < BF < 1.1)              | 4' 6-Lamp T5HO | PRS Elec. | 6                 | 54         | 362        | 15.5 |
| F46GPHL/<br>3-H  | F54T5/HO        | Fluorescent, (6) 45.8" T-5 HO lamps, (3) PRS Electronic Ballasts, HLO<br>(.95 < BF < 1.1)           | 4' 6-Lamp T5HO | PRS Elec. | 6                 | 54         | 351        | 15.5 |
| F48GPHL/<br>2-H  | F54T5/HO        | Fluorescent, (8) 45.8" T-5 HO lamps, (2) PRS Electronic Ballasts, HLO (.95 < BF < 1.1)              | 4' 8-Lamp T5HO | PRS Elec. | 8                 | 54         | 460        | 15.5 |
| F48GPHL/<br>4-H  | F54T5/HO        | Fluorescent, (8) 45.8" T-5 HO lamps, (4) PRS Electronic Ballasts, HLO (.95 < BF < 1.1)              | 4' 8-Lamp T5HO | PRS Elec. | 8                 | 54         | 468        | 15.5 |
| F410GPHL<br>/3-H | F54T5/HO        | Fluorescent, (10) 45.8" T-5 HO lamps, (3) PRS Electronic Ballasts, HLO<br>(.95 < BF < 1.1)          | 4' 10L T5HO    | PRS Elec. | 10                | 54         | 577        | 15.5 |
| F410GPHL<br>/5-H | F54T5/HO        | Fluorescent, (10) 45.8" T-5 HO lamps, (5) PRS Electronic Ballasts, HLO<br>(.95 < BF < 1.1)          | 4' 10L T5HO    | PRS Elec. | 10                | 54         | 585        | 15.5 |

| Fixture<br>Code  | LAMP<br>CODE    | DESCRIPTION                                                                                            | Layman Term     | BALLAST   | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|------------------|-----------------|--------------------------------------------------------------------------------------------------------|-----------------|-----------|-------------------|------------|------------|------|
| F412GPHL<br>/3-H | F54T5/HO        | Fluorescent, (12) 45.8" T-5 HO lamps, (3) PRS Electronic Ballasts, HLO<br>(.95 < BF < 1.1)             | 4' 12 T5HO      | PRS Elec. | 12                | 54         | 690        | 15.5 |
| F412GPHL<br>/6-H | F54T5/HO        | Fluorescent, (12) 45.8" T-5 HO lamps, (6) PRS Electronic Ballasts, HLO<br>(.95 < BF < 1.1)             | 4' 12-Lamp T5HO | PRS Elec. | 12                | 54         | 702        | 15.5 |
| F41GPRL-<br>H    | F54T5/HO-<br>RW | Fluorescent (1) 45.2" T-5 HO reduced-wattage lamp, (1) PRS Electronic Ballast, HLO (.95 < BF < 1.1)    | 4' 1-Lamp T5HO  | PRS Elec. | 1                 | 47-51      | 61         | 15.5 |
| F42GPRL-<br>H    | F54T5/HO-<br>RW | Fluorescent (2) 45.2" T-5 HO reduced-wattage lamp, (1) PRS Electronic Ballast, HLO (.95 < BF < 1.1)    | 4' 2-Lamp T5HO  | PRS Elec. | 2                 | 47-51      | 110        | 15.5 |
| F43GPRL-<br>H    | F54T5/HO-<br>RW | Fluorescent (3) 45.2" T-5 HO reduced-wattage lamp, (1) PRS Electronic Ballast, HLO (.95 < BF < 1.1)    | 4' 3-Lamp T5HO  | PRS Elec. | 3                 | 47-51      | 166        | 15.5 |
| F44GPRL-<br>H    | F54T5/HO-<br>RW | Fluorescent (4) 45.2" T-5 HO reduced-wattage lamp, (1) PRS Electronic Ballast, HLO (.95 < BF < 1.1)    | 4' 4-Lamp T5HO  | PRS Elec. | 4                 | 47-51      | 211        | 15.5 |
| F48GPRL/<br>2-H  | F54T5/HO-<br>RW | Fluorescent, (8) 45.8" T-5 HO reduced-wattage lamps, (2) PRS Electronic Ballasts, HLO (.95 < BF < 1.1) | 4' 8-Lamp T5HO  | PRS Elec. | 8                 | 50         | 428        | 15.5 |
| F48GPRL/<br>4-H  | F54T5/HO-<br>RW | Fluorescent, (8) 45.8" T-5 HO reduced-wattage lamps, (4) PRS Electronic Ballasts, HLO (.95 < BF < 1.1) | 4' 8-Lamp T5HO  | PRS Elec. | 8                 | 50         | 436        | 15.5 |
| F410GPRL<br>/3-H | F54T5/HO-<br>RW | Fluorescent, (10) 45.8" T-5 HO reduced-wattage lamps, (3) PRS Electronic Ballast, HLO (.95 < BF < 1.1) | 4' 10L T5HO     | PRS Elec. | 10                | 50         | 537        | 15.5 |
| F410GPRL<br>/5-H | F54T5/HO-<br>RW | Fluorescent, (10) 45.8" T-5 HO reduced-wattage lamps, (5) PRS Electronic Ballast, HLO (.95 < BF < 1.1) | 4' 10L T5HO     | PRS Elec. | 10                | 50         | 545        | 15.5 |

| Fixture<br>Code  | LAMP<br>CODE    | DESCRIPTION                                                                                             | Layman Term      | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|------------------|-----------------|---------------------------------------------------------------------------------------------------------|------------------|------------|-------------------|------------|------------|------|
| F412GPRL<br>/3-H | F54T5/HO-<br>RW | Fluorescent, (12) 45.8" T-5 HO reduced-wattage lamps, (3) PRS Electronic Ballasts, HLO (.95 < BF < 1.1) | 4' 12-Lamp T5HO  | PRS Elec.  | 12                | 50         | 642        | 15.5 |
| F412GPRL<br>/6-H | F54T5/HO-<br>RW | Fluorescent, (12) 45.8" T-5 HO reduced-wattage lamps, (6) PRS Electronic Ballasts, HLO (.95 < BF < 1.1) | 4' 12-Lamp T5HO  | PRS Elec.  | 12                | 50         | 654        | 15.5 |
| F51GPHL-<br>H    | F80T5/HO        | Fluorescent (1) 57.6" (1463mm) T-5 HO lamp; (1) Prog.Start or PRS<br>Ballast, HLO (.95 < BF < 1.1)      | 5' 1-Lamp T5HO   | PRS Elec.  | 1                 | 80         | 90         | 15.5 |
| F52GPHL/<br>2-H  | F80T5/HO        | Fluorescent (2) 57.6" (1463mm) T-5 HO lamps; (1) Prog.Start or PRS<br>Ballast, HLO (.95 < BF < 1.1)     | 5' 2-Lamp T5HO   | PRS Elec.  | 2                 | 80         | 180        | 15.5 |
| FT8              |                 | T8 Linear Fluorescent Systems                                                                           |                  |            |                   |            |            |      |
| F1.51LS          | F15T8           | Fluorescent, (1) 18" T-8 lamp                                                                           | 1.5' 1-Lamp T8   | Mag-STD    | 1                 | 15         | 19         | 15.5 |
| F1.52LS          | F15T8           | Fluorescent, (2) 18" T-8 lamps                                                                          | 1.5' 2-Lamp T8   | Mag-STD    | 2                 | 15         | 36         | 15.5 |
| F21GLL           | F17T8           | Fluorescent (1) 24" T-8 lamp, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)                        | 2' 1-Lamp T8     | PRS Elec.  | 1                 | 17         | 18         | 15.5 |
| F21ILL           | F17T8           | Fluorescent, (1) 24", T-8 lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)                           | 2' 1-Lamp T8     | Electronic | 1                 | 17         | 18         | 15.5 |
| F21ILL-R         | F17T8           | Fluorescent, (1) 24", T-8 lamp, Instant Start Ballast, RLO (BF< 0.85)                                   | 2' 1-Lamp T8 RLO | Electronic | 1                 | 17         | 17         | 15.5 |
| F21ILL/T2        | F17T8           | Fluorescent, (1) 24", T-8 lamp, Tandem 2-lamp IS Ballast, NLO (0.85 <<br>BF < 0.95)                     | 2' 1-Lamp T8     | Electronic | 1                 | 17         | 17         | 15.5 |
| F21ILL/T2-<br>R  | F17T8           | Fluorescent, (1) 24", T-8 lamp, Tandem 2-lamp IS Ballast, RLO (BF< 0.85)                                | 2' 1-Lamp T8 RLO | Electronic | 1                 | 17         | 15         | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                         | Layman Term       | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|-------------------------------------------------------------------------------------|-------------------|------------|-------------------|------------|------------|------|
| F21ILL/T3       | F17T8        | Fluorescent, (1) 24", T-8 lamp, Tandem 3-lamp IS Ballast, NLO (0.85 < BF < 0.95)    | 2' 1-Lamp T8      | Electronic | 1                 | 17         | 16         | 15.5 |
| F21ILL/T3-<br>R | F17T8        | Fluorescent, (1) 24", T-8 lamp, Tandem 3-lamp IS Ballast, RLO (BF< 0.85)            | 2' 1-Lamp T8 RLO  | Electronic | 1                 | 17         | 14         | 15.5 |
| F21ILL/T4       | F17T8        | Fluorescent, (1) 24", T-8 lamp, Tandem 4-lamp IS Ballast, NLO (0.85 < BF < 0.95)    | 2' 1-Lamp T8      | Electronic | 1                 | 17         | 15         | 15.5 |
| F21ILL/T4-<br>R | F17T8        | Fluorescent, (1) 24", T-8 lamp, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)            | 2' 1-Lamp T8 RLO  | Electronic | 1                 | 17         | 13         | 15.5 |
| F21ILU          | F17T8        | Fluorescent, (1) 24", T-8 lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)       | 2' 1-Lamp T8      | Electronic | 1                 | 17         | 17         | 15.5 |
| F21ILU-R        | F17T8        | Fluorescent, (1) 24", T-8 lamp, Instant Start Ballast, RLO (BF< 0.85)               | 2' 1-Lamp T8 RLO  | Electronic | 1                 | 17         | 15         | 15.5 |
| F21ILU-V        | F17T8        | Fluorescent, (1) 24", T-8 lamps, Instant Start Ballast, VHLO (BF > 1.1)             | 2' 1-Lamp T8 VHLO | Electronic | 1                 | 17         | 22         | 15.5 |
| F21LL           | F17T8        | Fluorescent, (1) 24", T-8 lamp, Rapid Start Ballast, NLO (0.85 < BF < 0.95)         | 2' 1-Lamp T8      | Electronic | 1                 | 17         | 16         | 15.5 |
| F21LL-R         | F17T8        | Fluorescent, (1) 24", T-8 lamp, Rapid Start Ballast, RLO (BF< 0.85)                 | 2' 1-Lamp T8 RLO  | Electronic | 1                 | 17         | 15         | 15.5 |
| F21LL/T2        | F17T8        | Fluorescent, (1) 24", T-8 lamp, Tandem 2-Lamp RS Ballast, NLO (0.85<br>< BF < 0.95) | 2' 1-Lamp T8      | Electronic | 1                 | 17         | 16         | 15.5 |
| F21LL/T3        | F17T8        | Fluorescent, (1) 24", T-8 lamp, Tandem 3-Lamp RS Ballast, NLO (0.85<br>< BF < 0.95) | 2' 1-Lamp T8      | Electronic | 1                 | 17         | 17         | 15.5 |
| F21LL/T4        | F17T8        | Fluorescent, (1) 24", T-8 lamp, Tandem 4-Lamp RS Ballast, NLO (0.85<br>< BF < 0.95) | 2' 1-Lamp T8      | Electronic | 1                 | 17         | 17         | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                          | Layman Term       | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|--------------------------------------------------------------------------------------|-------------------|------------|-------------------|------------|------------|------|
| F21SL           | F17T8        | Fluorescent, (1) 24", T-8 lamp, Standard Ballast                                     | 2' 1-Lamp T8      | Mag-STD    | 1                 | 17         | 24         | 15.5 |
| F22GLL          | F17T8        | Fluorescent (2) 24" T-8 lamp, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)     | 2' 2-Lamp T8      | PRS Elec.  | 2                 | 17         | 31         | 15.5 |
| F22ILL          | F17T8        | Fluorescent, (2) 24", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)       | 2' 2-Lamp T8      | Electronic | 2                 | 17         | 33         | 15.5 |
| F22ILL-R        | F17T8        | Fluorescent, (2) 24", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)               | 2' 2-Lamp T8 RLO  | Electronic | 2                 | 17         | 30         | 15.5 |
| F22ILL/T4       | F17T8        | Fluorescent, (2) 24", T-8 lamps, Tandem 4-lamp IS Ballast, NLO (0.85<br>< BF < 0.95) | 2' 2-Lamp T8      | Electronic | 2                 | 17         | 30         | 15.5 |
| F22ILL/T4-<br>R | F17T8        | Fluorescent, (2) 24", T-8 lamps, Tandem 4-lamp IS Ballast, RLO (BF<.85)              | 2' 2-Lamp T8 RLO  | Electronic | 2                 | 17         | 27         | 15.5 |
| F22ILU          | F17T8        | Fluorescent, (2) 24", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)       | 2' 2-Lamp T8      | Electronic | 2                 | 17         | 30         | 15.5 |
| F22ILU-R        | F17T8        | Fluorescent, (2) 24", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)               | 2' 2-Lamp T8 RLO  | Electronic | 2                 | 17         | 27         | 15.5 |
| F22ILU-V        | F17T8        | Fluorescent, (2) 24", T-8 lamps, Instant Start Ballast, VHLO (BF > 1.1)              | 2' 2-Lamp T8 VHLO | Electronic | 2                 | 17         | 41         | 15.5 |
| F22ILU/T4<br>-R | F17T8        | Fluorescent, (2) 24", T-8 lamps, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)            | 2' 2-Lamp T8 RLO  | Electronic | 2                 | 17         | 26         | 15.5 |
| F22LL           | F17T8        | Fluorescent, (2) 24", T-8 lamps, Rapid Start Ballast, NLO (0.85 < BF < 0.95)         | 2' 2-Lamp T8      | Electronic | 2                 | 17         | 31         | 15.5 |
| F22LL-R         | F17T8        | Fluorescent, (2) 24", T-8 lamps, Rapid Start Ballast, RLO (BF< 0.85)                 | 2' 2-Lamp T8 RLO  | Electronic | 2                 | 17         | 28         | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                          | Layman Term       | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|--------------------------------------------------------------------------------------|-------------------|------------|-------------------|------------|------------|------|
| F22LL/T4        | F17T8        | Fluorescent, (2) 24", T-8 lamps, Tandem 4-lamp RS Ballast, NLO (0.85<br>< BF < 0.95) | 2' 2-Lamp T8      | Electronic | 2                 | 17         | 34         | 15.5 |
| F23GLL          | F17T8        | Fluorescent (3) 24" T-8 lamp, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)     | 2' 3-Lamp T8      | PRS Elec.  | 3                 | 17         | 47         | 15.5 |
| F23ILL          | F17T8        | Fluorescent, (3) 24", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)       | 2' 3-Lamp T8      | Electronic | 3                 | 17         | 47         | 15.5 |
| F23ILL-H        | F17T8        | Fluorescent, (3) 24", T-8 lamps, Instant Start Ballast, HLO (0.95 < BF < 1.1)        | 2' 3-Lamp T8 HLO  | Electronic | 3                 | 17         | 51         | 15.5 |
| F23ILL-R        | F17T8        | Fluorescent, (3) 24", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)               | 2' 3-Lamp T8 RLO  | Electronic | 3                 | 17         | 41         | 15.5 |
| F23ILU          | F17T8        | Fluorescent, (3) 24", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)       | 2' 3-Lamp T8      | Electronic | 3                 | 17         | 45         | 15.5 |
| F23ILU-R        | F17T8        | Fluorescent, (3) 24", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)               | 2' 3-Lamp T8 RLO  | Electronic | 3                 | 17         | 40         | 15.5 |
| F23ILU-V        | F17T8        | Fluorescent, (3) 24", T-8 lamps, Instant Start Ballast, VHLO (BF > 1.1)              | 2' 3-Lamp T8 VHLO | Electronic | 3                 | 17         | 59         | 15.5 |
| F23LL           | F17T8        | Fluorescent, (3) 24", T-8 lamps, Rapid Start Ballast, NLO (0.85 < BF < 0.95)         | 2' 3-Lamp T8      | Electronic | 3                 | 17         | 52         | 15.5 |
| F23LL-R         | F17T8        | Fluorescent, (3) 24", T-8 lamps, Rapid Start Ballast, RLO (BF< 0.85)                 | 2' 3-Lamp T8 RLO  | Electronic | 3                 | 17         | 41         | 15.5 |
| F24GLL          | F17T8        | Fluorescent (4) 24" T-8 lamp, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)     | 2' 4-Lamp T8      | PRS Elec.  | 4                 | 17         | 59         | 15.5 |
| F24ILL          | F17T8        | Fluorescent, (4) 24", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)       | 2' 4-Lamp T8      | Electronic | 4                 | 17         | 59         | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                                    | Layman Term      | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W /<br>FIXT | EUL  |
|-----------------|--------------|------------------------------------------------------------------------------------------------|------------------|------------|-------------------|------------|-------------|------|
| F24ILL-R        | F17T8        | Fluorescent, (4) 24", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)                         | 2' 4-Lamp T8 RLO | Electronic | 4                 | 17         | 53          | 15.5 |
| F24ILU          | F17T8        | Fluorescent, (4) 24", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)                 | 2' 4-Lamp T8     | Electronic | 4                 | 17         | 57          | 15.5 |
| F24ILU-R        | F17T8        | Fluorescent, (4) 24", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)                         | 2' 4-Lamp T8 RLO | Electronic | 4                 | 17         | 52          | 15.5 |
| F24LL           | F17T8        | Fluorescent, (4) 24", T-8 lamps, Rapid Start Ballast, NLO (0.85 < BF < 0.95)                   | 2' 4-Lamp T8     | Electronic | 4                 | 17         | 68          | 15.5 |
| F24LL-R         | F17T8        | Fluorescent, (4) 24", T-8 lamps, Rapid Start Ballast, RLO (BF< 0.85)                           | 2' 4-Lamp T8 RLO | Electronic | 4                 | 17         | 57          | 15.5 |
| F31ILL          | F25T8        | Fluorescent, (1) 36", T-8 lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)                  | 3' 1-Lamp T8     | Electronic | 1                 | 25         | 26          | 15.5 |
| F31ILL-H        | F25T8        | Fluorescent, (1) 36", T-8 lamp, Instant Start Ballast, HLO (0.95 < BF < 1.1)                   | 3' 1-Lamp T8 HLO | Electronic | 1                 | 25         | 28          | 15.5 |
| F31ILL-R        | F25T8        | Fluorescent, (1) 36", T-8 lamp, Instant Start Ballast, RLO (BF< 0.85)                          | 3' 1-Lamp T8 RLO | Electronic | 1                 | 25         | 22          | 15.5 |
| F31ILL/T2       | F25T8        | Fluorescent, (1) 36", T-8 lamp, Tandem 2-lamp IS Ballast, NLO (0.85 <<br>BF < 0.95)            | 3' 1-Lamp T8     | Electronic | 1                 | 25         | 23          | 15.5 |
| F31ILL/T2-<br>H | F25T8        | Fluorescent, (1) 36", T-8 lamp, Tandem 3-lamp IS Ballast, 1 lead capped, HLO (0.95 < BF < 1.1) | 3' 1-Lamp T8     | Electronic | 1                 | 25         | 26          | 15.5 |
| F31ILL/T2-<br>R | F25T8        | Fluorescent, (1) 36", T-8 lamp, Tandem 2-lamp IS Ballast, RLO (BF< 0.85)                       | 3' 1-Lamp T8 RLO | Electronic | 1                 | 25         | 21          | 15.5 |
| F31ILL/T3       | F25T8        | Fluorescent, (1) 36", T-8 lamp, Tandem 3-lamp IS Ballast, NLO (0.85 <<br>BF < 0.95)            | 3' 1-Lamp T8     | Electronic | 1                 | 25         | 23          | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                         | Layman Term      | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W /<br>FIXT | EUL  |
|-----------------|--------------|-------------------------------------------------------------------------------------|------------------|------------|-------------------|------------|-------------|------|
| F31ILL/T3-<br>R | F25T8        | Fluorescent, (1) 36", T-8 lamp, Tandem 3-lamp IS Ballast, RLO (BF< 0.85)            | 3' 1-Lamp T8 RLO | Electronic | 1                 | 25         | 20          | 15.5 |
| F31ILL/T4       | F25T8        | Fluorescent, (1) 36", T-8 lamp, Tandem 4-lamp IS Ballast, NLO (0.85 < BF < 0.95)    | 3' 1-Lamp T8     | Electronic | 1                 | 25         | 22          | 15.5 |
| F31ILL/T4-<br>R | F25T8        | Fluorescent, (1) 36", T-8 lamp, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)            | 3' 1-Lamp T8 RLO | Electronic | 1                 | 25         | 20          | 15.5 |
| F31ILU          | F25T8        | Fluorescent, (1) 36", T-8 lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)       | 3' 1-Lamp T8     | Electronic | 1                 | 25         | 23          | 15.5 |
| F31ILU-R        | F25T8        | Fluorescent, (1) 36", T-8 lamp, Instant Start Ballast, RLO (BF< 0.85)               | 3' 1-Lamp T8 RLO | Electronic | 1                 | 25         | 20          | 15.5 |
| F31ILU/T2       | F25T8        | Fluorescent, (1) 36", T-8 lamp, Tandem 2-lamp IS Ballast, NLO (0.85 <<br>BF < 0.95) | 3' 1-Lamp T8     | Electronic | 1                 | 25         | 22          | 15.5 |
| F31ILU/T2<br>-R | F25T8        | Fluorescent, (1) 36", T-8 lamp, Tandem 2-lamp IS Ballast, RLO (BF< 0.85)            | 3' 1-Lamp T8 RLO | Electronic | 1                 | 25         | 20          | 15.5 |
| F31ILU/T3<br>-R | F25T8        | Fluorescent, (1) 36", T-8 lamp, Tandem 3-lamp IS Ballast, RLO (BF< 0.85)            | 3' 1-Lamp T8 RLO | Electronic | 1                 | 25         | 19          | 15.5 |
| F31ILU/T4<br>-R | F25T8        | Fluorescent, (1) 36", T-8 lamp, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)            | 3' 1-Lamp T8 RLO | Electronic | 1                 | 25         | 19          | 15.5 |
| F31LL           | F25T8        | Fluorescent, (1) 36", T-8 lamp, Rapid Start Ballast, NLO (0.85 < BF < 0.95)         | 3' 1-Lamp T8     | Electronic | 1                 | 25         | 24          | 15.5 |
| F31LL-H         | F25T8        | Fluorescent, (1) 36", T-8 lamp, Rapid Start Ballast, HLO (0.95 < BF < 1.1)          | 3' 1-Lamp T8 HLO | Electronic | 1                 | 25         | 26          | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                          | Layman Term      | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W /<br>FIXT | EUL  |
|-----------------|--------------|--------------------------------------------------------------------------------------|------------------|------------|-------------------|------------|-------------|------|
| F31LL-R         | F25T8        | Fluorescent, (1) 36", T-8 lamp, Rapid Start Ballast, RLO (BF< 0.85)                  | 3' 1-Lamp T8 RLO | Electronic | 1                 | 25         | 23          | 15.5 |
| F31LL/T2        | F25T8        | Fluorescent, (1) 36", T-8 lamp, Tandem 2-lamp RS Ballast, NLO (0.85<br>< BF < 0.95)  | 3' 1-Lamp T8     | Electronic | 1                 | 25         | 23          | 15.5 |
| F31LL/T3        | F25T8        | Fluorescent, (1) 36", T-8 lamp, Tandem 3-lamp RS Ballast, NLO (0.85<br>< BF < 0.95)  | 3' 1-Lamp T8     | Electronic | 1                 | 25         | 24          | 15.5 |
| F31LL/T4        | F25T8        | Fluorescent, (1) 36", T-8 lamp, Tandem 4-lamp RS Ballast, NLO (0.85<br>< BF < 0.95)  | 3' 1-Lamp T8     | Electronic | 1                 | 25         | 22          | 15.5 |
| F32ILL          | F25T8        | Fluorescent, (2) 36", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)       | 3' 2-Lamp T8     | Electronic | 2                 | 25         | 46          | 15.5 |
| F32ILL-H        | F25T8        | Fluorescent, (2) 36", T-8 lamps, Instant Start Ballast, HLO (0.95 < BF < 1.1)        | 3' 2-Lamp T8 HLO | Electronic | 2                 | 25         | 52          | 15.5 |
| F32ILL-R        | F25T8        | Fluorescent, (2) 36", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)               | 3' 2-Lamp T8 RLO | Electronic | 2                 | 25         | 42          | 15.5 |
| F32ILL/2-R      | F25T8        | Fluorescent, (2) 36", T-8 lamps, (2) Instant Start Ballasts, RLO (BF< 0.85)          | 3' 2-Lamp T8 RLO | Electronic | 2                 | 25         | 44          | 15.5 |
| F32ILL/T4       | F25T8        | Fluorescent, (2) 36", T-8 lamps, Tandem 4-lamp IS Ballast, NLO (0.85<br>< BF < 0.95) | 3' 2-Lamp T8     | Electronic | 2                 | 25         | 44          | 15.5 |
| F32ILL/T4-<br>R | F25T8        | Fluorescent, (2) 36", T-8 lamps, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)            | 3' 2-Lamp T8 RLO | Electronic | 2                 | 25         | 39          | 15.5 |
| F32ILU          | F25T8        | Fluorescent, (2) 36", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)       | 3' 2-Lamp T8     | Electronic | 2                 | 25         | 44          | 15.5 |
| F32ILU-R        | F25T8        | Fluorescent, (2) 36", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)               | 3' 2-Lamp T8 RLO | Electronic | 2                 | 25         | 39          | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                          | Layman Term       | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|--------------------------------------------------------------------------------------|-------------------|------------|-------------------|------------|------------|------|
| F32ILU/T4<br>-R | F25T8        | Fluorescent, (2) 36", T-8 lamps, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)            | 3' 2-Lamp T8 RLO  | Electronic | 2                 | 25         | 39         | 15.5 |
| F32LL           | F25T8        | Fluorescent, (2) 36", T-8 lamps, Rapid Start Ballast, NLO (0.85 < BF < 0.95)         | 3' 2-Lamp T8      | Electronic | 2                 | 25         | 46         | 15.5 |
| F32LL-H         | F25T8        | Fluorescent, (2) 36", T-8 lamps, Rapid Start Ballast, HLO (0.95 < BF < 1.1)          | 3' 2-Lamp T8 HLO  | Electronic | 2                 | 25         | 50         | 15.5 |
| F32LL-R         | F25T8        | Fluorescent, (2) 36", T-8 lamps, Rapid Start Ballast, RLO (BF< 0.85)                 | 3' 2-Lamp T8 RLO  | Electronic | 2                 | 25         | 42         | 15.5 |
| F32LL-V         | F25T8        | Fluorescent, (2) 36", T-8 lamps, Rapid Start Ballast, VHLO (BF > 1.1)                | 3' 2-Lamp T8 VHLO | Electronic | 2                 | 25         | 70         | 15.5 |
| F32LL/T4        | F25T8        | Fluorescent, (2) 36", T-8 lamps, Tandem 4-lamp RS Ballast, NLO (0.85<br>< BF < 0.95) | 3' 2-Lamp T8      | Electronic | 2                 | 25         | 45         | 15.5 |
| F33ILL          | F25T8        | Fluorescent, (3) 36", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)       | 3' 3-Lamp T8      | Electronic | 3                 | 25         | 68         | 15.5 |
| F33ILL-R        | F25T8        | Fluorescent, (3) 36", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)               | 3' 3-Lamp T8 RLO  | Electronic | 3                 | 25         | 61         | 15.5 |
| F33ILU          | F25T8        | Fluorescent, (3) 36", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)       | 3' 3-Lamp T8      | Electronic | 3                 | 25         | 65         | 15.5 |
| F33ILU-R        | F25T8        | Fluorescent, (3) 36", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)               | 3' 3-Lamp T8 RLO  | Electronic | 3                 | 25         | 58         | 15.5 |
| F33LL           | F25T8        | Fluorescent, (3) 36", T-8 lamps, Rapid Start Ballast, NLO (0.85 < BF < 0.95)         | 3' 3-Lamp T8      | Electronic | 3                 | 25         | 72         | 15.5 |
| F33LL-R         | F25T8        | Fluorescent, (3) 36", T-8 lamps, Rapid Start Ballast, RLO (BF< 0.85)                 | 3' 3-Lamp T8 RLO  | Electronic | 3                 | 25         | 62         | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                         | Layman Term           | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W /<br>FIXT | EUL  |
|-----------------|--------------|-------------------------------------------------------------------------------------|-----------------------|------------|-------------------|------------|-------------|------|
| F34ILL          | F25T8        | Fluorescent, (4) 36", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)      | 3' 4-Lamp T8          | Electronic | 4                 | 25         | 88          | 15.5 |
| F34ILL-R        | F25T8        | Fluorescent, (4) 36", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)              | 3' 4-Lamp T8 RLO      | Electronic | 4                 | 25         | 78          | 15.5 |
| F34ILL/2-R      | F25T8        | Fluorescent, (4) 36", T-8 lamps, (2) Instant Start Ballasts, RLO (BF< 0.85)         | 3' 4-Lamp T8 RLO      | Electronic | 4                 | 25         | 84          | 15.5 |
| F34ILU          | F25T8        | Fluorescent, (4) 36", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)      | 3' 4-Lamp T8          | Electronic | 4                 | 25         | 86          | 15.5 |
| F34ILU-R        | F25T8        | Fluorescent, (4) 36", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)              | 3' 4-Lamp T8 RLO      | Electronic | 4                 | 25         | 77          | 15.5 |
| F34LL           | F25T8        | Fluorescent, (4) 36", T-8 lamps, Rapid Start Ballast, NLO (0.85 < BF < 0.95)        | 3' 4-Lamp T8          | Electronic | 4                 | 25         | 89          | 15.5 |
| F34LL-R         | F25T8        | Fluorescent, (4) 36", T-8 lamps, Rapid Start Ballast, RLO (BF< 0.85)                | 3' 4-Lamp T8 RLO      | Electronic | 4                 | 25         | 84          | 15.5 |
| F36ILL/2        | F25T8        | Fluorescent, (6) 36", T-8 lamps, (2) Instant Start Ballasts, NLO (0.85 < BF < 0.95) | 3' 6-Lamp T8          | Electronic | 6                 | 25         | 135         | 15.5 |
| F36ILL/2-R      | F25T8        | Fluorescent, (6) 36", T-8 lamps, (2) Instant Start Ballasts, RLO (BF< 0.85)         | 3' 6-Lamp T8 RLO      | Electronic | 6                 | 25         | 121         | 15.5 |
| F42GRLL-<br>V   | F28T8        | Fluorescent, (2) 48", T-8 lamps, Prog. Start or PRS Ballast, VHLO (BF > 1.1)        | 4' 2-Lamp T8 28W VLHO | PRS Elec.  | 2                 | 28         | 66          | 15.5 |
| F43GRLL-<br>V   | F28T8        | Fluorescent, (3) 48", T-8 lamps, Prog. Start or PRS Ballast, VHLO (BF > 1.1)        | 4' 3-Lamp T8 28W VLHO | PRS Elec.  | 3                 | 28         | 92          | 15.5 |
| F41GLL          | F32T8        | Fluorescent (1) 48" T-8 lamp, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)    | 4' 1-Lamp T8          | PRS Elec.  | 1                 | 32         | 30          | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                                    | Layman Term      | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|------------------------------------------------------------------------------------------------|------------------|------------|-------------------|------------|------------|------|
| F41GLL-R        | F32T8        | Fluorescent (1) 48" T-8 lamp, Prog. Start or PRS Ballast, RLO (BF< 0.85)                       | 4' 1-Lamp T8 RLO | PRS Elec.  | 1                 | 32         | 25         | 15.5 |
| F41ILL          | F32T8        | Fluorescent, (1) 48", T-8 lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)                  | 4' 1-Lamp T8     | Electronic | 1                 | 32         | 31         | 15.5 |
| F41ILL-H        | F32T8        | Fluorescent, (1) 48", T-8 lamp, Instant Start Ballast, HLO (0.95 < BF < 1.1)                   | 4' 1-Lamp T8 HLO | Electronic | 1                 | 32         | 36         | 15.5 |
| F41ILL-R        | F32T8        | Fluorescent, (1) 48", T-8 lamp, Instant Start Ballast, RLO (BF< 0.85)                          | 4' 1-Lamp T8 RLO | Electronic | 1                 | 32         | 27         | 15.5 |
| F41ILL/T2       | F32T8        | Fluorescent, (1) 48", T-8 lamp, Tandem 2-lamp IS Ballast, NLO (0.85 <<br>BF < 0.95)            | 4' 1-Lamp T8     | Electronic | 1                 | 32         | 29         | 15.5 |
| F41ILL/T2-<br>H | F32T8        | Fluorescent, (1) 48", T-8 lamp, Tandem 3-lamp IS Ballast, 1 lead capped, HLO (0.95 < BF < 1.1) | 4' 1-Lamp T8 HLO | Electronic | 1                 | 32         | 33         | 15.5 |
| F41ILL/T2-<br>R | F32T8        | Fluorescent, (1) 48", T-8 lamp, Tandem 2-lamp IS Ballast, RLO (BF< 0.85)                       | 4' 1-Lamp T8 RLO | Electronic | 1                 | 32         | 26         | 15.5 |
| F41ILL/T3       | F32T8        | Fluorescent, (1) 48", T-8 lamp, Tandem 3-lamp IS Ballast, NLO (0.85 <<br>BF < 0.95)            | 4' 1-Lamp T8     | Electronic | 1                 | 32         | 28         | 15.5 |
| F41ILL/T3-<br>H | F32T8        | Fluorescent, (1) 48", T-8 lamp, Tandem 4-lamp IS Ballast, 1 lead capped, HLO (0.95 < BF < 1.1) | 4' 1-Lamp T8 HLO | Electronic | 1                 | 32         | 31         | 15.5 |
| F41ILL/T3-<br>R | F32T8        | Fluorescent, (1) 48", T-8 lamp, Tandem 3-lamp IS Ballast, RLO (BF< 0.85)                       | 4' 1-Lamp T8 RLO | Electronic | 1                 | 32         | 25         | 15.5 |
| F41ILL/T4       | F32T8        | Fluorescent, (1) 48", T-8 lamp, Tandem 4-lamp IS Ballast, NLO (0.85 <<br>BF < 0.95)            | 4' 1-Lamp T8     | Electronic | 1                 | 32         | 28         | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                         | Layman Term      | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W /<br>FIXT | EUL  |
|-----------------|--------------|-------------------------------------------------------------------------------------|------------------|------------|-------------------|------------|-------------|------|
| F41ILL/T4-<br>R | F32T8        | Fluorescent, (1) 48", T-8 lamp, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)            | 4' 1-Lamp T8 RLO | Electronic | 1                 | 32         | 25          | 15.5 |
| F41ILU          | F32T8        | Fluorescent, (1) 48", T-8 lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)       | 4' 1-Lamp T8     | Electronic | 1                 | 32         | 28          | 15.5 |
| F41ILU-H        | F32T8        | Fluorescent, (1) 48", T-8 lamp, Instant Start Ballast, HLO (0.95 < BF < 1.1)        | 4' 1-Lamp T8 HLO | Electronic | 1                 | 32         | 35          | 15.5 |
| F41ILU-R        | F32T8        | Fluorescent, (1) 48", T-8 lamp, Instant Start Ballast, RLO (BF< 0.85)               | 4' 1-Lamp T8 RLO | Electronic | 1                 | 32         | 25          | 15.5 |
| F41ILU/T2       | F32T8        | Fluorescent, (1) 48", T-8 lamp, Tandem 2-lamp IS Ballast, NLO (0.85 <<br>BF < 0.95) | 4' 1-Lamp T8     | Electronic | 1                 | 32         | 27          | 15.5 |
| F41ILU/T2<br>-R | F32T8        | Fluorescent, (1) 48", T-8 lamp, Tandem 2-lamp IS Ballast, RLO (BF< 0.85)            | 4' 1-Lamp T8 RLO | Electronic | 1                 | 32         | 24          | 15.5 |
| F41ILU/T3       | F32T8        | Fluorescent, (1) 48", T-8 lamp, Tandem 3-lamp IS Ballast, NLO (0.85 <<br>BF < 0.95) | 4' 1-Lamp T8     | Electronic | 1                 | 32         | 27          | 15.5 |
| F41ILU/T3<br>-R | F32T8        | Fluorescent, (1) 48", T-8 lamp, Tandem 3-lamp IS Ballast, RLO (BF< 0.85)            | 4' 1-Lamp T8 RLO | Electronic | 1                 | 32         | 24          | 15.5 |
| F41ILU/T4       | F32T8        | Fluorescent, (1) 48", T-8 lamp, Tandem 4-lamp IS Ballast, NLO (0.85 <<br>BF < 0.95) | 4' 1-Lamp T8     | Electronic | 1                 | 32         | 27          | 15.5 |
| F41ILU/T4<br>-R | F32T8        | Fluorescent, (1) 48", T-8 lamp, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)            | 4' 1-Lamp T8 RLO | Electronic | 1                 | 32         | 24          | 15.5 |
| F41LE           | F32T8        | Fluorescent, (1) 48", T-8 lamp                                                      | 4' 1-Lamp T8     | Mag-ES     | 1                 | 32         | 35          | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                                    | Layman Term      | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|------------------------------------------------------------------------------------------------|------------------|------------|-------------------|------------|------------|------|
| F41LL           | F32T8        | Fluorescent, (1) 48", T-8 lamp, Rapid Start Ballast, NLO (0.85 < BF < 0.95)                    | 4' 1-Lamp T8     | Electronic | 1                 | 32         | 32         | 15.5 |
| F41LL-H         | F32T8        | Fluorescent, (1) 48", T-8 lamp, Rapid Start Ballast, HLO (0.95 < BF < 1.1)                     | 4' 1-Lamp T8 HLO | Electronic | 1                 | 32         | 39         | 15.5 |
| F41LL-R         | F32T8        | Fluorescent, (1) 48", T-8 lamp, Rapid Start Ballast, RLO (BF< 0.85)                            | 4' 1-Lamp T8 RLO | Electronic | 1                 | 32         | 27         | 15.5 |
| F41LL/T2        | F32T8        | Fluorescent, (1) 48", T-8 lamp, Tandem 2-lamp RS Ballast, NLO (0.85<br>< BF < 0.95)            | 4' 1-Lamp T8     | Electronic | 1                 | 32         | 30         | 15.5 |
| F41LL/T2-<br>H  | F32T8        | Fluorescent, (1) 48", T-8 lamp, Tandem 3-lamp RS Ballast, 1 lead capped, HLO (0.95 < BF < 1.1) | 4' 1-Lamp T8 HLO | Electronic | 1                 | 32         | 35         | 15.5 |
| F41LL/T2-<br>R  | F32T8        | Fluorescent, (1) 48", T-8 lamp, Tandem 2-lamp RS Ballast, RLO (BF< 0.85)                       | 4' 1-Lamp T8 RLO | Electronic | 1                 | 32         | 27         | 15.5 |
| F41LL/T3        | F32T8        | Fluorescent, (1) 48", T-8 lamp, Tandem 3-lamp RS Ballast, NLO (0.85<br>< BF < 0.95)            | 4' 1-Lamp T8     | Electronic | 1                 | 32         | 31         | 15.5 |
| F41LL/T3-<br>H  | F32T8        | Fluorescent, (1) 48", T-8 lamp, Tandem 4-lamp RS Ballast, 1 lead capped, HLO (0.95 < BF < 1.1) | 4' 1-Lamp T8 HLO | Electronic | 1                 | 32         | 33         | 15.5 |
| F41LL/T3-<br>R  | F32T8        | Fluorescent, (1) 48", T-8 lamp, Tandem 3-lamp RS Ballast, RLO (BF< 0.85)                       | 4' 1-Lamp T8 RLO | Electronic | 1                 | 32         | 25         | 15.5 |
| F41LL/T4        | F32T8        | Fluorescent, (1) 48", T-8 lamp, Tandem 4-lamp RS Ballast, NLO (0.85<br>< BF < 0.95)            | 4' 1-Lamp T8     | Electronic | 1                 | 32         | 30         | 15.5 |
| F41LL/T4-<br>R  | F32T8        | Fluorescent, (1) 48", T-8 lamp, Tandem 4-lamp RS Ballast, RLO (BF< 0.85)                       | 4' 1-Lamp T8 RLO | Electronic | 1                 | 32         | 26         | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                                  | Layman Term       | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W /<br>FIXT | EUL  |
|-----------------|--------------|----------------------------------------------------------------------------------------------|-------------------|------------|-------------------|------------|-------------|------|
| F42GLL          | F32T8        | Fluorescent (2) 48" T-8 lamps, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)            | 4' 2-Lamp T8      | PRS Elec.  | 2                 | 32         | 59          | 15.5 |
| F42GLL-R        | F32T8        | Fluorescent (2) 48" T-8 lamps, Prog. Start or PRS Ballast, RLO (BF < 0.85)                   | 4' 2-Lamp T8 RLO  | PRS Elec.  | 2                 | 32         | 47          | 15.5 |
| F42GLL-V        | F32T8        | Fluorescent, (2) 48" T-8 lamps, Prog. Start or PRS Ballast, VHLO (BF > 1.1)                  | 4' 2-Lamp T8 VHLO | PRS Elec.  | 2                 | 32         | 74          | 15.5 |
| F42ILL          | F32T8        | Fluorescent, (2) 48", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)               | 4' 2-Lamp T8      | Electronic | 2                 | 32         | 58          | 15.5 |
| F42ILL-H        | F32T8        | Fluorescent, (2) 48", T-8 lamp, Instant Start Ballast, HLO (0.95 < BF < 1.1)                 | 4' 2-Lamp T8 HLO  | Electronic | 2                 | 32         | 66          | 15.5 |
| F42ILL-R        | F32T8        | Fluorescent, (2) 48", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)                       | 4' 2-Lamp T8 RLO  | Electronic | 2                 | 32         | 51          | 15.5 |
| F42ILL-V        | F32T8        | Fluorescent, (2) 48", T-8 lamps, Instant Start Ballast, VHLO (BF > 1.1)                      | 4' 2-Lamp T8 VHLO | Electronic | 2                 | 32         | 77          | 15.5 |
| F42ILL/2        | F32T8        | Fluorescent, (2) 48", T-8 lamps, (2) 1-lamp Instant Start Ballast, NLO<br>(0.85 < BF < 0.95) | 4' 2-Lamp T8      | Electronic | 2                 | 32         | 62          | 15.5 |
| F42ILL/2-R      | F32T8        | Fluorescent, (2) 48" T-8 lamps, (2) 1-lamp Instant Start Ballasts, RLO (BF< 0.85)            | 4' 2-Lamp T8 RLO  | Electronic | 2                 | 32         | 54          | 15.5 |
| F42ILL/T4       | F32T8        | Fluorescent, (2) 48", T-8 lamps, Tandem 4-lamp IS Ballast, NLO (0.85<br>< BF < 0.95)         | 4' 2-Lamp T8      | Electronic | 2                 | 32         | 56          | 15.5 |
| F42ILL/T4-<br>R | F32T8        | Fluorescent, (2) 48", T-8 lamps, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)                    | 4' 2-Lamp T8 RLO  | Electronic | 2                 | 32         | 49          | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                                 | Layman Term       | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|---------------------------------------------------------------------------------------------|-------------------|------------|-------------------|------------|------------|------|
| F42ILU          | F32T8        | Fluorescent, (2) 48", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)              | 4' 2-Lamp T8      | Electronic | 2                 | 32         | 54         | 15.5 |
| F42ILU-H        | F32T8        | Fluorescent, (2) 48", T-8 lamp, Instant Start Ballast, HLO (0.95 < BF < 1.1)                | 4' 2-Lamp T8 HLO  | Electronic | 2                 | 32         | 64         | 15.5 |
| F42ILU-R        | F32T8        | Fluorescent, (2) 48", T-8 lamps, Instant Start, RLO (BF< 0.85)                              | 4' 2-Lamp T8 RLO  | Electronic | 2                 | 32         | 48         | 15.5 |
| F42ILU-V        | F32T8        | Fluorescent, (2) 48", T-8 lamps, Instant Start, VHLO (BF> 1.1)                              | 4' 2-Lamp T8 VHLO | Electronic | 2                 | 32         | 73         | 15.5 |
| F42ILU/T4       | F32T8        | Fluorescent, (2) 48", T-8 lamps, Tandem 4-lamp IS Ballast, NLO (0.85<br>< BF < 0.95)        | 4' 2-Lamp T8      | Electronic | 2                 | 32         | 54         | 15.5 |
| F42ILU/T4<br>-R | F32T8        | Fluorescent, (2) 48", T-8 lamps, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)                   | 4' 2-Lamp T8 RLO  | Electronic | 2                 | 32         | 48         | 15.5 |
| F42LE           | F32T8        | Fluorescent, (2) 48", T-8 lamp                                                              | 4' 2-Lamp T8      | Mag-ES     | 2                 | 32         | 71         | 15.5 |
| F42LL           | F32T8        | Fluorescent, (2) 48", T-8 lamps, Rapid Start Ballast, NLO (0.85 < BF < 0.95)                | 4' 2-Lamp T8      | Electronic | 2                 | 32         | 60         | 15.5 |
| F42LL-H         | F32T8        | Fluorescent, (2) 48", T-8 lamp, Rapid Start Ballast, HLO (0.95 < BF < 1.1)                  | 4' 2-Lamp T8 HLO  | Electronic | 2                 | 32         | 70         | 15.5 |
| F42LL-R         | F32T8        | Fluorescent, (2) 48", T-8 lamp, Rapid Start Ballast, RLO (BF< 0.85)                         | 4' 2-Lamp T8 RLO  | Electronic | 2                 | 32         | 54         | 15.5 |
| F42LL-V         | F32T8        | Fluorescent, (2) 48", T-8 lamp, Rapid Start Ballast, VHLO (BF > 1.1)                        | 4' 2-Lamp T8 HLO  | Electronic | 2                 | 32         | 85         | 15.5 |
| F42LL/2         | F32T8        | Fluorescent, (2) 48", T-8 lamps, (2) 1-lamp Rapid Start Ballasts, NLO<br>(0.85 < BF < 0.95) | 4' 2-Lamp T8      | Electronic | 2                 | 32         | 64         | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                                                 | Layman Term       | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|-------------------------------------------------------------------------------------------------------------|-------------------|------------|-------------------|------------|------------|------|
| F42LL/T4        | F32T8        | Fluorescent, (2) 48", T-8 lamps, Tandem 4-lamp RS Ballast, NLO (0.85<br>< BF < 0.95)                        | 4' 2-Lamp T8      | Electronic | 2                 | 32         | 59         | 15.5 |
| F42LL/T4-<br>R  | F32T8        | Fluorescent, (2) 48", T-8 lamp, Tandem 4-lamp RS Ballast, RLO (BF< 0.85)                                    | 4' 2-Lamp T8 RLO  | Electronic | 2                 | 32         | 53         | 15.5 |
| F43GLL          | F32T8        | Fluorescent (3) 48" T-8 lamps, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)                           | 4' 3-Lamp T8      | PRS Elec.  | 3                 | 32         | 88         | 15.5 |
| F43GLL-R        | F32T8        | Fluorescent (3) 48" T-8 lamps, Prog. Start or PRS Ballast, RLO (BF < 0.85)                                  | 4' 3-Lamp T8 RLO  | PRS Elec.  | 3                 | 32         | 72         | 15.5 |
| F43GLL-V        | F32T8        | Fluorescent, (3) 48" T-8 lamps, Prog. Start or PRS Ballast, VHLO (BF > 1.1)                                 | 4' 3-Lamp T8 VHLO | Electronic | 3                 | 32         | 108        | 15.5 |
| F43ILL          | F32T8        | Fluorescent, (3) 48" T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)                               | 4' 3-Lamp T8      | Electronic | 3                 | 32         | 85         | 15.5 |
| F43ILL-H        | F32T8        | Fluorescent, (3) 48" T-8 lamps, Instant Start Ballast, HLO (0.95 < BF < 1.1)                                | 4' 3-Lamp T8 HLO  | Electronic | 3                 | 32         | 93         | 15.5 |
| F43ILL-R        | F32T8        | Fluorescent, (3) 48" T-8 lamps, Instant Start Ballast, RLO (BF < 0.85)                                      | 4' 3-Lamp T8 RLO  | Electronic | 3                 | 32         | 76         | 15.5 |
| F43ILL-V        | F32T8        | Fluorescent, (3) 48" T-8 lamps, Instant Start Ballast, VHLO (BF > 1.1)                                      | 4' 3-Lamp T8 VHLO | Electronic | 3                 | 32         | 112        | 15.5 |
| F43ILL/2        | F32T8        | Fluorescent, (3) 48" T-8 lamps, (2) Instant Start Ballasts, NLO (0.85 < BF < 0.95)                          | 4' 3-Lamp T8      | Electronic | 3                 | 32         | 89         | 15.5 |
| F43ILL/2-<br>H  | F32T8        | Fluorescent (3) 48" T-8 lamps, (1) 2-lamp and (1) 3-lamp IS Ballast,1<br>lead capped, HLO (0.95 < BF < 1.1) | 4' 3-Lamp T8 HLO  | Electronic | 3                 | 32         | 102        | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                                      | Layman Term       | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|--------------------------------------------------------------------------------------------------|-------------------|------------|-------------------|------------|------------|------|
| F43ILL/2-R      | F32T8        | Fluorescent, (3) 48" T-8 lamps, (1) 1-lamp and (1) 2-lamp IS Ballast,<br>RLO (BF < 0.85)         | 4' 3-Lamp T8 RLO  | Electronic | 3                 | 32         | 78         | 15.5 |
| F43ILU          | F32T8        | Fluorescent, (3) 48" T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)                    | 4' 3-Lamp T8      | Electronic | 3                 | 32         | 81         | 15.5 |
| F43ILU-H        | F32T8        | Fluorescent, (3) 48", T-8 lamp, Instant Start Ballast, HLO (0.95 < BF < 1.1)                     | 4' 3-Lamp T8 HLO  | Electronic | 3                 | 32         | 92         | 15.5 |
| F43ILU-R        | F32T8        | Fluorescent, (3) 48" T-8 lamps, Instant Start Ballast, RLO (BF < 0.85)                           | 4' 3-Lamp T8 RLO  | Electronic | 3                 | 32         | 72         | 15.5 |
| F43ILU-V        | F32T8        | Fluorescent, (3) 48" T-8 lamps, Instant Start Ballast, VHLO (BF > 1.1)                           | 4' 3-Lamp T8 VHLO | Electronic | 3                 | 32         | 108        | 15.5 |
| F43LE           | F32T8        | Fluorescent, (3) 48", T-8 lamp                                                                   | 4' 3-Lamp T8      | Mag-ES     | 3                 | 32         | 110        | 15.5 |
| F43LL           | F32T8        | Fluorescent, (3) 48", T-8 lamps, Rapid Start Ballast, NLO (0.85 < BF < 0.95)                     | 4' 3-Lamp T8      | Electronic | 3                 | 32         | 93         | 15.5 |
| F43LL-H         | F32T8        | Fluorescent, (3) 48", T-8 lamp, Rapid Start Ballast, HLO (.95 < BF < 1.1)                        | 4' 3-Lamp T8 HLO  | Electronic | 3                 | 32         | 98         | 15.5 |
| F43LL-R         | F32T8        | Fluorescent, (3) 48", T-8 lamp, Rapid Start Ballast, RLO (BF < 0.85)                             | 4' 3-Lamp T8 RLO  | Electronic | 3                 | 32         | 76         | 15.5 |
| F43LL/2         | F32T8        | Fluorescent, (3) 48", T-8 lamps, (1) 1-lamp and (1) 2-lamp RS Ballast,<br>NLO (0.85 < BF < 0.95) | 4' 3-Lamp T8      | Electronic | 3                 | 32         | 92         | 15.5 |
| F44GLL          | F32T8        | Fluorescent (4) 48" T-8 lamps, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)                | 4' 4-Lamp T8      | PRS Elec.  | 4                 | 32         | 115        | 15.5 |
| F44GLL-R        | F32T8        | Fluorescent (4) 48" T-8 lamps, Prog. Start or PRS Ballast, RLO (BF < 0.85)                       | 4' 4-Lamp T8 RLO  | PRS Elec.  | 4                 | 32         | 92         | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                                     | Layman Term       | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|-------------------------------------------------------------------------------------------------|-------------------|------------|-------------------|------------|------------|------|
| F44GLL-V        | F32T8        | Fluorescent, (4) 48" T-8 lamps, Prog. Start or PRS Ballast, VHLO (BF > 1.1)                     | 4' 4-Lamp T8 VHLO | PRS Elec.  | 4                 | 32         | 144        | 15.5 |
| F44ILL          | F32T8        | Fluorescent, (4) 48", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)                  | 4' 4-Lamp T8      | Electronic | 4                 | 32         | 112        | 15.5 |
| F44ILL-R        | F32T8        | Fluorescent, (4) 48", T-8 lamps, Instant Start Ballast, RLO (BF < 0.85)                         | 4' 4-Lamp T8 RLO  | Electronic | 4                 | 32         | 98         | 15.5 |
| F44ILL-V        | F32T8        | Fluorescent, (4) 48", T-8 lamps, Instant Start Ballast, VHLO (BF > 1.1)                         | 4' 4-Lamp T8 VHLO | Electronic | 4                 | 32         | 151        | 15.5 |
| F44ILL/2        | F32T8        | Fluorescent, (4) 48", T-8 lamps, (2) 2-lamp IS Ballasts, NLO (0.85 < BF<br>< 0.95)              | 4' 4-Lamp T8      | Electronic | 4                 | 32         | 116        | 15.5 |
| F44ILL/2-<br>H  | F32T8        | Fluorescent, (4) 48", T-8 lamps, (2) 3-lamp IS Ballasts, 1 lead capped,<br>HLO (.95 < BF < 1.1) | 4' 4-Lamp T8 HLO  | Electronic | 4                 | 32         | 132        | 15.5 |
| F44ILL/2-R      | F32T8        | Fluorescent, (4) 48", T-8 lamps, (2) 2-lamp IS Ballasts, RLO (BF < 0.85)                        | 4' 4-Lamp T8 RLO  | Electronic | 4                 | 32         | 102        | 15.5 |
| F44ILL/2-<br>V  | F32T8        | Fluorescent, (4) 48", T-8 lamps, (2) 2-lamp IS Ballasts, VHLO (BF > 1.1)                        | 4' 4-Lamp T8 VHLO | Electronic | 4                 | 32         | 154        | 15.5 |
| F44ILU          | F32T8        | Fluorescent, (4) 48", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)                  | 4' 4-Lamp T8      | Electronic | 4                 | 32         | 107        | 15.5 |
| F44ILU-H        | F32T8        | Fluorescent, (4) 48", T-8 lamp, Instant Start Ballast, HLO (0.95 < BF < 1.1)                    | 4' 4-Lamp T8 HLO  | Electronic | 4                 | 32         | 121        | 15.5 |
| F44ILU-R        | F32T8        | Fluorescent, (4) 48", T-8 lamps, Instant Start Ballast, RLO (BF < 0.85)                         | 4' 4-Lamp T8 RLO  | Electronic | 4                 | 32         | 95         | 15.5 |
| F44ILU-V        | F32T8        | Fluorescent, (4) 48", T-8 lamps, Instant Start Ballast, VHLO (BF > 1.1)                         | 4' 4-Lamp T8 VHLO | Electronic | 4                 | 32         | 146        | 15.5 |
| F44LE           | F32T8        | Fluorescent, (4) 48", T-8 lamps                                                                 | 4' 4-Lamp T8      | Mag-ES     | 4                 | 32         | 142        | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                                        | Layman Term       | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|----------------------------------------------------------------------------------------------------|-------------------|------------|-------------------|------------|------------|------|
| F44LL           | F32T8        | Fluorescent, (4) 48", T-8 lamps, Rapid Start Ballast, NLO (0.85 < BF < 0.95)                       | 4' 4-Lamp T8      | Electronic | 4                 | 32         | 118        | 15.5 |
| F44LL-R         | F32T8        | Fluorescent, (4) 48", T-8 lamps, Rapid Start Ballast, RLO (BF < 0.85)                              | 4' 4-Lamp T8 RLO  | Electronic | 4                 | 32         | 105        | 15.5 |
| F44LL/2         | F32T8        | Fluorescent, (4) 48", T-8 lamps, (2) 2-lamp Rapid Start Ballast, NLO<br>(0.85 < BF < 0.95)         | 4' 4-Lamp T8      | Electronic | 4                 | 32         | 120        | 15.5 |
| F45ILL/2        | F32T8        | Fluorescent, (5) 48", T-8 lamps, (1) 3-lamp and (1) 2-lamp IS ballast, NLO (0.85 < BF < 0.95)      | 4' 5-Lamp T8      | Electronic | 5                 | 32         | 143        | 15.5 |
| F45GLL/2-<br>V  | F32T8        | Fluorescent, (5) 48", T-8 lamps, (1) 3-lamp and (1) 2-lamp Prog. Start<br>Ballast, VHLO (BF > 1.1) | 4' 5-Lamp T8 VHLO | Electronic | 5                 | 32         | 182        | 15.5 |
| F46GLL/2        | F32T8        | Fluorescent (6) 48" T-8 lamps, (2) Prog. Start or PRS Ballasts, NLO<br>(0.85 < BF < 0.95)          | 4' 6-Lamp T8      | PRS Elec.  | 6                 | 32         | 175        | 15.5 |
| F46GLL/2-<br>R  | F32T8        | Fluorescent (6) 48" T-8 lamps, (2) Prog. Start or PRS Ballasts, RLO (BF < 0.85)                    | 4' 6-Lamp T8 RLO  | PRS Elec.  | 6                 | 32         | 142        | 15.5 |
| F46GLL/2-<br>V  | F32T8        | Fluorescent (6) 48" T-8 lamps, (2) Prog. Start or PRS Ballasts, VHLO (BF > 1.1)                    | 4' 6-Lamp T8 VHLO | PRS Elec.  | 6                 | 32         | 217        | 15.5 |
| F46ILL/2        | F32T8        | Fluorescent, (6) 48", T-8 lamps, (2) IS Ballasts, NLO (0.85 < BF < 0.95)                           | 4' 6-Lamp T8      | Electronic | 6                 | 32         | 170        | 15.5 |
| F46ILL/2-R      | F32T8        | Fluorescent, (6) 48", T-8 lamps, (2) IS Ballasts, RLO (BF < 0.85)                                  | 4' 6-Lamp T8 RLO  | Electronic | 6                 | 32         | 151        | 15.5 |
| F46ILL/2-<br>V  | F32T8        | Fluorescent (6) 48" T-8 lamps, (2) IS Ballasts, VHLO (BF > 1.1)                                    | 4' 6-Lamp T8 VHLO | Electronic | 6                 | 32         | 226        | 15.5 |
| F46ILU/2        | F32T8        | Fluorescent (6) 48" T-8 lamps, (2) IS Ballasts, NLO (0.85 < BF < 0.95)                             | 4' 6-Lamp T8      | Electronic | 6                 | 32         | 162        | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                            | Layman Term       | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|----------------------------------------------------------------------------------------|-------------------|------------|-------------------|------------|------------|------|
| F46ILU/2-<br>R  | F32T8        | Fluorescent (6) 48" T-8 lamps, (2) IS Ballasts, RLO (BF < 0.85)                        | 4' 6-Lamp T8 RLO  | Electronic | 6                 | 32         | 144        | 15.5 |
| F46ILU/2-<br>V  | F32T8        | Fluorescent (6) 48" T-8 lamps, (2) IS Ballasts, VHLO (BF > 1.1)                        | 4' 6-Lamp T8 VHLO | Electronic | 6                 | 32         | 218        | 15.5 |
| F465LL/2        | F32T8        | Fluorescent, (6) 48", T-8 lamps, (2) Rapid Start Ballasts, NLO (0.85 < BF < 0.95)      | 4' 6-Lamp T8      | Electronic | 6                 | 32         | 182        | 15.5 |
| F48GLL/2        | F32T8        | Fluorescent (8) 48" T-8 lamps, (2) Prog. Start or PRS Ballasts, NLO (0.85 < BF < 0.95) | 4' 8-Lamp T8      | PRS Elec.  | 8                 | 32         | 230        | 15.5 |
| F48GLL/2-<br>R  | F32T8        | Fluorescent (8) 48" T-8 lamps, (2) Prog. Start or PRS Ballasts, RLO (BF < 0.85)        | 4' 8-Lamp T8 RLO  | PRS Elec.  | 8                 | 32         | 184        | 15.5 |
| F48GLL/2-<br>V  | F32T8        | Fluorescent (8) 48" T-8 lamps, (2) Prog. Start or PRS Ballasts, VHLO (BF > 1.1)        | 4' 8-Lamp T8 VHLO | PRS Elec.  | 8                 | 32         | 288        | 15.5 |
| F48ILL/2        | F32T8        | Fluorescent, (8) 48", T-8 lamps, (2) 4-lamp IS Ballasts, NLO (0.85 < BF<br>< 0.95)     | 4' 8-Lamp T8      | Electronic | 8                 | 32         | 224        | 15.5 |
| F48ILL/2-R      | F32T8        | Fluorescent, (8) 48", T-8 lamps, (2) 4-lamp IS Ballasts, RLO (BF < 0.85)               | 4' 8-Lamp T8 RLO  | Electronic | 8                 | 32         | 196        | 15.5 |
| F48ILU/2        | F32T8        | Fluorescent, (8) 48", T-8 lamps, (2) 4-lamp IS Ballasts, NLO (0.85 < BF<br>< 0.95)     | 4' 8-Lamp T8      | Electronic | 8                 | 32         | 214        | 15.5 |
| F48ILU/2-<br>R  | F32T8        | Fluorescent, (8) 48", T-8 lamps, (2) 4-lamp IS Ballasts, RLO (BF < 0.85)               | 4' 8-Lamp T8 RLO  | Electronic | 8                 | 32         | 190        | 15.5 |
| F48ILU/2-<br>V  | F32T8        | Fluorescent, (8) 48", T-8 lamps, (2) 4-lamp IS Ballasts, VHLO (BF > 1.1)               | 4' 8-Lamp T8 VHLO | Electronic | 8                 | 32         | 292        | 15.5 |

| Fixture<br>Code  | LAMP<br>CODE | DESCRIPTION                                                                                | Layman Term           | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|------------------|--------------|--------------------------------------------------------------------------------------------|-----------------------|------------|-------------------|------------|------------|------|
| F41GNLL          | F32T8-25W    | Fluorescent (1) 48" T-8 @ 25W lamp, Prog. Start or PRS Ballast, NLO<br>(0.85 < BF < 0.95)  | 4' 1-Lamp T8 25W      | PRS Elec.  | 1                 | 25         | 24         | 15.5 |
| F41GNLL-<br>R    | F32T8-25W    | Fluorescent (1) 48" T-8 @ 25W lamp, Prog. Start or PRS Ballast, RLO (BF< 0.85)             | 4' 1-Lamp T8 25W RLO  | PRS Elec.  | 1                 | 25         | 21         | 15.5 |
| F41INLL          | F32T8-25W    | Fluorescent, (1) 48", T-8 @ 25W lamps, Instant Start Ballast, NLO<br>(0.85 < BF < 0.95)    | 4' 1-Lamp T8 25W      | Electronic | 1                 | 25         | 24         | 15.5 |
| F41INLU          | F32T8-25W    | Fluorescent, (1), T-8 @ 25W lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)            | 4' 1-Lamp T8 25W      | Electronic | 1                 | 25         | 23         | 15.5 |
| F41INLU-R        | F32T8-25W    | Fluorescent, (1), T-8 @ 25W lamp, Instant Start Ballast, RLO (BF< 0.85)                    | 4' 1-Lamp T8 25W RLO  | Electronic | 1                 | 25         | 21         | 15.5 |
| F41INLU-V        | F32T8-25W    | Fluorescent, (1), T-8 @ 25W lamp, Instant Start Ballast, VHLO (BF > 1.1)                   | 4' 1-Lamp T8 25W VHLO | Electronic | 1                 | 25         | 32         | 15.5 |
| F41INLU/T<br>3-R | F32T8-25W    | Fluorescent, (1) 48", T-8 @ 25W lamp, Tandem 3-lamp IS Ballast, RLO<br>(BF< 0.85)          | 4' 1-Lamp T8 25W RLO  | Electronic | 1                 | 25         | 19         | 15.5 |
| F41INLU/T<br>4-R | F32T8-25W    | Fluorescent, (1) 48", T-8 @ 25W lamp, Tandem 4-lamp IS Ballast, RLO<br>(BF< 0.85)          | 4' 1-Lamp T8 25W RLO  | Electronic | 1                 | 25         | 19         | 15.5 |
| F42GNLL          | F32T8-25W    | Fluorescent (2) 48" T-8 @ 25W lamps, Prog. Start or PRS Ballast, NLO<br>(0.85 < BF < 0.95) | 4' 2-Lamp T8 25W      | PRS Elec.  | 2                 | 25         | 44         | 15.5 |
| F42GNLL-<br>R    | F32T8-25W    | Fluorescent (2) 48" T-8 @ 25W lamps, Prog. Start or PRS Ballast, RLO<br>(BF< 0.85)         | 4' 2-Lamp T8 25W RLO  | PRS Elec.  | 2                 | 25         | 38         | 15.5 |

| Fixture<br>Code  | LAMP<br>CODE | DESCRIPTION                                                                                | Layman Term           | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|------------------|--------------|--------------------------------------------------------------------------------------------|-----------------------|------------|-------------------|------------|------------|------|
| F42INLL          | F32T8-25W    | Fluorescent, (2) 48", T-8 @ 25W lamps, Instant Start Ballast, NLO<br>(0.85 < BF < 0.95)    | 4' 2-Lamp T8 25W      | Electronic | 2                 | 25         | 46         | 15.5 |
| F42INLL-V        | F32T8-25W    | Fluorescent, (2) 48" T-8 @ 25W lamps, Instant Start Ballast, VHLO (BF > 1.1)               | 4' 2-Lamp T8 25W VHLO | Electronic | 2                 | 25         | 65         | 15.5 |
| F42INLU          | F32T8-25W    | Fluorescent, (2), T-8 @ 25W lamps, Instant Start Ballast, NLO (0.85 <<br>BF < 0.95)        | 4' 2-Lamp T8 25W      | Electronic | 2                 | 25         | 43         | 15.5 |
| F42INLU-R        | F32T8-25W    | Fluorescent (2) 48" T8 @ 25W lamps, Instant Start Ballast, RLO (BF< 0.85)                  | 4' 2-Lamp T8 25W RLO  | Electronic | 2                 | 25         | 38         | 15.5 |
| F42INLU-V        | F32T8-25W    | Fluorescent, (2) 48", T-8 @ 25W lamps, Instant Start Ballast, VHLO<br>(BF > 1.1)           | 4' 2-Lamp T8 25W VHLO | Electronic | 2                 | 25         | 60         | 15.5 |
| F42INLU/T<br>4-R | F32T8-25W    | Fluorescent, (2) 48", T-8 @ 25W lamps, Tandem 4-lamp IS Ballast,<br>RLO (BF< 0.85)         | 4' 2-Lamp T8 25W RLO  | Electronic | 2                 | 25         | 38         | 15.5 |
| F43GNLL          | F32T8-25W    | Fluorescent (3) 48" T-8 @ 25W lamps, Prog. Start or PRS Ballast, NLO<br>(0.85 < BF < 0.95) | 4' 3-Lamp T8 25W      | PRS Elec.  | 3                 | 25         | 66         | 15.5 |
| F43GNLL-<br>R    | F32T8-25W    | Fluorescent, (3) 48" T-8 @ 25W lamps, Prog. Start or PRS Ballast, RLO<br>(BF < 0.85)       | 4' 3-Lamp T8 25W RLO  | PRS Elec.  | 3                 | 25         | 56         | 15.5 |
| F43INLL          | F32T8-25W    | Fluorescent, (3) 48" T-8 @ 25W lamps, Instant Start Ballast, NLO (0.85<br>< BF < 0.95)     | 4' 3-Lamp T8 25W      | Electronic | 3                 | 25         | 66         | 15.5 |
| F43INLL-V        | F32T8-25W    | Fluorescent, (3) 48" T-8 @ 25W lamps, Instant Start Ballast, VHLO (BF > 1.1)               | 4' 3-Lamp T8 25W VHLO | Electronic | 3                 | 25         | 95         | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                                | Layman Term           | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|--------------------------------------------------------------------------------------------|-----------------------|------------|-------------------|------------|------------|------|
| F43INLU         | F32T8-25W    | Fluorescent, (3) 48" T-8 lamps @ 25W, Instant Start Ballast, NLO (0.85<br>< BF < 0.95)     | 4' 3-Lamp T8 25W      | Electronic | 3                 | 25         | 64         | 15.5 |
| F43INLU-R       | F32T8-25W    | Fluorescent, (3) 48" T-8 @ 25W lamps, Instant Start Ballast, RLO (BF < 0.85)               | 4' 3-Lamp T8 25W RLO  | Electronic | 3                 | 25         | 57         | 15.5 |
| F43INLU-V       | F32T8-25W    | Fluorescent, (3) 48" T-8 @ 25W lamps, Instant Start Ballast, VHLO (BF > 1.1)               | 4' 3-Lamp T8 25W VHLO | Electronic | 3                 | 25         | 93         | 15.5 |
| F44GNLL         | F32T8-25W    | Fluorescent (4) 48" T-8 @ 25W lamps, Prog. Start or PRS Ballast, NLO<br>(0.85 < BF < 0.95) | 4' 4-Lamp T8 25W      | PRS Elec.  | 4                 | 25         | 85         | 15.5 |
| F44GNLL-<br>R   | F32T8-25W    | Fluorescent (4) 48" T-8 @ 25W lamps, Prog. Start or PRS Ballast, RLO<br>(BF < 0.85)        | 4' 4-Lamp T8 25W RLO  | PRS Elec.  | 4                 | 25         | 73         | 15.5 |
| F44INLL         | F32T8-25W    | Fluorescent, (4) 48", T-8 @ 25W lamps, Instant Start Ballast, NLO<br>(0.85 < BF < 0.95)    | 4' 4-Lamp T8 25W      | Electronic | 4                 | 25         | 86         | 15.5 |
| F44INLU         | F32T8-25W    | Fluorescent, (4) 48", T-8 @ 25W lamps, Instant Start Ballast, NLO<br>(0.85 < BF < 0.95)    | 4' 4-Lamp T8 25W      | Electronic | 4                 | 25         | 85         | 15.5 |
| F44INLU-R       | F32T8-25W    | Fluorescent, (4) 48" T-8 @ 25W lamps, Instant Start Ballast, RLO (BF < 0.85)               | 4' 4-Lamp T8 25W RLO  | Electronic | 4                 | 25         | 75         | 15.5 |
| F44INLU-V       | F32T8-25W    | Fluorescent, (4) 48" T-8 @ 25W lamps, Instant Start Ballast, VHLO (BF > 1.1)               | 4' 4-Lamp T8 25W VHLO | Electronic | 4                 | 25         | 122        | 15.5 |
| F46INLU/<br>2-R | F32T8-25W    | Fluorescent (6) 48" T-8 @ 25W lamps, (2) IS Ballasts, RLO (BF < 0.85)                      | 4' 6-Lamp T8 25W RLO  | Electronic | 6                 | 25         | 114        | 15.5 |

| Fixture<br>Code  | LAMP<br>CODE | DESCRIPTION                                                                               | Layman Term           | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|------------------|--------------|-------------------------------------------------------------------------------------------|-----------------------|------------|-------------------|------------|------------|------|
| F46INLU/<br>2-V  | F32T8-25W    | Fluorescent (6) 48" T-8 @ 25W lamps, (2) IS Ballasts, VHLO (BF > 1.1)                     | 4' 6-Lamp T8 25W VHLO | Electronic | 6                 | 25         | 184        | 15.5 |
| F41GRLL          | F32T8-28W    | Fluorescent (1) 48" T-8 @ 28W lamp, Prog. Start or PRS Ballast, NLO<br>(0.85 < BF < 0.95) | 4' 1-Lamp T8 28W      | PRS Elec.  | 1                 | 28         | 26         | 15.5 |
| F41GRLL-<br>R    | F32T8-28W    | Fluorescent (1) 48" T-8 @ 28W lamp, Prog. Start or PRS Ballast, RLO (BF< 0.85)            | 4' 1-Lamp T8 28W RLO  | PRS Elec.  | 1                 | 28         | 22         | 15.5 |
| F41IRLL          | F32T8-28W    | Fluorescent, (1) 48" T-8 @ 28W lamp, Instant Start Ballast, NLO (0.85<br>< BF < 0.95)     | 4' 1-Lamp T8 28W      | Electronic | 1                 | 28         | 27         | 15.5 |
| F41IRLL-V        | F32T8-28W    | Fluorescent, (1) 48" T-8 @ 28W lamp, Instant Start Ballast, VHLO (BF > 1.1)               | 4' 1-Lamp T8 28W VHLO | Electronic | 1                 | 28         | 35         | 15.5 |
| F41IRLU          | F32T8-28W    | Fluorescent, (1), T-8 @ 28W lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)           | 4' 1-Lamp T8 28W      | Electronic | 1                 | 28         | 25         | 15.5 |
| F41IRLU-R        | F32T8-28W    | Fluorescent, (1), T-8 @ 28W lamp, Instant Start Ballast, RLO (BF< 0.85)                   | 4' 1-Lamp T8 28W RLO  | Electronic | 1                 | 28         | 22         | 15.5 |
| F41IRLU-V        | F32T8-28W    | Fluorescent, (1), T-8 @ 28W lamp, Instant Start Ballast, VHLO (BF > 1.1)                  | 4' 1-Lamp T8 28W VHLO | Electronic | 1                 | 28         | 33         | 15.5 |
| F41IRLU/T<br>3-R | F32T8-28W    | Fluorescent, (1) 48", T-8 @ 28W lamp, Tandem 3-lamp IS Ballast, RLO<br>(BF< 0.85)         | 4' 1-Lamp T8 28W RLO  | Electronic | 1                 | 28         | 21         | 15.5 |
| F41IRLU/T<br>4-R | F32T8-28W    | Fluorescent, (1) 48", T-8 @ 28W lamp, Tandem 4-lamp IS Ballast, RLO<br>(BF< 0.85)         | 4' 1-Lamp T8 28W RLO  | Electronic | 1                 | 28         | 21         | 15.5 |

| Fixture<br>Code  | LAMP<br>CODE | DESCRIPTION                                                                                | Layman Term           | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|------------------|--------------|--------------------------------------------------------------------------------------------|-----------------------|------------|-------------------|------------|------------|------|
| F42GRLL          | F32T8-28W    | Fluorescent (2) 48" T-8 @ 28W lamps, Prog. Start or PRS Ballast, NLO<br>(0.85 < BF < 0.95) | 4' 2-Lamp T8 28W      | PRS Elec.  | 2                 | 28         | 49         | 15.5 |
| F42GRLL-<br>R    | F32T8-28W    | Fluorescent (2) 48" T-8 @ 28W lamps, Prog. Start or PRS Ballast, RLO<br>(BF< 0.85)         | 4' 2-Lamp T8 28W RLO  | PRS Elec.  | 2                 | 28         | 40         | 15.5 |
| F42IRLL          | F32T8-28W    | Fluorescent, (2) 48", T-8 @ 28W lamps, Instant Start Ballast, NLO<br>(0.85 < BF < 0.95)    | 4' 2-Lamp T8 28W NLO  | Electronic | 2                 | 28         | 52         | 15.5 |
| F42IRLL-V        | F32T8-28W    | Fluorescent, (2) 48" T-8 @ 28W lamps, Instant Start Ballast, VHLO (BF > 1.1)               | 4' 2-Lamp T8 28W VHLO | Electronic | 2                 | 28         | 68         | 15.5 |
| F42IRLU          | F32T8-28W    | Fluorescent, (2), T-8 @ 28W lamps, Instant Start Ballast, NLO (0.85 <<br>BF < 0.95)        | 4' 2-Lamp T8 28W      | Electronic | 2                 | 28         | 48         | 15.5 |
| F42IRLU-R        | F32T8-28W    | Fluorescent, (2) 48", T-8 @ 28W lamps, Instant Start Ballast, RLO (BF< 0.85)               | 4' 2-Lamp T8 28W RLO  | Electronic | 2                 | 28         | 43         | 15.5 |
| F42IRLU-V        | F32T8-28W    | Fluorescent, (2) 48", T-8 @ 28W lamps, Instant Start Ballast, VHLO<br>(BF > 1.1)           | 4' 2-Lamp T8 28W VHLO | Electronic | 2                 | 28         | 65         | 15.5 |
| F42IRLU/T<br>4-R | F32T8-28W    | Fluorescent, (2) 48", T-8 @ 28W lamps, Tandem 4-lamp IS Ballast,<br>RLO (BF< 0.85)         | 4' 2-Lamp T8 28W RLO  | Electronic | 2                 | 28         | 42         | 15.5 |
| F43GRLL          | F32T8-28W    | Fluorescent (3) 48" T-8 @ 28W lamps, Prog. Start or PRS Ballast, NLO<br>(0.85 < BF < 0.95) | 4' 3-Lamp T8 28W      | PRS Elec.  | 3                 | 28         | 75         | 15.5 |
| F43GRLL-<br>R    | F32T8-28W    | Fluorescent, (3) 48" T-8 @ 28W lamps, Prog. Start or PRS Ballast, RLO<br>(BF < 0.85)       | 4' 3-Lamp T8 28W RLO  | PRS Elec.  | 3                 | 28         | 62         | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                                | Layman Term           | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|--------------------------------------------------------------------------------------------|-----------------------|------------|-------------------|------------|------------|------|
| F43IRLL         | F32T8-28W    | Fluorescent, (3) 48" T-8 @ 28W lamps, Instant Start Ballast, NLO (0.85<br>< BF < 0.95)     | 4' 3-Lamp T8 28W      | Electronic | 3                 | 28         | 76         | 15.5 |
| F43IRLL-H       | F32T8-28W    | Fluorescent, (3) 48" T-8 @ 28W lamps, Instant Start Ballast, HLO (.95<br>< BF < 1.1)       | 4' 3-Lamp T8 28W HLO  | Electronic | 3                 | 28         | 82         | 15.5 |
| F43IRLL-V       | F32T8-28W    | Fluorescent, (3) 48" T-8 @ 28W lamps, Instant Start Ballast, VHLO (BF > 1.1)               | 4' 3-Lamp T8 28W VHLO | Electronic | 3                 | 28         | 97         | 15.5 |
| F43IRLU         | F32T8-28W    | Fluorescent, (3) 48" T-8 lamps @ 28W, Instant Start Ballast, NLO (0.85<br>< BF < 0.95)     | 4' 3-Lamp T8 28W      | Electronic | 3                 | 28         | 72         | 15.5 |
| F43IRLU-R       | F32T8-28W    | Fluorescent, (3) 48" T-8 @ 28W lamps, Instant Start Ballast, RLO (BF < 0.85)               | 4' 3-Lamp T8 28W RLO  | Electronic | 3                 | 28         | 63         | 15.5 |
| F43IRLU-V       | F32T8-28W    | Fluorescent, (3) 48" T-8 @ 28W lamps, Instant Start Ballast, VHLO (BF > 1.1)               | 4' 3-Lamp T8 28W VHLO | Electronic | 3                 | 28         | 96         | 15.5 |
| F44GRLL         | F32T8-28W    | Fluorescent (4) 48" T-8 @ 28W lamps, Prog. Start or PRS Ballast, NLO<br>(0.85 < BF < 0.95) | 4' 4-Lamp T8 28W      | PRS Elec.  | 4                 | 28         | 99         | 15.5 |
| F44GRLL-<br>R   | F32T8-28W    | Fluorescent (4) 48" T-8 @ 28W lamps, Prog. Start or PRS Ballast, RLO<br>(BF < 0.85)        | 4' 4-Lamp T8 28W RLO  | PRS Elec.  | 4                 | 28         | 80         | 15.5 |
| F44IRLL         | F32T8-28W    | Fluorescent, (4) 48", T-8 @ 28W lamps, Instant Start Ballast, NLO<br>(0.85 < BF < 0.95)    | 4' 4-Lamp T8 28W      | Electronic | 4                 | 28         | 99         | 15.5 |
| F44IRLL-R       | F32T8-28W    | Fluorescent, (4) 48", T-8 @ 28W lamps, Instant Start Ballast, RLO (BF < 0.85)              | 4' 4-Lamp T8 28W RLO  | Electronic | 4                 | 28         | 85         | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                               | Layman Term           | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|-------------------------------------------------------------------------------------------|-----------------------|------------|-------------------|------------|------------|------|
| F44IRLU         | F32T8-28W    | Fluorescent, (4) 48", T-8 @ 28W lamps, Instant Start Ballast, NLO<br>(0.85 < BF < 0.95)   | 4' 4-Lamp T8 28W      | Electronic | 4                 | 28         | 94         | 15.5 |
| F44IRLU-R       | F32T8-28W    | Fluorescent, (4) 48" T-8 @ 28W lamps, Instant Start Ballast, RLO (BF < 0.85)              | 4' 4-Lamp T8 28W RLO  | Electronic | 4                 | 28         | 83         | 15.5 |
| F44IRLU-V       | F32T8-28W    | Fluorescent, (4) 48" T-8 @ 28W lamps, Instant Start Ballast, VHLO (BF > 1.1)              | 4' 4-Lamp T8 28W VHLO | Electronic | 4                 | 28         | 131        | 15.5 |
| F46IRLU/2<br>-R | F32T8-28W    | Fluorescent (6) 48" T-8 @ 28W lamps, (2) IS Ballasts, RLO (BF < 0.85)                     | 4' 6-Lamp T8 28W      | Electronic | 6                 | 28         | 126        | 15.5 |
| F46IRLU/2<br>-V | F32T8-28W    | Fluorescent (6) 48" T-8 @ 28W lamps, (2) IS Ballasts, VHLO (BF > 1.1)                     | 4' 6-Lamp T8 28W VHLO | Electronic | 6                 | 28         | 194        | 15.5 |
| F48IRLU/2<br>-V | F32T8-28W    | Fluorescent (8) 48" T-8 @ 28W lamps, (2) IS Ballasts, VHLO (BF > 1.1)                     | 4' 6-Lamp T8 28W VHLO | Electronic | 8                 | 28         | 250        | 15.5 |
| F41GELL         | F32T8-30W    | Fluorescent (1) 48" T-8 @ 30W lamp, Prog. Start or PRS Ballast, NLO<br>(0.85 < BF < 0.95) | 4' 1-Lamp T8 30W      | PRS Elec.  | 1                 | 30         | 28         | 15.5 |
| F41GELL-R       | F32T8-30W    | Fluorescent (1) 48" T-8 @ 30W lamp, Prog. Start or PRS Ballast, RLO (BF < 0.85)           | 4' 1-Lamp T8 30W RLO  | PRS Elec.  | 1                 | 30         | 24         | 15.5 |
| F41IELL         | F32T8-30W    | Fluorescent (1) 48" T-8 @ 30W lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)         | 4' 1-Lamp T8 30W      | Electronic | 1                 | 30         | 29         | 15.5 |
| F41IELL-H       | F32T8-30W    | Fluorescent (1) 48" T-8 @ 30W lamp, Instant Start Ballast, HLO (0.95 < BF < 1.1)          | 4' 1-Lamp T8 30W HLO  | Electronic | 1                 | 30         | 34         | 15.5 |

| Fixture<br>Code  | LAMP<br>CODE | DESCRIPTION                                                                             | Layman Term          | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|------------------|--------------|-----------------------------------------------------------------------------------------|----------------------|------------|-------------------|------------|------------|------|
| F41IELL-R        | F32T8-30W    | Fluorescent (1) 48" T-8 @ 30W lamp, Instant Start Ballast, RLO (BF < 0.85)              | 4' 1-Lamp T8 30W RLO | Electronic | 1                 | 30         | 26         | 15.5 |
| F41IELL/T<br>2   | F32T8-30W    | Fluorescent (1) 48" T-8 @ 30W lamp, Tandem 2-lamp IS Ballast, NLO<br>(0.85 < BF < 0.95) | 4' 1-Lamp T8 30W     | Electronic | 1                 | 30         | 28         | 15.5 |
| F41IELL/T<br>3   | F32T8-30W    | Fluorescent (1) 48" T-8 @ 30W lamp, Tandem 3-lamp IS Ballast, NLO<br>(0.85 < BF < 0.95) | 4' 1-Lamp T8 30W     | Electronic | 1                 | 30         | 27         | 15.5 |
| F41IELL/T<br>4   | F32T8-30W    | Fluorescent (1) 48" T-8 @ 30W lamp, Tandem 4-lamp IS Ballast, NLO<br>(0.85 < BF < 0.95) | 4' 1-Lamp T8 30W     | Electronic | 1                 | 30         | 27         | 15.5 |
| F41IELU          | F32T8-30W    | Fluorescent, (1) 48", T-8 @ 30W lamp, Instant Start Ballast, NLO (0.85<br>< BF < 0.95)  | 4' 1-Lamp T8 30W     | Electronic | 1                 | 30         | 27         | 15.5 |
| F41IELU-H        | F32T8-30W    | Fluorescent (1) 48" T-8 @ 30W lamp, Instant Start Ballast, HLO (0.95<br>< BF < 1.1)     | 4' 1-Lamp T8 30W HLO | Electronic | 1                 | 30         | 32         | 15.5 |
| F41IELU-R        | F32T8-30W    | Fluorescent (1) 48" T-8 @ 30W lamp, Instant Start Ballast, RLO (BF< 0.85)               | 4' 1-Lamp T8 30W RLO | Electronic | 1                 | 30         | 24         | 15.5 |
| F41IELU/T<br>2   | F32T8-30W    | Fluorescent (1) 48" T-8 @ 30W lamp, Tandem 2-lamp IS Ballast, NLO<br>(0.85 < BF < 0.95) | 4' 1-Lamp T8 30W     | Electronic | 1                 | 30         | 26         | 15.5 |
| F41IELU/T<br>2-R | F32T8-30W    | Fluorescent (1) 48" T-8 @ 30W lamp, Tandem 2-lamp IS Ballast, RLO<br>(BF< 0.85)         | 4' 1-Lamp T8 30W RLO | Electronic | 1                 | 30         | 23         | 15.5 |
| F41IELU/T<br>3   | F32T8-30W    | Fluorescent (1) 48" T-8 @ 30W lamp, Tandem 3-lamp IS Ballast, NLO<br>(0.85 < BF < 0.95) | 4' 1-Lamp T8 30W     | Electronic | 1                 | 30         | 26         | 15.5 |

| Fixture<br>Code  | LAMP<br>CODE | DESCRIPTION                                                                                | Layman Term          | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|------------------|--------------|--------------------------------------------------------------------------------------------|----------------------|------------|-------------------|------------|------------|------|
| F41IELU/T<br>3-R | F32T8-30W    | Fluorescent (1) 48" T-8 @ 30W lamp, Tandem 3-lamp IS Ballast, RLO<br>(BF< 0.85)            | 4' 1-Lamp T8 30W RLO | Electronic | 1                 | 30         | 23         | 15.5 |
| F41IELU/T<br>4   | F32T8-30W    | Fluorescent (1) 48" T-8 @ 30W lamp, Tandem 4-lamp IS Ballast, NLO<br>(0.85 < BF < 0.95)    | 4' 1-Lamp T8 30W     | Electronic | 1                 | 30         | 25         | 15.5 |
| F41IELU/T<br>4-R | F32T8-30W    | Fluorescent (1) 48" T-8 @ 30W lamp, Tandem 4-lamp IS Ballast, RLO<br>(BF< 0.85)            | 4' 1-Lamp T8 30W RLO | Electronic | 1                 | 30         | 22         | 15.5 |
| F42GELL          | F32T8-30W    | Fluorescent (2) 48" T-8 @ 30W lamps, Prog. Start or PRS Ballast, NLO<br>(0.85 < BF < 0.95) | 4' 2-Lamp T8 30W     | PRS Elec.  | 2                 | 30         | 56         | 15.5 |
| F42GELL-R        | F32T8-30W    | Fluorescent (2) 48" T-8 @ 30W lamps, Prog. Start or PRS Ballast, RLO<br>(BF < 0.85)        | 4' 2-Lamp T8 30W RLO | PRS Elec.  | 2                 | 30         | 43         | 15.5 |
| F42IELL          | F32T8-30W    | Fluorescent (2) 48" T-8 @ 30W lamps, Instant Start Ballast, NLO (0.85<br>< BF < 0.95)      | 4' 2-Lamp T8 30W     | Electronic | 2                 | 30         | 55         | 15.5 |
| F42IELL-H        | F32T8-30W    | Fluorescent (2) 48" T-8 @ 30W lamps, Instant Start Ballast, HLO (0.95<br>< BF < 1.1)       | 4' 2-Lamp T8 30W HLO | Electronic | 2                 | 30         | 62         | 15.5 |
| F42IELL-R        | F32T8-30W    | Fluorescent (2) 48" T-8 @ 30W lamps, Instant Start Ballast, RLO (BF< 0.85)                 | 4' 2-Lamp T8 30W RLO | Electronic | 2                 | 30         | 49         | 15.5 |
| F42IELL/T<br>4   | F32T8-30W    | Fluorescent (4) 48" T-8 @ 30W lamps, Tandem 4-lamp IS Ballast, NLO<br>(0.85 < BF < 0.95)   | 4' 2-Lamp T8 30W     | Electronic | 2                 | 30         | 53         | 15.5 |
| F42IELL/T<br>4-R | F32T8-30W    | Fluorescent (4) 48" T-8 @ 30W lamps, Tandem 4-lamp IS Ballast, RLO<br>(BF< 0.85)           | 4' 2-Lamp T8 30W RLO | Electronic | 2                 | 30         | 46         | 15.5 |

| Fixture<br>Code  | LAMP<br>CODE | DESCRIPTION                                                                                           | Layman Term          | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|------------------|--------------|-------------------------------------------------------------------------------------------------------|----------------------|------------|-------------------|------------|------------|------|
| F42IELU          | F32T8-30W    | Fluorescent (2) 48" T-8 @ 30W lamps, Instant Start Ballast, NLO (0.85<br>< BF < 0.95)                 | 4' 2-Lamp T8 30W     | Electronic | 2                 | 30         | 52         | 15.5 |
| F42IELU-R        | F32T8-30W    | Fluorescent (2) 48" T-8 @ 30W lamps, Instant Start, RLO (BF< 0.85)                                    | 4' 2-Lamp T8 30W RLO | Electronic | 2                 | 30         | 45         | 15.5 |
| F42IELU-V        | F32T8-30W    | Fluorescent (2) 48" T-8 @ 30W lamps, Instant Start, VHLO (BF > 1.1)                                   | 4' 2-Lamp T8 30W HLO | Electronic | 2                 | 30         | 70         | 15.5 |
| F42IELU/T<br>4   | F32T8-30W    | Fluorescent (2) 48" T-8 @ 30W lamps, Tandem 4-lamp IS Ballast, NLO<br>(0.85 < BF < 0.95)              | 4' 2-Lamp T8 30W     | Electronic | 2                 | 30         | 51         | 15.5 |
| F42IELU/T<br>4-R | F32T8-30W    | Fluorescent (2) 48" T-8 @ 30W lamps, Tandem 4-lamp IS Ballast, RLO<br>(BF< 0.85)                      | 4' 2-Lamp T8 30W RLO | Electronic | 2                 | 30         | 45         | 15.5 |
| F43GELL          | F32T8-30W    | Fluorescent (3) 48" T-8 @ 30W lamps, Prog. Start or PRS Ballast, NLO<br>(0.85 < BF < 0.95)            | 4' 3-Lamp T8 30W     | PRS Elec.  | 3                 | 30         | 83         | 15.5 |
| F43GELL-R        | F32T8-30W    | Fluorescent (3) 48" T-8 @ 30W lamps, Prog. Start or PRS Ballast, RLO<br>(BF < 0.85)                   | 4' 3-Lamp T8 30W RLO | PRS Elec.  | 3                 | 30         | 67         | 15.5 |
| F43IELL          | F32T8-30W    | Fluorescent (3) 48" T-8 @ 30 W lamps, Instant Start Ballast, NLO (0.85<br>< BF < 0.95)                | 4' 3-Lamp T8 30W     | Electronic | 3                 | 30         | 81         | 15.5 |
| F43IELL-H        | F32T8-30W    | Fluorescent (3) 48" T-8 @ 30 W lamps, Instant Start Ballast, HLO (0.95<br>< BF < 1.1)                 | 4' 3-Lamp T8 30W HLO | Electronic | 3                 | 30         | 86         | 15.5 |
| F43IELL-R        | F32T8-30W    | Fluorescent (3) 48" T-8 @ 30 W lamps, Instant Start Ballast, RLO (BF < 0.85)                          | 4' 3-Lamp T8 30W RLO | Electronic | 3                 | 30         | 71         | 15.5 |
| F43IELL/2        | F32T8-30W    | Fluorescent (3) 48" T-8 @ 30 W lamps, (1) 1-lamp and (1) 2-lamp IS<br>Ballast, NLO (0.85 < BF < 0.95) | 4' 3-Lamp T8 30W     | Electronic | 3                 | 30         | 84         | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                                                      | Layman Term           | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|------------------------------------------------------------------------------------------------------------------|-----------------------|------------|-------------------|------------|------------|------|
| F43IELL/2-<br>H | F32T8-30W    | Fluorescent (3) 48" T-8 @ 30 W lamps, (1) 2-lamp, (1) 3-lamp IS<br>Ballast, 1 lead capped, HLO (0.95 < BF < 1.1) | 4' 3-Lamp T8 30W HLO  | Electronic | 3                 | 30         | 96         | 15.5 |
| F43IELL/2-<br>R | F32T8-30W    | Fluorescent (3) 48" T-8 @ 30 W lamps, (1) 1-lamp and (1) 2-lamp IS<br>Ballast, RLO (BF < 0.85)                   | 4' 3-Lamp T8 30W RLO  | Electronic | 3                 | 30         | 75         | 15.5 |
| F43IELU         | F32T8-30W    | Fluorescent (3) 48" T-8 @ 30W lamps, Instant Start Ballast, NLO (0.85<br>< BF < 0.95)                            | 4' 3-Lamp T8 30W      | Electronic | 3                 | 30         | 77         | 15.5 |
| F43IELU-R       | F32T8-30W    | Fluorescent (3) 48" T-8 @ 30W lamps, Instant Start Ballast, RLO (BF < 0.85)                                      | 4' 3-Lamp T8 30W RLO  | Electronic | 3                 | 30         | 68         | 15.5 |
| F43IELU-V       | F32T8-30W    | Fluorescent (3) 48" T-8 @ 30W lamps, Instant Start Ballast, VHLO (BF > 1.1)                                      | 4' 3-Lamp T8 30W VHLO | Electronic | 3                 | 30         | 104        | 15.5 |
| F44GELL         | F32T8-30W    | Fluorescent (4) 48" T-8 @ 30W lamps, Prog. Start or PRS Ballast, NLO<br>(0.85 < BF < 0.95)                       | 4' 4-Lamp T8 30W      | PRS Elec.  | 4                 | 30         | 109        | 15.5 |
| F44GELL-R       | F32T8-30W    | Fluorescent (4) 48" T-8 @ 30W lamps, Prog. Start or PRS Ballast, RLO<br>(BF < 0.85)                              | 4' 4-Lamp T8 30W RLO  | PRS Elec.  | 4                 | 30         | 86         | 15.5 |
| F44IELL         | F32T8-30W    | Fluorescent (4) 48" T-8 @ 30W lamps, Instant Start Ballast, NLO (0.85<br>< BF < 0.95)                            | 4' 4-Lamp T8 30W      | Electronic | 4                 | 30         | 106        | 15.5 |
| F44IELL-R       | F32T8-30W    | Fluorescent (4) 48" T-8 @ 30W lamps, Instant Start Ballast, RLO (BF < 0.85)                                      | 4' 4-Lamp T8 30W RLO  | Electronic | 4                 | 30         | 92         | 15.5 |
| F44IELL/2       | F32T8-30W    | Fluorescent (4) 48" T-8 @ 30W lamps, (2) 2-lamp IS Ballasts, NLO<br>(0.85 < BF < 0.95)                           | 4' 4-Lamp T8 30W      | Electronic | 4                 | 30         | 110        | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                                      | Layman Term          | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W /<br>FIXT | EUL  |
|-----------------|--------------|--------------------------------------------------------------------------------------------------|----------------------|------------|-------------------|------------|-------------|------|
| F44IELL/2-<br>H | F32T8-30W    | Fluorescent (4) 48" T-8 @ 30W lamps, (2) 3-lamp IS Ballasts, 1 lead capped, HLO (.95 < BF < 1.1) | 4' 4-Lamp T8 30W HLO | Electronic | 4                 | 30         | 124         | 15.5 |
| F44IELL/2-<br>R | F32T8-30W    | Fluorescent (4) 48" T-8 @ 30W lamps, (2) 2-lamp IS Ballasts, RLO (BF< 0.85)                      | 4' 4-Lamp T8 30W RLO | Electronic | 4                 | 30         | 98          | 15.5 |
| F44IELU         | F32T8-30W    | Fluorescent (4) 48" T-8 @ 30W lamps, Instant Start Ballast, NLO (0.85<br>< BF < 0.95)            | 4' 4-Lamp T8 30W     | Electronic | 4                 | 30         | 101         | 15.5 |
| F44IELU-R       | F32T8-30W    | Fluorescent (4) 48" T-8 @ 30W lamps, Instant Start Ballast, RLO (BF < 0.85)                      | 4' 4-Lamp T8 30W RLO | Electronic | 4                 | 30         | 89          | 15.5 |
| F46IELU/2       | F32T8-30W    | Fluorescent (6) 48" T-8 @ 30W lamps, (2) IS Ballasts, NLO (0.85 < BF<br>< 0.95)                  | 4' 6-Lamp T8 30W     | Electronic | 6                 | 30         | 154         | 15.5 |
| F46IELU/2<br>-R | F32T8-30W    | Fluorescent (6) 48" T-8 @ 30W lamps, (2) IS Ballasts, RLO (BF < 0.85)                            | 4' 6-Lamp T8 30W RLO | Electronic | 6                 | 30         | 135         | 15.5 |
| F51ILL          | F40T8        | Fluorescent, (1) 60", T-8 lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)                    | 5' 1-Lamp T8         | Electronic | 1                 | 40         | 36          | 15.5 |
| F51ILL-R        | F40T8        | Fluorescent, (1) 60", T-8 lamp, Instant Start Ballast, RLO (BF < 0.85)                           | 5' 1-Lamp T8 RLO     | Electronic | 1                 | 40         | 43          | 15.5 |
| F51ILL/T2       | F40T8        | Fluorescent, (1) 60", T-8 lamp, Tandem 2-lamp IS Ballast, NLO (0.85 <<br>BF < 0.95)              | 5' 1-Lamp T8         | Electronic | 1                 | 40         | 36          | 15.5 |
| F51ILL/T3       | F40T8        | Fluorescent, (1) 60", T-8 lamp, Tandem 3-lamp IS Ballast, NLO (0.85 <<br>BF < 0.95)              | 5' 1-Lamp T8         | Electronic | 1                 | 40         | 35          | 15.5 |
| F51ILL/T4       | F40T8        | Fluorescent, (1) 60", T-8 lamp, Tandem 4-lamp IS Ballast, NLO (0.85 <<br>BF < 0.95)              | 5' 1-Lamp T8         | Electronic | 1                 | 40         | 34          | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                              | Layman Term         | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W /<br>FIXT | EUL  |
|-----------------|--------------|------------------------------------------------------------------------------------------|---------------------|------------|-------------------|------------|-------------|------|
| F52ILL          | F40T8        | Fluorescent, (2) 60", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)           | 5' 2-Lamp T8        | Electronic | 2                 | 40         | 72          | 15.5 |
| F52ILL-H        | F40T8        | Fluorescent, (2) 60", T-8 lamps, Instant Start Ballast, HILO (.95 < BF < 1.1)            | 5' 2-Lamp T8 HLO    | Electronic | 2                 | 40         | 80          | 15.5 |
| F52ILL-R        | F40T8        | Fluorescent, (2) 60", T-8 lamps, Instant Start Ballast, RLO (BF < 0.85)                  | 5' 2-Lamp T8 RLO    | Electronic | 2                 | 40         | 73          | 15.5 |
| F52ILL/T4       | F40T8        | Fluorescent, (2) 60", T-8 lamps, Tandem 4-lamp IS Ballast, NLO (0.85<br>< BF < 0.95)     | 5' 2-Lamp T8        | Electronic | 2                 | 40         | 67          | 15.5 |
| F53ILL          | F40T8        | Fluorescent, (3) 60", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)           | 5' 3-Lamp T8        | Electronic | 3                 | 40         | 106         | 15.5 |
| F53ILL-H        | F40T8        | Fluorescent, (3) 60", T-8 lamps, Instant Start Ballast, HILO (.95 < BF < 1.1)            | 5' 3-Lamp T8 HLO    | Electronic | 3                 | 40         | 108         | 15.5 |
| F54ILL          | F40T8        | Fluorescent, (4) 60", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)           | 5' 4-Lamp T8        | Electronic | 4                 | 40         | 134         | 15.5 |
| F54ILL-H        | F40T8        | Fluorescent, (4) 60", T-8 lamps, Instant Start Ballast, HLO (.95 < BF < 1.1)             | 5' 4-Lamp T8 HLO    | Electronic | 4                 | 40         | 126         | 15.5 |
| F41LHL          | F48T8/HO     | Fluorescent, (1) 48", T-8 HO lamps, (1) Instant Start Ballast, NLO (0.85<br>< BF < 0.95) | 4' 1-Lamp T8 44W HO | Electronic | 1                 | 44         | 59          | 15.5 |
| F42LHL          | F48T8/HO     | Fluorescent, (2) 48", T-8 HO lamps, (1) Instant Start Ballast, NLO (0.85<br>< BF < 0.95) | 4' 2-Lamp T8 44W HO | Electronic | 2                 | 44         | 98          | 15.5 |
| F43LHL          | F48T8/HO     | Fluorescent, (3) 48", T-8 HO lamps, (2) Instant Start Ballasts, NLO (0.85 < BF < 0.95)   | 4' 3-Lamp T8 44W HO | Electronic | 3                 | 44         | 141         | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                               | Layman Term         | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|-------------------------------------------------------------------------------------------|---------------------|------------|-------------------|------------|------------|------|
| F44LHL          | F48T8/HO     | Fluorescent, (4) 48", T-8 HO lamps, (2) Instant Start Ballasts, NLO<br>(0.85 < BF < 0.95) | 4' 4-Lamp T8 44W HO | Electronic | 4                 | 44         | 168        | 15.5 |
| F81ILL          | F96T8        | Fluorescent, (1) 96", T-8 lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)             | 8' 1-Lamp T8        | Electronic | 1                 | 59         | 69         | 15.5 |
| F81ILL-H        | F96T8        | Fluorescent, (1) 96", T-8 lamp, Instant Start Ballast, HILO (.95 < BF < 1.1)              | 8' 1-Lamp T8 HLO    | Electronic | 1                 | 59         | 70         | 15.5 |
| F81ILL-R        | F96T8        | Fluorescent, (1) 96", T-8 lamp, Instant Start Ballast, RLO (BF < 0.85)                    | 8' 1-Lamp T8 RLO    | Electronic | 1                 | 59         | 67         | 15.5 |
| F81ILL-V        | F96T8        | Fluorescent, (1) 96", T-8 lamp, Instant Start Ballast, VHLO (BF > 1.1)                    | 8' 1-Lamp T8 VHLO   | Electronic | 1                 | 59         | 72         | 15.5 |
| F81ILL/T2       | F96T8        | Fluorescent, (1) 96", T-8 lamp, Tandem 2-lamp IS Ballast, NLO (0.85 <<br>BF < 0.95)       | 8' 1-Lamp T8        | Electronic | 1                 | 59         | 55         | 15.5 |
| F81ILL/T2-<br>R | F96T8        | Fluorescent, (1) 96", T-8 lamp, Tandem 2-lamp IS Ballast, RLO (BF < 0.85)                 | 8' 1-Lamp T8 RLO    | Electronic | 1                 | 59         | 50         | 15.5 |
| F81ILU          | F96T8        | Fluorescent, (1) 96" T-8 lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)              | 8' 1-Lamp T8        | Electronic | 1                 | 59         | 67         | 15.5 |
| F82ILL          | F96T8        | Fluorescent, (2) 96", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)            | 8' 2-Lamp T8        | Electronic | 2                 | 59         | 110        | 15.5 |
| F82ILL-R        | F96T8        | Fluorescent, (2) 96", T-8 lamps, Instant Start Ballast, RLO (BF < 0.85)                   | 8' 2-Lamp T8 RLO    | Electronic | 2                 | 59         | 100        | 15.5 |
| F82ILL-V        | F96T8        | Fluorescent, (2) 96", T-8 lamps, Instant Start Ballast, VHLO (BF > 1.1)                   | 8' 2-Lamp T8 VHLO   | Electronic | 2                 | 59         | 149        | 15.5 |
| F82ILU          | F96T8        | Fluorescent, (2) 96" T-8 ES lamps, Instant Start Ballast, NLO (0.85 < BF<br>< 0.95)       | 8' 2-Lamp T8        | Electronic | 2                 | 59         | 107        | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                                        | Layman Term         | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|----------------------------------------------------------------------------------------------------|---------------------|------------|-------------------|------------|------------|------|
| F83ILL          | F96T8        | Fluorescent, (3) 96", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)                     | 8' 3-Lamp T8        | Electronic | 3                 | 59         | 179        | 15.5 |
| F84ILL          | F96T8        | Fluorescent, (4) 96", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)                     | 8' 4-Lamp T8        | Electronic | 4                 | 59         | 219        | 15.5 |
| F84ILL/2-<br>V  | F96T8        | Fluorescent, (4) 96", T-8 lamps, (2) Instant Start Ballasts, VHLO (BF > 1.1)                       | 8' 4-Lamp T8 VHLO   | Electronic | 4                 | 59         | 298        | 15.5 |
| F86ILL          | F96T8        | Fluorescent, (6) 96", T-8 lamps, (2) 3-lamp IS Ballasts, NLO (0.85 < BF<br>< 0.95)                 | 8' 6-Lamp T8        | Electronic | 6                 | 59         | 330        | 15.5 |
| F81LHL/T<br>2   | F96T8/HO     | Fluorescent, (1) 96", T-8 HO lamp, Tandem 2-lamp Ballast                                           | 8' 1-Lamp T8 86W HO | Electronic | 1                 | 86         | 80         | 15.5 |
| F82LHL          | F96T8/HO     | Fluorescent, (2) 96", T-8 HO lamps                                                                 | 8' 2-Lamp T8 86W HO | Electronic | 2                 | 86         | 160        | 15.5 |
| F84LHL          | F96T8/HO     | Fluorescent, (4) 96", T-8 HO lamps                                                                 | 8' 4-Lamp T8 86W HO | Electronic | 4                 | 86         | 320        | 15.5 |
| F81IERU         | F96T8-RW     | Fluorescent, (1) 96" T-8 reduced-wattage lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)       | 8' 1-Lamp T8 54W    | Electronic | 1                 | 54         | 61         | 15.5 |
| F82IERU         | F96T8-RW     | Fluorescent, (2) 96" T-8 @ reduced-wattage lamps, Instant Start<br>Ballast, NLO (0.85 < BF < 0.95) | 8' 2-Lamp T8 54W    | Electronic | 2                 | 54         | 93         | 15.5 |
| FT12            |              | T12 and Other Linear Fluorescent Systems                                                           |                     |            |                   |            |            |      |
| F1.51SS         | F15T12       | Fluorescent, (1) 18" T12 lamp                                                                      | 1.5' 1-Lamp T12 15W | Mag-STD    | 1                 | 15         | 19         | 8.5  |
| F1.52SS         | F15T12       | Fluorescent, (2) 18", T12 lamps                                                                    | 1.5' 2-Lamp T12 15W | Mag-STD    | 2                 | 15         | 36         | 8.5  |
| F21SS           | F20T12       | Fluorescent, (1) 24", STD lamp                                                                     | 2' 1-Lamp T12 20W   | Mag-STD    | 1                 | 20         | 25         | 8.5  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                      | Layman Term           | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W /<br>FIXT | EUL  |
|-----------------|--------------|----------------------------------------------------------------------------------|-----------------------|------------|-------------------|------------|-------------|------|
| F22SS           | F20T12       | Fluorescent, (2) 24", STD lamps                                                  | 2' 2-Lamp T12 20W     | Mag-STD    | 2                 | 20         | 50          | 8.5  |
| F23SS           | F20T12       | Fluorescent, (3) 24", STD lamps                                                  | 2' 3-Lamp T12 20W     | Mag-STD    | 3                 | 20         | 71          | 8.5  |
| F24SS           | F20T12       | Fluorescent, (4) 24", STD lamps                                                  | 2' 4-Lamp T12 20W     | Mag-STD    | 4                 | 20         | 100         | 8.5  |
| F26SS/2         | F20T12       | Fluorescent, (6) 24", STD lamps, (2) ballasts                                    | 2' 6-Lamp T12 20W     | Mag-STD    | 6                 | 20         | 146         | 8.5  |
| F21HS           | F24T12/HO    | Fluorescent, (1) 24", HO lamp                                                    | 2' 1-Lamp T12HO       | Mag-STD    | 1                 | 35         | 62          | 8.5  |
| F22HS           | F24T12/HO    | Fluorescent, (2) 24", HO lamps                                                   | 2' 2-Lamp T12HO       | Mag-STD    | 2                 | 35         | 90          | 8.5  |
| F32EL/T4        | F25T12       | Fluorescent, (2) 36" ES lamps, Tandem 4-lamp ballast, NLO (0.85 < BF < 0.95)     | 3' 2-Lamp T12ES       | Electronic | 2                 | 25         | 50          | 15.5 |
| F41IAL          | F25T12       | Fluorescent, (1) 48", F25T12 lamp, Instant Start Ballast                         | 4' 1-Lamp T12 25W     | Electronic | 1                 | 25         | 25          | 15.5 |
| F41IAL/T2<br>-R | F25T12       | Fluorescent, (1) 48", F25T12 lamp, Tandem 2-Lamp IS ballast, RLO<br>(BF < 0.85)  | 4' 1-Lamp T12 25W RLO | Electronic | 1                 | 25         | 19          | 15.5 |
| F41IAL/T3<br>-R | F25T12       | Fluorescent, (1) 48", F25T12 lamp, Tandem 3-Lamp IS ballast, RLO (BF<br>< 0.85)  | 4' 1-Lamp T12 25W RLO | Electronic | 1                 | 25         | 20          | 15.5 |
| F41IAL/T4<br>-R | F25T12       | Fluorescent, (1) 48", F25T12 lamp, Tandem 4-Lamp IS ballast, RLO (BF<br>< 0.85)  | 4' 1-Lamp T12 25W RLO | Electronic | 1                 | 25         | 20          | 15.5 |
| F42IAL-R        | F25T12       | Fluorescent, (2) 48", F25T12 lamps, Instant Start Ballast, RLO (BF < 0.85)       | 4' 2-Lamp T12 25W RLO | Electronic | 2                 | 25         | 39          | 15.5 |
| F42IAL/T4<br>-R | F25T12       | Fluorescent, (2) 48", F25T12 lamps, Tandem 4-lamp IS Ballast, RLO<br>(BF < 0.85) | 4' 2-Lamp T12 25W RLO | Electronic | 2                 | 25         | 40          | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                | Layman Term           | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|----------------------------------------------------------------------------|-----------------------|------------|-------------------|------------|------------|------|
| F43IAL-R        | F25T12       | Fluorescent, (3) 48", F25T12 lamps, Instant Start Ballast, RLO (BF < 0.85) | 4' 3-Lamp T12 25W RLO | Electronic | 3                 | 25         | 60         | 15.5 |
| F44IAL-R        | F25T12       | Fluorescent, (4) 48", F25T12 lamps, Instant Start Ballast, RLO (BF < 0.85) | 4' 4-Lamp T12 25W RLO | Electronic | 4                 | 25         | 80         | 15.5 |
| F31SE/T2        | F30T12       | Fluorescent, (1) 36", STD lamp, Tandem 2-lamp ballast                      | 3' 1-Lamp T12         | Mag-ES     | 1                 | 30         | 37         | 8.5  |
| F31SL           | F30T12       | Fluorescent, (1) 36", STD lamp                                             | 3' 1-Lamp T12         | Electronic | 1                 | 30         | 31         | 15.5 |
| F31SS           | F30T12       | Fluorescent, (1) 36", STD lamp                                             | 3' 1-Lamp T12         | Mag-STD    | 1                 | 30         | 46         | 8.5  |
| F31SS/T2        | F30T12       | Fluorescent, (1) 36", STD lamp, Tandem 2-lamp ballast                      | 3' 1-Lamp T12         | Mag-STD    | 1                 | 30         | 41         | 8.5  |
| F32SE           | F30T12       | Fluorescent, (2) 36", STD lamps                                            | 3' 2-Lamp T12         | Mag-ES     | 2                 | 30         | 74         | 8.5  |
| F32SL           | F30T12       | Fluorescent, (2) 36", STD lamps                                            | 3' 2-Lamp T12         | Electronic | 2                 | 30         | 58         | 15.5 |
| F32SS           | F30T12       | Fluorescent, (2) 36", STD lamps                                            | 3' 2-Lamp T12         | Mag-STD    | 2                 | 30         | 75         | 8.5  |
| F33SE           | F30T12       | Fluorescent, (3) 36", STD lamps, (1) STD ballast and (1) ES ballast        | 3' 3-Lamp T12         | Mag-ES     | 3                 | 30         | 120        | 8.5  |
| F33SS           | F30T12       | Fluorescent, (3) 36", STD lamps                                            | 3' 3-Lamp T12         | Mag-STD    | 3                 | 30         | 127        | 8.5  |
| F34SE           | F30T12       | Fluorescent, (4) 36", STD lamps                                            | 3' 4-Lamp T12         | Mag-ES     | 4                 | 30         | 148        | 8.5  |
| F34SL           | F30T12       | Fluorescent, (4) 36", STD lamps                                            | 3' 4-Lamp T12         | Electronic | 4                 | 30         | 116        | 15.5 |
| F34SS           | F30T12       | Fluorescent, (4) 36", STD lamps                                            | 3' 4-Lamp T12         | Mag-STD    | 4                 | 30         | 150        | 8.5  |
| F36SE           | F30T12       | Fluorescent, (6) 36", STD lamps                                            | 3' 6-Lamp T12ES       | Mag-ES     | 6                 | 30         | 213        | 8.5  |
| F36SS           | F30T12       | Fluorescent, (6) 36", STD lamps                                            | 3' 6-Lamp T12         | Mag-STD    | 6                 | 30         | 225        | 8.5  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                 | Layman Term     | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|-------------------------------------------------------------|-----------------|------------|-------------------|------------|------------|------|
| F31EE/T2        | F30T12/ES    | Fluorescent, (1) 36", ES lamp, Tandem 2-lamp ballast        | 3' 1-Lamp T12ES | Mag-ES     | 1                 | 25         | 33         | 8.5  |
| F31EL           | F30T12/ES    | Fluorescent, (1) 36", ES lamp                               | 3' 1-Lamp T12ES | Electronic | 1                 | 25         | 26         | 15.5 |
| F31ES           | F30T12/ES    | Fluorescent, (1) 36", ES lamp                               | 3' 1-Lamp T12ES | Mag-STD    | 1                 | 25         | 42         | 8.5  |
| F31ES/T2        | F30T12/ES    | Fluorescent, (1) 36", ES lamp, Tandem 2-lamp ballast        | 3' 1-Lamp T12ES | Mag-STD    | 1                 | 25         | 33         | 8.5  |
| F32EE           | F30T12/ES    | Fluorescent, (2) 36", ES lamps                              | 3' 1-Lamp T12ES | Mag-ES     | 2                 | 25         | 66         | 8.5  |
| F32EL           | F30T12/ES    | Fluorescent, (2) 36", ES lamps                              | 3' 1-Lamp T12ES | Electronic | 2                 | 25         | 50         | 15.5 |
| F32ES           | F30T12/ES    | Fluorescent, (2) 36", ES lamps                              | 3' 1-Lamp T12ES | Mag-STD    | 2                 | 25         | 73         | 8.5  |
| F33ES           | F30T12/ES    | Fluorescent, (3) 36", ES lamps                              | 3' 2-Lamp T12ES | Mag-STD    | 3                 | 25         | 115        | 8.5  |
| F34EE           | F30T12/ES    | Fluorescent, (4) 36", ES lamps                              | 3' 4-Lamp T12ES | Mag-ES     | 4                 | 25         | 132        | 8.5  |
| F36EE           | F30T12/ES    | Fluorescent, (6) 36", ES lamps                              | 3' 6-Lamp T12ES | Mag-ES     | 6                 | 30         | 198        | 8.5  |
| F36ES           | F30T12/ES    | Fluorescent, (6) 36", ES lamps                              | 3' 6-Lamp T12ES | Mag-STD    | 6                 | 30         | 219        | 8.5  |
| F31SHS          | F36T12/HO    | Fluorescent, (1) 36", HO lamp                               | 3' 1-Lamp T5HO  | Mag-STD    | 1                 | 50         | 70         | 8.5  |
| F32SHS          | F36T12/HO    | Fluorescent, (2) 36", HO, lamps                             | 3' 2-Lamp T12HO | Mag-STD    | 2                 | 50         | 114        | 8.5  |
| F41SIL          | F40T12       | Fluorescent, (1) 48", STD IS lamp, Electronic ballast       | 4' 1-Lamp T12   | Electronic | 1                 | 39         | 46         | 15.5 |
| F41SIL/T2       | F40T12       | Fluorescent, (1) 48", STD IS lamp, Tandem 2-lamp IS ballast | 4' 1-Lamp T12   | Electronic | 1                 | 39         | 37         | 15.5 |
| F42SIL          | F40T12       | Fluorescent, (2) 48", STD IS lamps, Electronic ballast      | 4' 2-Lamp T12IS | Electronic | 2                 | 39         | 74         | 15.5 |
| F43SIL          | F40T12       | Fluorescent, (3) 48", STD IS lamps, Electronic ballast      | 4' 3-Lamp T12IS | Electronic | 3                 | 39         | 120        | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                            | Layman Term     | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|--------------------------------------------------------|-----------------|------------|-------------------|------------|------------|------|
| F44SIL          | F40T12       | Fluorescent, (4) 48", STD IS lamps, Electronic ballast | 4' 4-Lamp T12IS | Electronic | 4                 | 39         | 148        | 15.5 |
| F46SL           | F40T12       | Fluorescent, (6) 48", STD lamps                        | 4' 4-Lamp T12   | Electronic | 6                 | 40         | 186        | 15.5 |
| F41TS           | F40T10       | Fluorescent, (1) 48", T-10 lamp                        | 4' 1-Lamp T10   | Mag-STD    | 1                 | 40         | 51         | 8.5  |
| F41EE           | F40T12/ES    | Fluorescent, (1) 48", ES lamp                          | 4' 1-Lamp T12ES | Mag-ES     | 1                 | 34         | 43         | 8.5  |
| F41EE/2         | F40T12/ES    | Fluorescent, (1) 48", ES lamp, 2 ballast               | 4' 1-Lamp T12ES | Mag-ES     | 1                 | 34         | 43         | 8.5  |
| F41EE/T2        | F40T12/ES    | Fluorescent, (1) 48", ES lamp, Tandem 2-lamp ballast   | 4' 1-Lamp T12ES | Mag-ES     | 1                 | 34         | 36         | 8.5  |
| F41EL           | F40T12/ES    | Fluorescent, (1) 48", T12 ES lamp, Electronic Ballast  | 4' 1-Lamp T12ES | Electronic | 1                 | 34         | 32         | 15.5 |
| F42EE           | F40T12/ES    | Fluorescent, (2) 48", ES lamp                          | 4' 2-Lamp T12ES | Mag-ES     | 2                 | 34         | 72         | 8.5  |
| F42EE/2         | F40T12/ES    | Fluorescent, (2) 48", ES lamps, (2) 1-lamp ballasts    | 4' 2-Lamp T12ES | Mag-ES     | 2                 | 34         | 86         | 8.5  |
| F42EE/D2        | F40T12/ES    | Fluorescent, (2) 48", ES lamps, 2 Ballasts (delamped)  | 4' 2-Lamp T12ES | Mag-ES     | 2                 | 34         | 76         | 8.5  |
| F42EL           | F40T12/ES    | Fluorescent, (2) 48", T12 ES lamps, Electronic Ballast | 4' 2-Lamp T12ES | Electronic | 2                 | 34         | 60         | 15.5 |
| F43EE           | F40T12/ES    | Fluorescent, (3) 48", ES lamps                         | 4' 3-Lamp T12ES | Mag-ES     | 3                 | 34         | 115        | 8.5  |
| F43EE/T2        | F40T12/ES    | Fluorescent, (3) 48", ES lamps, Tandem 2-lamp ballasts | 4' 3-Lamp T12ES | Mag-ES     | 3                 | 34         | 108        | 8.5  |
| F43EL           | F40T12/ES    | Fluorescent, (3) 48", T12 ES lamps, Electronic Ballast | 4' 3-Lamp T12ES | Electronic | 3                 | 34         | 92         | 15.5 |
| F44EE           | F40T12/ES    | Fluorescent, (4) 48", ES lamps                         | 4' 3-Lamp T12ES | Mag-ES     | 4                 | 34         | 144        | 8.5  |
| F44EE/D3        | F40T12/ES    | Fluorescent, (4) 48", ES lamps, 3 Ballasts (delamped)  | 4' 4-Lamp T12ES | Mag-ES     | 4                 | 34         | 148        | 8.5  |
| F44EE/D4        | F40T12/ES    | Fluorescent, (4) 48", ES lamps, 4 Ballasts (delamped)  | 4' 3-Lamp T12ES | Mag-ES     | 4                 | 34         | 152        | 8.5  |

| Fixture<br>Code | LAMP<br>CODE     | DESCRIPTION                                                   | Layman Term        | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|------------------|---------------------------------------------------------------|--------------------|------------|-------------------|------------|------------|------|
| F44EL           | F40T12/ES        | Fluorescent, (4) 48", T12 ES lamps, Electronic Ballast        | 4' 4-Lamp T12ES    | Electronic | 4                 | 34         | 120        | 15.5 |
| F46EE           | F40T12/ES        | Fluorescent, (6) 48", ES lamps                                | 4' 6-Lamp T12ES    | Mag-ES     | 6                 | 34         | 216        | 8.5  |
| F46EL           | F40T12/ES        | Fluorescent, (6) 48", ES lamps                                | 4' 6-Lamp T12ES    | Electronic | 6                 | 34         | 180        | 15.5 |
| F48EE           | F40T12/ES        | Fluorescent, (8) 48", ES lamps                                | 4' 8-Lamp T12ES    | Mag-ES     | 8                 | 34         | 288        | 8.5  |
| F42EHS          | F42T12/HO/<br>ES | Fluorescent, (2) 42", HO lamps (3.5' lamp)                    | 4' 2-Lamp T12HO    | Mag-STD    | 2                 | 55         | 135        | 8.5  |
| F43EHS          | F42T12/HO/<br>ES | Fluorescent, (3) 42", HO lamps (3.5' lamp)                    | 4' 3-Lamp T12ES HO | Mag-STD    | 3                 | 55         | 215        | 8.5  |
| F41EIS          | F48T12/ES        | Fluorescent, (1) 48" ES Instant Start lamp. Magnetic ballast  | 4' 1-Lamp T12ES    | Mag-STD    | 1                 | 40         | 51         | 8.5  |
| F42EIS          | F48T12/ES        | Fluorescent, (2) 48" ES Instant Start lamps. Magnetic ballast | 4' 2-Lamp T12ES    | Mag-STD    | 2                 | 40         | 82         | 8.5  |
| F43EIS          | F48T12/ES        | Fluorescent, (3) 48" ES Instant Start lamps. Magnetic ballast | 4' 3-Lamp T12ES    | Mag-STD    | 3                 | 40         | 133        | 8.5  |
| F44EIS          | F48T12/ES        | Fluorescent, (4) 48" ES Instant Start lamps. Magnetic ballast | 4' 4-Lamp T12IS    | Mag-STD    | 4                 | 40         | 164        | 8.5  |
| F41SHS          | F48T12/HO        | Fluorescent, (1) 48", STD HO lamp                             | 4' 1-Lamp T12HO    | Mag-STD    | 1                 | 60         | 85         | 8.5  |
| F42SHS          | F48T12/HO        | Fluorescent, (2) 48", STD HO lamps                            | 4' 2-Lamp T12HO    | Mag-STD    | 2                 | 60         | 145        | 8.5  |
| F43SHS          | F48T12/HO        | Fluorescent, (3) 48", STD HO lamps                            | 4' 3-Lamp T12HO    | Mag-STD    | 3                 | 60         | 230        | 8.5  |
| F44SHS          | F48T12/HO        | Fluorescent, (4) 48", STD HO lamps                            | 4' 4-Lamp T12HO    | Mag-STD    | 4                 | 60         | 290        | 8.5  |
| F41EHS          | F48T12/HO/<br>ES | Fluorescent, (1) 48", ES HO lamp                              | 4' 1-Lamp T12HO    | Mag-STD    | 1                 | 55         | 80         | 8.5  |

| Fixture<br>Code | LAMP<br>CODE      | DESCRIPTION                         | Layman Term        | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W /<br>FIXT | EUL  |
|-----------------|-------------------|-------------------------------------|--------------------|------------|-------------------|------------|-------------|------|
| F44EHS          | F48T12/HO/<br>ES  | Fluorescent, (4) 48", ES HO lamps   | 4' 3-Lamp T12ES HO | Mag-STD    | 4                 | 55         | 270         | 8.5  |
| F41SVS          | F48T12/VHO        | Fluorescent, (1) 48", STD VHO lamp  | 4' 1-Lamp T12VHO   | Mag-STD    | 1                 | 110        | 140         | 8.5  |
| F42SVS          | F48T12/VHO        | Fluorescent, (2) 48", STD VHO lamps | 4' 2-Lamp T12VHO   | Mag-STD    | 2                 | 110        | 252         | 8.5  |
| F43SVS          | F48T12/VHO        | Fluorescent, (3) 48", STD VHO lamps | 4' 3-Lamp T12VHO   | Mag-STD    | 3                 | 110        | 377         | 8.5  |
| F44SVS          | F48T12/VHO        | Fluorescent, (4) 48", STD VHO lamps | 4' 4-Lamp T12VHO   | Mag-STD    | 4                 | 110        | 484         | 8.5  |
| F44EVS          | F48T12/VHO<br>/ES | Fluorescent, (4) 48", VHO ES lamps  | 4' 4-Lamp T12VHO   | Mag-STD    | 4                 | 100        | 420         | 8.5  |
| F51SL           | F60T12            | Fluorescent, (1) 60", STD lamp      | 5' 1-Lamp T12      | Electronic | 1                 | 50         | 44          | 15.5 |
| F51SS           | F60T12            | Fluorescent, (1) 60", STD lamp      | 5' 1-Lamp T12      | Mag-STD    | 1                 | 50         | 63          | 8.5  |
| F52SL           | F60T12            | Fluorescent, (2) 60", STD lamps     | 5' 2-Lamp T12      | Electronic | 2                 | 50         | 88          | 15.5 |
| F52SS           | F60T12            | Fluorescent, (2) 60", STD lamps     | 5' 2-Lamp T12      | Mag-STD    | 2                 | 50         | 128         | 8.5  |
| F51SHE          | F60T12/HO         | Fluorescent, (1) 60", STD HO lamp   | 5' 1-Lamp T12HO    | Mag-ES     | 1                 | 75         | 88          | 8.5  |
| F51SHL          | F60T12/HO         | Fluorescent, (1) 60", STD HO lamp   | 5' 1-Lamp T12HO    | Electronic | 1                 | 75         | 69          | 15.5 |
| F51SHS          | F60T12/HO         | Fluorescent, (1) 60", STD HO lamp   | 5' 1-Lamp T12HO    | Mag-STD    | 1                 | 75         | 92          | 8.5  |
| F52SHE          | F60T12/HO         | Fluorescent, (2) 60", STD HO lamps  | 5' 2-Lamp T12HO    | Mag-ES     | 2                 | 75         | 176         | 8.5  |
| F52SHL          | F60T12/HO         | Fluorescent, (2) 60", STD HO lamps  | 5' 2-Lamp T12HO    | Electronic | 2                 | 75         | 138         | 15.5 |
| F52SHS          | F60T12/HO         | Fluorescent, (2) 60", STD HO lamps  | 5' 2-Lamp T12HO    | Mag-STD    | 2                 | 75         | 168         | 8.5  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                            | Layman Term      | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|--------------------------------------------------------|------------------|------------|-------------------|------------|------------|------|
| F51SVS          | F60T12/VHO   | Fluorescent, (1) 60", VHO ES lamp                      | 5' 1-Lamp T12VHO | Mag-STD    | 1                 | 135        | 165        | 8.5  |
| F52SVS          | F60T12/VHO   | Fluorescent, (2) 60", VHO ES lamps                     | 5' 2-Lamp T12VHO | Mag-STD    | 2                 | 135        | 310        | 8.5  |
| F61ISL          | F72T12       | Fluorescent, (1) 72", STD lamp, IS electronic ballast  | 6' 1-Lamp T12    | Electronic | 1                 | 55         | 68         | 15.5 |
| F61SS           | F72T12       | Fluorescent, (1) 72", STD lamp                         | 6' 1-Lamp T12    | Mag-STD    | 1                 | 55         | 76         | 8.5  |
| F62ISL          | F72T12       | Fluorescent, (2) 72", STD lamps, IS electronic ballast | 6' 2-Lamp T12IS  | Electronic | 2                 | 55         | 108        | 15.5 |
| F62SE           | F72T12       | Fluorescent, (2) 72", STD lamps                        | 6' 2-Lamp T12    | Mag-ES     | 2                 | 55         | 122        | 8.5  |
| F62SL           | F72T12       | Fluorescent, (2) 72", STD lamps                        | 6' 2-Lamp T12    | Electronic | 2                 | 55         | 108        | 15.5 |
| F62SS           | F72T12       | Fluorescent, (2) 72", STD lamps                        | 6' 2-Lamp T12    | Mag-STD    | 2                 | 55         | 142        | 8.5  |
| F63ISL          | F72T12       | Fluorescent, (3) 72", STD lamps, IS electronic ballast | 6' 3-Lamp T12IS  | Electronic | 3                 | 55         | 176        | 15.5 |
| F63SS           | F72T12       | Fluorescent, (3) 72", STD lamps                        | 6' 3-Lamp T12    | Mag-STD    | 3                 | 55         | 202        | 8.5  |
| F64ISL          | F72T12       | Fluorescent, (4) 72", STD lamps, IS electronic ballast | 6' 4-Lamp T12IS  | Electronic | 4                 | 55         | 216        | 15.5 |
| F64SE           | F72T12       | Fluorescent, (4) 72", STD lamps                        | 6' 4-Lamp T12    | Mag-ES     | 4                 | 55         | 244        | 8.5  |
| F64SS           | F72T12       | Fluorescent, (4) 72", STD lamps                        | 6' 4-Lamp T12    | Mag-STD    | 4                 | 56         | 244        | 8.5  |
| F61SHS          | F72T12/HO    | Fluorescent, (1) 72", STD HO lamp                      | 6' 1-Lamp T12HO  | Mag-STD    | 1                 | 85         | 106        | 8.5  |
| F62SHE          | F72T12/HO    | Fluorescent, (2) 72", STD HO lamps                     | 6' 2-Lamp T12HO  | Mag-ES     | 2                 | 85         | 194        | 8.5  |
| F62SHL          | F72T12/HO    | Fluorescent, (2) 72", STD HO lamps                     | 6' 2-Lamp T12HO  | Electronic | 2                 | 85         | 167        | 15.5 |
| F62SHS          | F72T12/HO    | Fluorescent, (2) 72", STD HO lamps                     | 6' 2-Lamp T12HO  | Mag-STD    | 2                 | 85         | 200        | 8.5  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                           | Layman Term      | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|-------------------------------------------------------|------------------|------------|-------------------|------------|------------|------|
| F64SHE          | F72T12/HO    | Fluorescent, (4) 72", HO lamps                        | 6' 4-Lamp T12HO  | Mag-ES     | 4                 | 85         | 388        | 8.5  |
| F61SVS          | F72T12/VHO   | Fluorescent, (1) 72", VHO lamp                        | 6' 1-Lamp T12VHO | Mag-STD    | 1                 | 160        | 180        | 8.5  |
| F62SVS          | F72T12/VHO   | Fluorescent, (2) 72", VHO lamps                       | 6' 2-Lamp T12VHO | Mag-STD    | 2                 | 160        | 330        | 8.5  |
| F71HS           | F84T12/HO    | Fluorescent, (1) 84", HO lamp                         | 7' 1-Lamp T12HO  | Mag-ES     | 1                 | 100        | 104        | 8.5  |
| F72HS           | F84T12/HO    | Fluorescent, (2) 84", HO lamp                         | 7' 2-Lamp T12HO  | Mag-ES     | 2                 | 100        | 198        | 8.5  |
| F81SL           | F96T12       | Fluorescent, (1) 96", STD lamp                        | 8' 1-Lamp T12    | Electronic | 1                 | 75         | 69         | 15.5 |
| F81SL/T2        | F96T12       | Fluorescent, (1) 96", STD lamp, Tandem 2-lamp ballast | 8' 1-Lamp T12    | Electronic | 1                 | 75         | 55         | 15.5 |
| F82SL           | F96T12       | Fluorescent, (2) 96", STD lamps                       | 8' 2-Lamp T12    | Electronic | 2                 | 75         | 110        | 15.5 |
| F83SL           | F96T12       | Fluorescent, (3) 96", STD lamps                       | 8' 3-Lamp T12    | Electronic | 3                 | 75         | 179        | 15.5 |
| F84SL           | F96T12       | Fluorescent, (4) 96", STD lamps                       | 8' 4-Lamp T12    | Electronic | 4                 | 75         | 220        | 15.5 |
| F81EE           | F96T12/ES    | Fluorescent, (1) 96" ES lamp                          | 8' 4-Lamp T12ES  | Mag-ES     | 1                 | 60         | 75         | 8.5  |
| F81EE/T2        | F96T12/ES    | Fluorescent, (1) 96", ES lamp, Tandem 2-lamp ballast  | 8' 1-Lamp T12ES  | Mag-ES     | 1                 | 60         | 62         | 8.5  |
| F81EL           | F96T12/ES    | Fluorescent, (1) 96", ES lamp                         | 8' 1-Lamp T12ES  | Electronic | 1                 | 60         | 69         | 15.5 |
| F81EL/T2        | F96T12/ES    | Fluorescent, (1) 96", ES lamp, Tandem 2-lamp ballast  | 8' 1-Lamp T12ES  | Electronic | 1                 | 60         | 55         | 15.5 |
| F82EE           | F96T12/ES    | Fluorescent, (2) 96", ES lamps                        | 8' 2-Lamp T12ES  | Mag-ES     | 2                 | 60         | 123        | 8.5  |
| F82EL           | F96T12/ES    | Fluorescent, (2) 96", ES lamps                        | 8' 2-Lamp T12ES  | Electronic | 2                 | 60         | 110        | 15.5 |
| F83EE           | F96T12/ES    | Fluorescent, (3) 96", ES lamps                        | 8' 3-Lamp T12ES  | Mag-ES     | 3                 | 60         | 198        | 8.5  |

| Fixture<br>Code | LAMP<br>CODE     | DESCRIPTION                        | Layman Term        | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|------------------|------------------------------------|--------------------|------------|-------------------|------------|------------|------|
| F83EL           | F96T12/ES        | Fluorescent, (3) 96", ES lamps     | 8' 3-Lamp T12ES    | Electronic | 3                 | 60         | 179        | 15.5 |
| F84EE           | F96T12/ES        | Fluorescent, (4) 96", ES lamps     | 8' 4-Lamp T12ES    | Mag-ES     | 4                 | 60         | 246        | 8.5  |
| F84EL           | F96T12/ES        | Fluorescent, (4) 96", ES lamps     | 8' 4-Lamp T12ES    | Electronic | 4                 | 60         | 220        | 15.5 |
| F86EE           | F96T12/ES        | Fluorescent, (6) 96", ES lamps     | 8' 6-Lamp T12ES    | Mag-ES     | 6                 | 60         | 369        | 8.5  |
| F81SHS          | F96T12/HO        | Fluorescent, (1) 96", STD HO lamp  | 8' 1-Lamp T12HO    | Mag-STD    | 1                 | 110        | 121        | 8.5  |
| F82SHE          | F96T12/HO        | Fluorescent, (2) 96", STD HO lamps | 8' 2-Lamp T12HO    | Mag-ES     | 2                 | 110        | 207        | 8.5  |
| F82SHL          | F96T12/HO        | Fluorescent, (2) 96", STD HO lamps | 8' 2-Lamp T12HO    | Electronic | 2                 | 110        | 173        | 15.5 |
| F82SHS          | F96T12/HO        | Fluorescent, (2) 96", STD HO lamps | 8' 2-Lamp T12HO    | Mag-STD    | 2                 | 110        | 207        | 8.5  |
| F83SHE          | F96T12/HO        | Fluorescent, (3) 96", STD HO lamps | 8' 3-Lamp T12HO    | Mag-ES     | 3                 | 110        | 319        | 8.5  |
| F83SHS          | F96T12/HO        | Fluorescent, (3) 96", STD HO lamps | 8' 3-Lamp T12HO    | Mag-STD    | 3                 | 110        | 319        | 8.5  |
| F84SHE          | F96T12/HO        | Fluorescent, (4) 96", STD HO lamps | 8' 4-Lamp T12HO    | Mag-ES     | 4                 | 110        | 414        | 8.5  |
| F84SHL          | F96T12/HO        | Fluorescent, (4) 96", STD HO lamps | 8' 4-Lamp T12HO    | Electronic | 4                 | 110        | 346        | 15.5 |
| F84SHS          | F96T12/HO        | Fluorescent, (4) 96", STD HO lamps | 8' 4-Lamp T12HO    | Mag-STD    | 4                 | 110        | 414        | 8.5  |
| F88SHS          | F96T12/HO        | Fluorescent, (8) 96", STD HO lamps | 8' 8-Lamp T12HO    | Mag-STD    | 8                 | 110        | 828        | 8.5  |
| F81EHL          | F96T12/HO/<br>ES | Fluorescent, (1) 96", ES HO lamp   | 8' 1-Lamp T12ES HO | Electronic | 1                 | 95         | 80         | 15.5 |
| F81EHS          | F96T12/HO/<br>ES | Fluorescent, (1) 96", ES HO lamp   | 8' 1-Lamp T12ES HO | Mag-STD    | 1                 | 95         | 113        | 8.5  |

| Fixture<br>Code | LAMP<br>CODE     | DESCRIPTION                                                                            | Layman Term        | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|------------------|----------------------------------------------------------------------------------------|--------------------|------------|-------------------|------------|------------|------|
| F82EHE          | F96T12/HO/<br>ES | Fluorescent, (2) 96", ES HO lamps                                                      | 8' 2-Lamp T12ES HO | Mag-ES     | 2                 | 95         | 207        | 8.5  |
| F82EHL          | F96T12/HO/<br>ES | Fluorescent, (2) 96", ES HO lamps                                                      | 8' 2-Lamp T12ES HO | Electronic | 2                 | 95         | 173        | 15.5 |
| F82EHS          | F96T12/HO/<br>ES | Fluorescent, (2) 96", ES HO lamps                                                      | 8' 2-Lamp T12ES HO | Mag-STD    | 2                 | 95         | 207        | 8.5  |
| F83EHE          | F96T12/HO/<br>ES | Fluorescent, (3) 96", ES HO lamps, (1) 2-lamp ES Ballast and (1) 1-lamp<br>STD Ballast | 8' 3-Lamp T12ES HO | Mag-ES/STD | 3                 | 95         | 319        | 8.5  |
| F83EHS          | F96T12/HO/<br>ES | Fluorescent, (3) 96", ES HO lamps                                                      | 8' 3-Lamp T12ES HO | Mag-STD    | 3                 | 95         | 319        | 8.5  |
| F84EHE          | F96T12/HO/<br>ES | Fluorescent, (4) 96", ES HO lamps                                                      | 8' 4-Lamp T12ES HO | Mag-ES     | 4                 | 95         | 414        | 8.5  |
| F84EHL          | F96T12/HO/<br>ES | Fluorescent, (4) 96", ES HO lamps                                                      | 8' 4-Lamp T12ES HO | Electronic | 4                 | 95         | 346        | 15.5 |
| F84EHS          | F96T12/HO/<br>ES | Fluorescent, (4) 96", ES HO lamps                                                      | 8' 4-Lamp T12ES HO | Mag-STD    | 4                 | 95         | 414        | 8.5  |
| F86EHS          | F96T12/HO/<br>ES | Fluorescent, (6) 96", ES HO lamps                                                      | 8' 6-Lamp T12ES HO | Mag-STD    | 6                 | 95         | 519        | 8.5  |
| F88EHE          | F96T12/HO/<br>ES | Fluorescent, (8) 96", ES HO lamps                                                      | 8' 8-Lamp T12ES HO | Mag-ES     | 8                 | 95         | 828        | 8.5  |
| F81SVS          | F96T12/VHO       | Fluorescent, (1) 96", STD VHO lamp                                                     | 8' 1-Lamp T12VHO   | Mag-STD    | 1                 | 215        | 205        | 8.5  |

| Fixture<br>Code | LAMP<br>CODE      | DESCRIPTION                                                                  | Layman Term         | BALLAST | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|-------------------|------------------------------------------------------------------------------|---------------------|---------|-------------------|------------|------------|------|
| F82SVS          | F96T12/VHO        | Fluorescent, (2) 96", STD VHO lamps                                          | 8' 2-Lamp T12VHO    | Mag-STD | 2                 | 215        | 380        | 8.5  |
| F83SVS          | F96T12/VHO        | Fluorescent, (3) 96", STD VHO lamps                                          | 8' 3-Lamp T12VHO    | Mag-STD | 3                 | 215        | 585        | 8.5  |
| F84SVS          | F96T12/VHO        | Fluorescent, (4) 96", STD VHO lamps                                          | 8' 4-Lamp T12VHO    | Mag-STD | 4                 | 215        | 760        | 8.5  |
| F81EVS          | F96T12/VHO<br>/ES | Fluorescent, (1) 96", ES VHO lamp                                            | 8' 1-Lamp T12ES VHO | Mag-STD | 1                 | 185        | 205        | 8.5  |
| F82EVS          | F96T12/VHO<br>/ES | Fluorescent, (2) 96", ES VHO lamps                                           | 8' 2-Lamp T12ES VHO | Mag-STD | 2                 | 195        | 380        | 8.5  |
| F83EVS          | F96T12/VHO<br>/ES | Fluorescent, (3) 96", ES VHO lamps                                           | 8' 3-Lamp T12ES VHO | Mag-STD | 3                 | 185        | 585        | 8.5  |
| F84EVS          | F96T12/VHO<br>/ES | Fluorescent, (4) 96", ES VHO lamps                                           | 8' 4-Lamp T12ES VHO | Mag-STD | 4                 | 185        | 760        | 8.5  |
| F81SGS          | F96T17            | Fluorescent, (1) 96", T17 Grooved lamp                                       | 8' 1-Lamp T12       | Mag-STD | 1                 | 215        | 235        | 8.5  |
| F40SE/D1        | None              | Fluorescent, (0) 48" lamps, Completely delamped fixture with (1) hot ballast |                     | Mag-ES  | 1                 | 0          | 4          | 8.5  |
| F40SE/D2        | None              | Fluorescent, (0) 48" lamps, Completely delamped fixture with (2) hot ballast |                     | Mag-ES  | 1                 | 0          | 8          | 8.5  |
| FC              |                   | Circline Fluorescent Fixtures                                                |                     |         |                   |            |            |      |
| FC6/1           | FC6T9             | Fluorescent, (1) 6" circular lamp, RS ballast                                | 6" 1-Lamp T9 Cir    | Mag-STD | 1                 | 20         | 25         | 15.5 |
| FC8/1           | FC8T9             | Fluorescent, (1) 8" circular lamp, RS ballast                                | 8" 1-Lamp T9 Cir    | Mag-STD | 1                 | 22         | 26         | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                          | Layman Term           | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|------------------------------------------------------|-----------------------|------------|-------------------|------------|------------|------|
| FC8/2           | FC8T9        | Fluorescent, (2) 8" circular lamps, RS ballast       | 8" 2-Lamp T9 Cir      | Mag-STD    | 2                 | 22         | 52         | 15.5 |
| FC20            | FC6T9        | Fluorescent, Circline, (1) 20W lamp, preheat ballast | 20W 1-Lamp T9 Cir     | Mag-STD    | 1                 | 20         | 20         | 15.5 |
| FC22            | FC8T9        | Fluorescent, Circline, (1) 22W lamp, preheat ballast | 22W 1-Lamp T9 Cir     | Mag-STD    | 1                 | 22         | 20         | 15.5 |
| FC12/1          | FC12T9       | Fluorescent, (1) 12" circular lamp, RS ballast       | 12" 1-Lamp T9 Cir     | Mag-STD    | 1                 | 32         | 31         | 15.5 |
| FC12/2          | FC12T9       | Fluorescent, (2) 12" circular lamps, RS ballast      | 12" 2-Lamp T9 Cir     | Mag-STD    | 2                 | 32         | 62         | 15.5 |
| FC32            | FC12T9       | Fluorescent, Circline, (1) 32W lamp, preheat ballast | 32W 1-Lamp T9 Cir     | Mag-STD    | 1                 | 32         | 40         | 15.5 |
| FC16/1          | FC16T9       | Fluorescent, (1) 16" circular lamp                   | 16" 1-Lamp T9 Cir     | Mag-STD    | 1                 | 40         | 35         | 15.5 |
| FC40            | FC16T9       | Fluorescent, Circline, (1) 32W lamp, preheat ballast | 40W 1-Lamp T9 Cir     | Mag-STD    | 1                 | 32         | 42         | 15.5 |
| FEI             |              | Fluorescent Electrodeless Induction Fixtures         |                       |            |                   |            |            |      |
| FEI40/1         | CFT40W       | Electrodeless Fluorescent System, (1) 40W lamp       | 1-Lamp 40W Induction  | Electronic | 1                 | 40         | 44         | 15.5 |
| FEI55/1         | CFT55W       | Electrodeless Fluorescent System, (1) 55W lamp       | 1-Lamp 55W Induction  | Electronic | 1                 | 55         | 59         | 15.5 |
| FEI60/1         | CFT60W       | Electrodeless Fluorescent System, (1) 60W lamp       | 1-Lamp 60W Induction  | Electronic | 1                 | 60         | 64         | 15.5 |
| FEI70/1         | CFT70W       | Electrodeless Fluorescent System, (1) 70W lamp       | 1-Lamp 70W Induction  | Electronic | 1                 | 70         | 74         | 15.5 |
| FEI80/1         | CFT80W       | Electrodeless Fluorescent System, (1) 80W lamp       | 1-Lamp 80W Induction  | Electronic | 1                 | 80         | 84         | 15.5 |
| FEI85/1         | CFT85W       | Electrodeless Fluorescent System, (1) 85W lamp       | 1-Lamp 85W Induction  | Electronic | 1                 | 85         | 89         | 15.5 |
| FEI100/1        | CFT100W      | Electrodeless Fluorescent System, (1) 100W lamp      | 1-Lamp 100W Induction | Electronic | 1                 | 100        | 105        | 15.5 |
| FEI125/1        | CFT125W      | Electrodeless Fluorescent System, (1) 125W lamp      | 1-Lamp 125W Induction | Electronic | 1                 | 125        | 131        | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                              | Layman Term           | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|------------------------------------------------------------------------------------------|-----------------------|------------|-------------------|------------|------------|------|
| FEI150/1        | CFT150W      | Electrodeless Fluorescent System, (1) 150W lamp                                          | 1-Lamp 150W Induction | Electronic | 1                 | 150        | 157        | 15.5 |
| FEI165/1        | CFT165W      | Electrodeless Fluorescent System, (1) 165W lamp                                          | 1-Lamp 165W Induction | Electronic | 1                 | 165        | 173        | 15.5 |
| FEI200/1        | CFT200W      | Electrodeless Fluorescent System, (1) 200W lamp                                          | 1-Lamp 200W Induction | Electronic | 1                 | 200        | 210        | 15.5 |
| FEI250/1        | CFT250W      | Electrodeless Fluorescent System, (1) 250W lamp                                          | 1-Lamp 250W Induction | Electronic | 1                 | 250        | 263        | 15.5 |
| FEI300/1        | CFT300W      | Electrodeless Fluorescent System, (1) 300W lamp                                          | 1-Lamp 300W Induction | Electronic | 1                 | 300        | 315        | 15.5 |
| FEI400/1        | CFT400W      | Electrodeless Fluorescent System, (1) 400W lamp                                          | 1-Lamp 400W Induction | Electronic | 1                 | 400        | 420        | 15.5 |
| FU              |              | U-Tube Fluorescent Fixtures                                                              |                       |            |                   |            |            |      |
| FU1ILL          | FU31T8/6     | Fluorescent, (1) U-Tube, T-8 lamp, Instant Start ballast                                 | 1-Lamp T8 U-Tube      | Electronic | 1                 | 32         | 31         | 15.5 |
| FU1LL           | FU31T8/6     | Fluorescent, (1) U-Tube, T-8 lamp                                                        | 1-Lamp T8 U-Tube      | Electronic | 1                 | 32         | 32         | 15.5 |
| FU1LL-R         | FU31T8/6     | Fluorescent, (1) U-Tube, T-8 lamp, RLO (BF < 0.85)                                       | 1-Lamp T8 U-Tube      | Electronic | 1                 | 31         | 27         | 15.5 |
| FU2ILL          | FU31T8/6     | Fluorescent, (2) U-Tube, T-8 lamps, Instant Start Ballast                                | 1-Lamp T8 U-Tube      | Electronic | 2                 | 32         | 59         | 15.5 |
| FU2ILL-H        | FU31T8/6     | Fluorescent, (2) U-Tube, T-8 lamps, Instant Start HLO Ballast                            | 2-Lamp T8 HLO U-Tube  | Electronic | 2                 | 32         | 65         | 15.5 |
| FU2ILL-R        | FU31T8/6     | Fluorescent, (2) U-Tube, T-8 lamps, Instant Start RLO Ballast                            | 2-Lamp T8 RLO U-Tube  | Electronic | 2                 | 32         | 52         | 15.5 |
| FU2ILL/T4       | FU31T8/6     | Fluorescent, (2) U-Tube, T-8 lamps, Instant Start Ballast, Tandem 4-<br>lamp ballast     | 2-Lamp T8 U-Tube      | Electronic | 2                 | 32         | 56         | 15.5 |
| FU2ILL/T4<br>-R | FU31T8/6     | Fluorescent, (2) U-Tube, T-8 lamps, Instant Start Ballast, RLO, Tandem<br>4-lamp ballast | 2-Lamp T8 RLO U-Tube  | Electronic | 2                 | 32         | 49         | 15.5 |
| FU2LL           | FU31T8/6     | Fluorescent, (2) U-Tube, T-8 lamps                                                       | 2-Lamp T8 U-Tube      | Electronic | 2                 | 32         | 60         | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                       | Layman Term                          | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|-----------------------------------------------------------------------------------|--------------------------------------|------------|-------------------|------------|------------|------|
| FU2LL-R         | FU31T8/6     | Fluorescent, (2) U-Tube, T-8 lamps, RLO (BF < 0.85)                               | 2-Lamp T8 RLO U-Tube                 | Electronic | 2                 | 31         | 54         | 15.5 |
| FU2LL/T2        | FU31T8/6     | Fluorescent, (2) U-Tube, T-8 lamps, Tandem 4-lamp ballast                         | 2-Lamp T8 U-Tube                     | Electronic | 2                 | 32         | 59         | 15.5 |
| FU3ILL          | FU31T8/6     | Fluorescent, (3) U-Tube, T-8 lamps, Instant Start Ballast                         | 3-Lamp T8 U-Tube                     | Electronic | 3                 | 32         | 89         | 15.5 |
| FU3ILL-R        | FU31T8/6     | Fluorescent, (3) U-Tube, T-8 lamps, Instant Start RLO Ballast                     | 3-Lamp T8ES U-Tube                   | Electronic | 3                 | 32         | 78         | 15.5 |
| FU1ILU          | FU32T8/6     | Fluorescent, (1) 6" spacing U-Tube, T-8 lamp, IS Ballast, NLO (0.85 < BF < 0.95)  | 1-Lamp T8 6" Spacing U-<br>Tube      | Electronic | 1                 | 32         | 29         | 15.5 |
| FU1ILU-H        | FU32T8/6     | Fluorescent, (1) 6" spacing U-Tube, T-8 lamp, IS Ballast, HLO (.95 < BF < 1.1)    | 1-Lamp T8 6" Spacing U-<br>Tube HLO  | Electronic | 1                 | 32         | 34         | 15.5 |
| FU2ILU          | FU32T8/6     | Fluorescent, (2) 6" spacing U-Tube, T-8 lamps, IS Ballast, NLO (0.85 < BF < 0.95) | 2-Lamp T8 6" Spacing U-<br>Tube      | Electronic | 2                 | 32         | 55         | 15.5 |
| FU2ILU-R        | FU32T8/6     | Fluorescent, (2) 6" spacing U-Tube, T-8 lamps, IS Ballast, RLO (BF < 0.85)        | 2-Lamp T8 6" Spacing U-<br>Tube RLO  | Electronic | 2                 | 32         | 48         | 15.5 |
| FU2ILU-V        | FU32T8/6     | Fluorescent, (2) 6" spacing U-Tube, T-8 lamps, IS Ballast, VHLO (BF > 1.1)        | 2-Lamp T8 6" Spacing U-<br>Tube VHLO | Electronic | 2                 | 32         | 73         | 15.5 |
| FU3ILU          | FU32T8/6     | Fluorescent, (3) 6" spacing U-Tube, T-8 lamps, IS Ballast, NLO (0.85 < BF < 0.95) | 3-Lamp T8 6" Spacing U-<br>Tube      | Electronic | 3                 | 32         | 81         | 15.5 |
| FU3ILU-R        | FU32T8/6     | Fluorescent, (3) 6" spacing U-Tube, T-8 lamps, IS Ballast, RLO (BF < 0.85)        | 3-Lamp T8 6" Spacing U-<br>Tube RLO  | Electronic | 3                 | 32         | 73         | 15.5 |
| FU1SE           | FU40T12      | Fluorescent, (1) U-Tube, STD lamp                                                 | 1-Lamp T12 U-Tube                    | Mag-ES     | 1                 | 40         | 43         | 15.5 |
| FU1SS           | FU40T12      | Fluorescent, (1) U-Tube, ES Lamp                                                  | 1-Lamp T12 U-Tube ES                 | Mag-STD    | 1                 | 40         | 43         | 8.5  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                                              | Layman Term         | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|------------------------------------------------------------------------------------------|---------------------|------------|-------------------|------------|------------|------|
| FU2SE           | FU40T12      | Fluorescent, (2) U-Tube, STD lamps                                                       | 2-Lamp T12 U-Tube   | Mag-ES     | 2                 | 40         | 72         | 15.5 |
| FU2SL           | FU40T12      | Fluorescent (2) 48" U-bent Standard lamps, Electronic ballast, NLO<br>(0.85 < BF < 0.95) | 2-Lamp T12 U-Tube   | Electronic | 2                 | 40         | 63         | 15.5 |
| FU2SS           | FU40T12      | Fluorescent, (1) U-Tube, STD lamp, STD Mag Ballast                                       | 2-Lamp T12 U-Tube   | Mag-STD    | 2                 | 40         | 72         | 8.5  |
| FU3SE           | FU40T12      | Fluorescent, (3) U-Tube, STD lamps                                                       | 3-Lamp T12 U-Tube   | Mag-ES     | 3                 | 40         | 115        | 15.5 |
| FU1EE           | FU40T12/ES   | Fluorescent, (1) U-Tube, ES lamp                                                         | 1-Lamp T12ES U-Tube | Mag-ES     | 1                 | 35         | 43         | 15.5 |
| FU1ES           | FU40T12/ES   | Fluorescent, (1) U-Tube, ES Lamp                                                         | 1-Lamp T12ES U-Tube | Mag-STD    | 1                 | 34         | 43         | 8.5  |
| FU2EE           | FU40T12/ES   | Fluorescent, (2) U-Tube, ES lamps                                                        | 1-Lamp T12ES U-Tube | Mag-ES     | 2                 | 35         | 72         | 15.5 |
| FU2EL           | FU40T12/ES   | Fluorescent (2) 48" U-bent ES lamps, Electronic ballast, NLO (0.85 <<br>BF < 0.95)       | 1-Lamp T12ES U-Tube | Electronic | 2                 | 34         | 63         | 15.5 |
| FU2ES           | FU40T12/ES   | Fluorescent, (2) U-Tube, ES lamps                                                        | 1-Lamp T12ES U-Tube | Mag-STD    | 1                 | 35         | 72         | 8.5  |
| FU3EE           | FU40T12/ES   | Fluorescent, (3) U-Tube, ES lamps                                                        | 3-Lamp T12ES U-Tube | Mag-ES     | 3                 | 35         | 115        | 15.5 |
| н               |              | Halogen Incandescent Fixtures                                                            |                     |            |                   |            |            |      |
| H20/1           | H20          | Halogen, (1) 20W lamp                                                                    | 20W 1-Lamp Halogen  |            | 1                 | 20         | 20         | 1.5  |
| H21/1           | H21          | Halogen, (1) 21W lamp                                                                    | 21W 1-Lamp Halogen  |            | 1                 | 21         | 21         | 1.5  |
| H22/1           | H22          | Halogen, (1) 22W lamp                                                                    | 22W 1-Lamp Halogen  |            | 1                 | 22         | 22         | 1.5  |
| H23/1           | H23          | Halogen, (1) 23W lamp                                                                    | 23W 1-Lamp Halogen  |            | 1                 | 23         | 23         | 1.5  |
| H24/1           | H24          | Halogen, (1) 24W lamp                                                                    | 24W 1-Lamp Halogen  |            | 1                 | 24         | 24         | 1.5  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION           | Layman Term        | BALLAST | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-----------------------|--------------------|---------|-------------------|------------|------------|-----|
| H25/1           | H25          | Halogen, (1) 25W lamp | 25W 1-Lamp Halogen |         | 1                 | 25         | 25         | 1.5 |
| H26/1           | H26          | Halogen, (1) 26W lamp | 26W 1-Lamp Halogen |         | 1                 | 26         | 26         | 1.5 |
| H27/1           | H27          | Halogen, (1) 27W lamp | 27W 1-Lamp Halogen |         | 1                 | 27         | 27         | 1.5 |
| H28/1           | H28          | Halogen, (1) 28W lamp | 28W 1-Lamp Halogen |         | 1                 | 28         | 28         | 1.5 |
| H29/1           | H29          | Halogen, (1) 29W lamp | 29W 1-Lamp Halogen |         | 1                 | 29         | 29         | 1.5 |
| H30/1           | Н30          | Halogen, (1) 30W lamp | 30W 1-Lamp Halogen |         | 1                 | 30         | 30         | 1.5 |
| H31/1           | H31          | Halogen, (1) 31W lamp | 31W 1-Lamp Halogen |         | 1                 | 31         | 31         | 1.5 |
| H32/1           | H32          | Halogen, (1) 32W lamp | 32W 1-Lamp Halogen |         | 1                 | 32         | 32         | 1.5 |
| H33/1           | Н33          | Halogen, (1) 33W lamp | 33W 1-Lamp Halogen |         | 1                 | 33         | 33         | 1.5 |
| H34/1           | H34          | Halogen, (1) 34W lamp | 34W 1-Lamp Halogen |         | 1                 | 34         | 34         | 1.5 |
| H35/1           | H35          | Halogen, (1) 35W lamp | 35W 1-Lamp Halogen |         | 1                 | 35         | 35         | 1.5 |
| H36/1           | H36          | Halogen, (1) 36W lamp | 36W 1-Lamp Halogen |         | 1                 | 36         | 36         | 1.5 |
| H37/1           | H37          | Halogen, (1) 37W lamp | 37W 1-Lamp Halogen |         | 1                 | 37         | 37         | 1.5 |
| H38/1           | H38          | Halogen, (1) 38W lamp | 38W 1-Lamp Halogen |         | 1                 | 38         | 38         | 1.5 |
| H39/1           | Н39          | Halogen, (1) 39W lamp | 39W 1-Lamp Halogen |         | 1                 | 39         | 39         | 1.5 |
| H40/1           | H40          | Halogen, (1) 40W lamp | 40W 1-Lamp Halogen |         | 1                 | 40         | 40         | 1.5 |
| H41/1           | H41          | Halogen, (1) 41W lamp | 41W 1-Lamp Halogen |         | 1                 | 41         | 41         | 1.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION           | Layman Term        | BALLAST | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-----------------------|--------------------|---------|-------------------|------------|------------|-----|
| H42/1           | H42          | Halogen, (1) 42W lamp | 42W 1-Lamp Halogen |         | 1                 | 42         | 42         | 1.5 |
| H43/1           | H43          | Halogen, (1) 43W lamp | 43W 1-Lamp Halogen |         | 1                 | 43         | 43         | 1.5 |
| H44/1           | H44          | Halogen, (1) 44W lamp | 44W 1-Lamp Halogen |         | 1                 | 44         | 44         | 1.5 |
| H45/1           | H45          | Halogen, (1) 45W lamp | 45W 1-Lamp Halogen |         | 1                 | 45         | 45         | 1.5 |
| H46/1           | H46          | Halogen, (1) 46W lamp | 46W 1-Lamp Halogen |         | 1                 | 46         | 46         | 1.5 |
| H47/1           | H47          | Halogen, (1) 47W lamp | 47W 1-Lamp Halogen |         | 1                 | 47         | 47         | 1.5 |
| H48/1           | H48          | Halogen, (1) 48W lamp | 48W 1-Lamp Halogen |         | 1                 | 48         | 48         | 1.5 |
| H49/1           | H49          | Halogen, (1) 49W lamp | 49W 1-Lamp Halogen |         | 1                 | 49         | 49         | 1.5 |
| H50/1           | H50          | Halogen, (1) 50W lamp | 50W 1-Lamp Halogen |         | 1                 | 50         | 50         | 1.5 |
| H51/1           | H51          | Halogen, (1) 51W lamp | 51W 1-Lamp Halogen |         | 1                 | 51         | 51         | 1.5 |
| H52/1           | H52          | Halogen, (1) 52W lamp | 52W 1-Lamp Halogen |         | 1                 | 52         | 52         | 1.5 |
| H53/1           | H53          | Halogen, (1) 53W lamp | 53W 1-Lamp Halogen |         | 1                 | 53         | 53         | 1.5 |
| H54/1           | H54          | Halogen, (1) 54W lamp | 54W 1-Lamp Halogen |         | 1                 | 54         | 54         | 1.5 |
| H55/1           | H55          | Halogen, (1) 55W lamp | 55W 1-Lamp Halogen |         | 1                 | 55         | 55         | 1.5 |
| H56/1           | H56          | Halogen, (1) 56W lamp | 56W 1-Lamp Halogen |         | 1                 | 56         | 56         | 1.5 |
| H57/1           | H57          | Halogen, (1) 57W lamp | 57W 1-Lamp Halogen |         | 1                 | 57         | 57         | 1.5 |
| H58/1           | Н58          | Halogen, (1) 58W lamp | 58W 1-Lamp Halogen |         | 1                 | 58         | 58         | 1.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION           | Layman Term        | BALLAST | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-----------------------|--------------------|---------|-------------------|------------|------------|-----|
| H59/1           | H59          | Halogen, (1) 59W lamp | 59W 1-Lamp Halogen |         | 1                 | 59         | 59         | 1.5 |
| H60/1           | H60          | Halogen, (1) 60W lamp | 60W 1-Lamp Halogen |         | 1                 | 60         | 60         | 1.5 |
| H61/1           | H61          | Halogen, (1) 61W lamp | 61W 1-Lamp Halogen |         | 1                 | 61         | 61         | 1.5 |
| H62/1           | H62          | Halogen, (1) 62W lamp | 62W 1-Lamp Halogen |         | 1                 | 62         | 62         | 1.5 |
| H63/1           | H63          | Halogen, (1) 63W lamp | 63W 1-Lamp Halogen |         | 1                 | 63         | 63         | 1.5 |
| H64/1           | H64          | Halogen, (1) 64W lamp | 64W 1-Lamp Halogen |         | 1                 | 64         | 64         | 1.5 |
| H65/1           | H65          | Halogen, (1) 65W lamp | 65W 1-Lamp Halogen |         | 1                 | 65         | 65         | 1.5 |
| H66/1           | H66          | Halogen, (1) 66W lamp | 66W 1-Lamp Halogen |         | 1                 | 66         | 66         | 1.5 |
| H67/1           | H67          | Halogen, (1) 67W lamp | 67W 1-Lamp Halogen |         | 1                 | 67         | 67         | 1.5 |
| H68/1           | H68          | Halogen, (1) 68W lamp | 68W 1-Lamp Halogen |         | 1                 | 68         | 68         | 1.5 |
| H69/1           | Н69          | Halogen, (1) 69W lamp | 69W 1-Lamp Halogen |         | 1                 | 69         | 69         | 1.5 |
| H70/1           | H70          | Halogen, (1) 70W lamp | 70W 1-Lamp Halogen |         | 1                 | 70         | 70         | 1.5 |
| H71/1           | H71          | Halogen, (1) 71W lamp | 71W 1-Lamp Halogen |         | 1                 | 71         | 71         | 1.5 |
| H72/1           | H72          | Halogen, (1) 72W lamp | 72W 1-Lamp Halogen |         | 1                 | 72         | 72         | 1.5 |
| H73/1           | Н73          | Halogen, (1) 73W lamp | 73W 1-Lamp Halogen |         | 1                 | 73         | 73         | 1.5 |
| H74/1           | H74          | Halogen, (1) 74W lamp | 74W 1-Lamp Halogen |         | 1                 | 74         | 74         | 1.5 |
| H75/1           | H75          | Halogen, (1) 75W lamp | 75W 1-Lamp Halogen |         | 1                 | 75         | 75         | 1.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                         | Layman Term         | BALLAST | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|-------------------------------------|---------------------|---------|-------------------|------------|------------|------|
| H80/1           | H80          | Halogen, (1) 80W lamp               | 80W 1-Lamp Halogen  |         | 1                 | 80         | 80         | 1.5  |
| H90/1           | Н90          | Halogen, (1) 90W lamp               | 90W 1-Lamp Halogen  |         | 1                 | 90         | 90         | 1.5  |
| H100/1          | H100         | Halogen, (1) 100W lamp              | 100W 1-Lamp Halogen |         | 1                 | 100        | 100        | 1.5  |
| H150/1          | H150         | Halogen, (1) 150W lamp              | 150W 1-Lamp Halogen |         | 1                 | 150        | 150        | 1.5  |
| H250/1          | H250         | Halogen, (1) 250W lamp              | 250W 1-Lamp Halogen |         | 1                 | 250        | 250        | 1.5  |
| H300/1          | H300         | Halogen, (1) 300W lamp              | 300W 1-Lamp Halogen |         | 1                 | 300        | 300        | 1.5  |
| H500/1          | H500         | Halogen, (1) 500W lamp              | 500W 1-Lamp Halogen |         | 1                 | 500        | 500        | 1.5  |
| HPS             |              | High Pressure Sodium Fixtures       |                     |         |                   |            |            |      |
| HPS35/1         | HPS35        | High Pressure Sodium, (1) 35W lamp  | 35W HPS             |         | 1                 | 35         | 46         | 15.5 |
| HPS50/1         | HPS50        | High Pressure Sodium, (1) 50W lamp  | 50W HPS             |         | 1                 | 50         | 66         | 15.5 |
| HPS70/1         | HPS70        | High Pressure Sodium, (1) 70W lamp  | 70W HPS             |         | 1                 | 70         | 95         | 15.5 |
| HPS100/1        | HPS100       | High Pressure Sodium, (1) 100W lamp | 100W HPS            |         | 1                 | 100        | 138        | 15.5 |
| HPS150/1        | HPS150       | High Pressure Sodium, (1) 150W lamp | 150W HPS            |         | 1                 | 150        | 188        | 15.5 |
| HPS200/1        | HPS200       | High Pressure Sodium, (1) 200W lamp | 200W HPS            |         | 1                 | 200        | 250        | 15.5 |
| HPS250/1        | HPS250       | High Pressure Sodium, (1) 250W lamp | 250W HPS            |         | 1                 | 250        | 295        | 15.5 |
| HPS310/1        | HPS310       | High Pressure Sodium, (1) 310W lamp | 310W HPS            |         | 1                 | 310        | 365        | 15.5 |
| HPS360/1        | HPS360       | High Pressure Sodium, (1) 360W lamp | 360W HPS            |         | 1                 | 360        | 414        | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                                          | Layman Term       | BALLAST | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|----------------------------------------------------------------------|-------------------|---------|-------------------|------------|------------|------|
| HPS400/1        | HPS400       | High Pressure Sodium, (1) 400W lamp                                  | 400W HPS          |         | 1                 | 400        | 465        | 15.5 |
| HPS1000/<br>1   | HPS1000      | High Pressure Sodium, (1) 1000W lamp                                 | 1000W HPS         |         | 1                 | 1000       | 1100       | 15.5 |
| I               |              | Standard Incandescent Fixtures                                       |                   |         |                   |            |            |      |
| 17.5/1          | 17.5         | Tungsten exit light, (1) 7.5 W lamp, used in night light application | 7.5W incandescent |         | 1                 | 7.5        | 8          | 1.5  |
| 110/1           | 110          | Incandescent, (1) 10W lamp                                           | 10W incandescent  |         | 1                 | 10         | 10         | 1.5  |
| 111/1           | 111          | Incandescent, (1) 11W lamp                                           | 11W incandescent  |         | 1                 | 11         | 11         | 1.5  |
| 112/1           | 112          | Incandescent, (1) 12W lamp                                           | 12W incandescent  |         | 1                 | 12         | 12         | 1.5  |
| 113/1           | 113          | Incandescent, (1) 13W lamp                                           | 13W incandescent  |         | 1                 | 13         | 13         | 1.5  |
| 114/1           | 114          | Incandescent, (1) 14W lamp                                           | 14W incandescent  |         | 1                 | 14         | 14         | 1.5  |
| 115/1           | 115          | Incandescent, (1) 15W lamp                                           | 15W incandescent  |         | 1                 | 15         | 15         | 1.5  |
| 116/1           | 116          | Incandescent, (1) 16W lamp                                           | 16W incandescent  |         | 1                 | 16         | 16         | 1.5  |
| 117/1           | 117          | Incandescent, (1) 17W lamp                                           | 17W incandescent  |         | 1                 | 17         | 17         | 1.5  |
| 118/1           | 118          | Incandescent, (1) 18W lamp                                           | 18W incandescent  |         | 1                 | 18         | 18         | 1.5  |
| 119/1           | 119          | Incandescent, (1) 19W lamp                                           | 19W incandescent  |         | 1                 | 19         | 19         | 1.5  |
| 120/1           | 120          | Incandescent, (1) 20W lamp                                           | 20W incandescent  |         | 1                 | 20         | 20         | 1.5  |
| 121/1           | 121          | Incandescent, (1) 21W lamp                                           | 21W incandescent  |         | 1                 | 21         | 21         | 1.5  |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                | Layman Term      | BALLAST | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|----------------------------|------------------|---------|-------------------|------------|------------|-----|
| 122/1           | 122          | Incandescent, (1) 22W lamp | 22W incandescent |         | 1                 | 22         | 22         | 1.5 |
| 123/1           | 123          | Incandescent, (1) 23W lamp | 23W incandescent |         | 1                 | 23         | 23         | 1.5 |
| 124/1           | 124          | Incandescent, (1) 24W lamp | 24W incandescent |         | 1                 | 24         | 24         | 1.5 |
| 125/1           | 125          | Incandescent, (1) 25W lamp | 25W incandescent |         | 1                 | 25         | 25         | 1.5 |
| 126/1           | 126          | Incandescent, (1) 26W lamp | 26W incandescent |         | 1                 | 26         | 26         | 1.5 |
| 127/1           | 127          | Incandescent, (1) 27W lamp | 27W incandescent |         | 1                 | 27         | 27         | 1.5 |
| 128/1           | 128          | Incandescent, (1) 28W lamp | 28W incandescent |         | 1                 | 28         | 28         | 1.5 |
| 129/1           | 129          | Incandescent, (1) 29W lamp | 29W incandescent |         | 1                 | 29         | 29         | 1.5 |
| 130/1           | 130          | Incandescent, (1) 30W lamp | 30W incandescent |         | 1                 | 30         | 30         | 1.5 |
| 131/1           | 131          | Incandescent, (1) 31W lamp | 31W incandescent |         | 1                 | 31         | 31         | 1.5 |
| 132/1           | 132          | Incandescent, (1) 32W lamp | 32W incandescent |         | 1                 | 32         | 32         | 1.5 |
| 133/1           | 133          | Incandescent, (1) 33W lamp | 33W incandescent |         | 1                 | 33         | 33         | 1.5 |
| 134/1           | 134          | Incandescent, (1) 34W lamp | 34W incandescent |         | 1                 | 34         | 34         | 1.5 |
| 135/1           | 135          | Incandescent, (1) 35W lamp | 35W incandescent |         | 1                 | 35         | 35         | 1.5 |
| 136/1           | 136          | Incandescent, (1) 36W lamp | 36W incandescent |         | 1                 | 36         | 36         | 1.5 |
| 137/1           | 137          | Incandescent, (1) 37W lamp | 37W incandescent |         | 1                 | 37         | 37         | 1.5 |
| 138/1           | 138          | Incandescent, (1) 38W lamp | 38W incandescent |         | 1                 | 38         | 38         | 1.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                      | Layman Term      | BALLAST | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|----------------------------------|------------------|---------|-------------------|------------|------------|-----|
| 139/1           | 139          | Incandescent, (1) 39W lamp       | 39W incandescent |         | 1                 | 39         | 39         | 1.5 |
| 140/1           | 140          | Incandescent, (1) 40W lamp       | 40W incandescent |         | 1                 | 40         | 40         | 1.5 |
| 140E/1          | 140/ES       | Incandescent, (1) 40W ES lamp    | 40W incandescent |         | 1                 | 29         | 29         | 1.5 |
| 140EL/1         | I40/ES/LL    | Incandescent, (1) 40W ES/LL lamp | 40W incandescent |         | 1                 | 34         | 34         | 1.5 |
| 141/1           | 141          | Incandescent, (1) 41W lamp       | 41W incandescent |         | 1                 | 41         | 41         | 1.5 |
| 142/1           | 142          | Incandescent, (1) 42W lamp       | 42W incandescent |         | 1                 | 42         | 42         | 1.5 |
| 143/1           | 143          | Incandescent, (1) 43W lamp       | 43W incandescent |         | 1                 | 43         | 43         | 1.5 |
| 144/1           | 144          | Incandescent, (1) 44W lamp       | 44W incandescent |         | 1                 | 44         | 44         | 1.5 |
| 145/1           | 145          | Incandescent, (1) 45W lamp       | 45W incandescent |         | 1                 | 45         | 45         | 1.5 |
| 146/1           | 146          | Incandescent, (1) 46W lamp       | 46W incandescent |         | 1                 | 46         | 46         | 1.5 |
| 147/1           | 147          | Incandescent, (1) 47W lamp       | 47W incandescent |         | 1                 | 47         | 47         | 1.5 |
| 148/1           | 148          | Incandescent, (1) 48W lamp       | 48W incandescent |         | 1                 | 48         | 48         | 1.5 |
| 149/1           | 149          | Incandescent, (1) 49W lamp       | 49W incandescent |         | 1                 | 49         | 49         | 1.5 |
| 150/1           | 150          | Incandescent, (1) 50W lamp       | 50W incandescent |         | 1                 | 50         | 50         | 1.5 |
| 151/1           | 151          | Incandescent, (1) 51W lamp       | 51W incandescent |         | 1                 | 51         | 51         | 1.5 |
| 152/1           | 152          | Incandescent, (1) 52W lamp       | 52W incandescent |         | 1                 | 52         | 52         | 1.5 |
| 153/1           | 153          | Incandescent, (1) 53W lamp       | 53W incandescent |         | 1                 | 53         | 53         | 1.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                      | Layman Term      | BALLAST | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|----------------------------------|------------------|---------|-------------------|------------|------------|-----|
| 154/1           | 154          | Incandescent, (1) 54W lamp       | 54W incandescent |         | 1                 | 54         | 54         | 1.5 |
| 155/1           | 155          | Incandescent, (1) 55W lamp       | 55W incandescent |         | 1                 | 55         | 55         | 1.5 |
| 156/1           | 156          | Incandescent, (1) 56W lamp       | 56W incandescent |         | 1                 | 56         | 56         | 1.5 |
| 157/1           | 157          | Incandescent, (1) 57W lamp       | 57W incandescent |         | 1                 | 57         | 57         | 1.5 |
| 158/1           | 158          | Incandescent, (1) 58W lamp       | 58W incandescent |         | 1                 | 58         | 58         | 1.5 |
| 159/1           | 159          | Incandescent, (1) 59W lamp       | 59W incandescent |         | 1                 | 59         | 59         | 1.5 |
| 160/1           | 160          | Incandescent, (1) 60W lamp       | 60W incandescent |         | 1                 | 60         | 60         | 1.5 |
| 160E/1          | 160/ES       | Incandescent, (1) 60W ES lamp    | 60W incandescent |         | 1                 | 43         | 43         | 1.5 |
| 160EL/1         | I60/ES/LL    | Incandescent, (1) 60W ES/LL lamp | 60W incandescent |         | 1                 | 52         | 52         | 1.5 |
| 161/1           | 161          | Incandescent, (1) 61W lamp       | 61W incandescent |         | 1                 | 61         | 61         | 1.5 |
| 162/1           | 162          | Incandescent, (1) 62W lamp       | 62W incandescent |         | 1                 | 62         | 62         | 1.5 |
| 163/1           | 163          | Incandescent, (1) 63W lamp       | 63W incandescent |         | 1                 | 63         | 63         | 1.5 |
| 164/1           | 164          | Incandescent, (1) 64W lamp       | 64W incandescent |         | 1                 | 64         | 64         | 1.5 |
| 165/1           | 165          | Incandescent, (1) 65W lamp       | 65W incandescent |         | 1                 | 65         | 65         | 1.5 |
| 166/1           | 166          | Incandescent, (1) 66W lamp       | 66W incandescent |         | 1                 | 66         | 66         | 1.5 |
| 167/1           | 167          | Incandescent, (1) 67W lamp       | 67W incandescent |         | 1                 | 67         | 67         | 1.5 |
| 168/1           | 168          | Incandescent, (1) 68W lamp       | 68W incandescent |         | 1                 | 68         | 68         | 1.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                       | Layman Term       | BALLAST | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-----------------------------------|-------------------|---------|-------------------|------------|------------|-----|
| 169/1           | 169          | Incandescent, (1) 69W lamp        | 69W incandescent  |         | 1                 | 69         | 69         | 1.5 |
| 170/1           | 170          | Incandescent, (1) 70W lamp        | 70W incandescent  |         | 1                 | 70         | 70         | 1.5 |
| 171/1           | 171          | Incandescent, (1) 71W lamp        | 71W incandescent  |         | 1                 | 71         | 71         | 1.5 |
| 172/1           | 172          | Incandescent, (1) 72W lamp        | 72W incandescent  |         | 1                 | 72         | 72         | 1.5 |
| 173/1           | 173          | Incandescent, (1) 73W lamp        | 73W incandescent  |         | 1                 | 73         | 73         | 1.5 |
| 174/1           | 174          | Incandescent, (1) 74W lamp        | 74W incandescent  |         | 1                 | 74         | 74         | 1.5 |
| 175/1           | 175          | Incandescent, (1) 75W lamp        | 75W incandescent  |         | 1                 | 75         | 75         | 1.5 |
| I75E/1          | 175/ES       | Incandescent, (1) 75W ES lamp     | 75W incandescent  |         | 1                 | 53         | 53         | 1.5 |
| 175EL/1         | 175/ES/LL    | Incandescent, (1) 75W ES/LL lamp  | 75W incandescent  |         | 1                 | 67         | 67         | 1.5 |
| 180/1           | 180          | Incandescent, (1) 80W lamp        | 80W incandescent  |         | 1                 | 80         | 80         | 1.5 |
| 185/1           | 185          | Incandescent, (1) 85W lamp        | 85W incandescent  |         | 1                 | 85         | 85         | 1.5 |
| 190/1           | 190          | Incandescent, (1) 90W lamp        | 90W incandescent  |         | 1                 | 90         | 90         | 1.5 |
| 193/1           | 193          | Incandescent, (1) 93W lamp        | 93W incandescent  |         | 1                 | 93         | 93         | 1.5 |
| 195/1           | 195          | Incandescent, (1) 95W lamp        | 95W incandescent  |         | 1                 | 95         | 95         | 1.5 |
| 1100/1          | 1100         | Incandescent, (1) 100W lamp       | 100W incandescent |         | 1                 | 100        | 100        | 1.5 |
| 1100E/1         | 1100/ES      | Incandescent, (1) 100W ES lamp    | 100W incandescent |         | 1                 | 72         | 72         | 1.5 |
| 1100EL/1        | I100/ES/LL   | Incandescent, (1) 100W ES/LL lamp | 100W incandescent |         | 1                 | 90         | 90         | 1.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                       | Layman Term       | BALLAST | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL |
|-----------------|--------------|-----------------------------------|-------------------|---------|-------------------|------------|------------|-----|
| 1110/1          | 1110         | Incandescent, (1) 110W lamp       | 110W incandescent |         | 1                 | 110        | 110        | 1.5 |
| 1116/1          | 1116         | Incandescent, (1) 116W lamp       | 116W incandescent |         | 1                 | 116        | 116        | 1.5 |
| 1120/1          | 1120         | а                                 | 120W incandescent |         | 1                 | 120        | 120        | 1.5 |
| 1125/1          | 1125         | Incandescent, (1) 125W lamp       | 125W incandescent |         | 1                 | 125        | 125        | 1.5 |
| 1130/1          | 1130         | Incandescent, (1) 130W lamp       | 130W incandescent |         | 1                 | 130        | 130        | 1.5 |
| 1135/1          | 1135         | Incandescent, (1) 135W lamp       | 135W incandescent |         | 1                 | 135        | 135        | 1.5 |
| 1150/1          | 1150         | Incandescent, (1) 150W lamp       | 150W incandescent |         | 1                 | 150        | 150        | 1.5 |
| I150E/1         | 1150/ES      | Incandescent, (1) 150W ES lamp    | 150W incandescent |         | 1                 | 135        | 135        | 1.5 |
| 1150EL/1        | I150/ES/LL   | Incandescent, (1) 150W ES/LL lamp | 150W incandescent |         | 1                 | 135        | 135        | 1.5 |
| 1160/1          | 1160         | Incandescent, (1) 160W lamp       | 160W incandescent |         | 1                 | 160        | 160        | 1.5 |
| 1170/1          | 1170         | Incandescent, (1) 170W lamp       | 170W incandescent |         | 1                 | 170        | 170        | 1.5 |
| 1200/1          | 1200         | Incandescent, (1) 200W lamp       | 200W incandescent |         | 1                 | 200        | 200        | 1.5 |
| 1200L/1         | 1200/LL      | Incandescent, (1) 200W LL lamp    | 200W incandescent |         | 1                 | 200        | 200        | 1.5 |
| 1250/1          | 1250         | Incandescent, (1) 250W lamp       | 250W incandescent |         | 1                 | 250        | 250        | 1.5 |
| 1300/1          | 1300         | Incandescent, (1) 300W lamp       | 300W incandescent |         | 1                 | 300        | 300        | 1.5 |
| 1400/1          | 1400         | Incandescent, (1) 400W lamp       | 400W incandescent |         | 1                 | 400        | 400        | 1.5 |
| 1448/1          | 1448         | Incandescent, (1) 448W lamp       | 448W incandescent |         | 1                 | 448        | 448        | 1.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                               | Layman Term        | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W /<br>FIXT | EUL  |
|-----------------|--------------|-----------------------------------------------------------|--------------------|------------|-------------------|------------|-------------|------|
| 1500/1          | 1500         | Incandescent, (1) 500W lamp                               | 500W incandescent  |            | 1                 | 500        | 500         | 1.5  |
| 1750/1          | 1750         | Incandescent, (1) 750W lamp                               | 750W incandescent  |            | 1                 | 750        | 750         | 1.5  |
| 11000/1         | 11000        | Incandescent, (1) 1000W lamp                              | 1000W incandescent |            | 1                 | 1000       | 1000        | 1.5  |
| 11500/1         | 11500        | Incandescent, (1) 1500W lamp                              | 1500W incandescent |            | 1                 | 1500       | 1500        | 1.5  |
| 12000/1         | 12000        | Incandescent, (1) 2000W lamp                              | 2000W incandescent |            | 1                 | 2000       | 2000        | 1.5  |
| МН              |              | Metal Halide Fixtures - Standard, Pulse Start, or Ceramic |                    |            |                   |            |             |      |
| MH20/1-L        | MH20         | Metal Halide, (1) 20W lamp                                | 20W Metal Halide   | Electronic | 1                 | 20         | 23          | 15.5 |
| MH22/1-L        | MH22         | Metal Halide, (1) 22W lamp                                | 22W Metal Halide   | Electronic | 1                 | 22         | 26          | 15.5 |
| MH32/1          | MH32         | Metal Halide, (1) 32W lamp, Magnetic ballast              | 32W Metal Halide   | Magnetic   | 1                 | 32         | 42          | 15.5 |
| MH39/1          | МН39         | Metal Halide, (1) 39W lamp, Magnetic ballast              | 39W Metal Halide   | Magnetic   | 1                 | 39         | 51          | 15.5 |
| MH39/1-L        | МН39         | Metal Halide, (1) 39W lamp                                | 39W Metal Halide   | Electronic | 1                 | 39         | 44          | 15.5 |
| MH50/1          | MH50         | Metal Halide, (1) 50W lamp, Magnetic ballast              | 50W Metal Halide   | Magnetic   | 1                 | 50         | 64          | 15.5 |
| MH50/1-L        | MH50         | Metal Halide, (1) 50W lamp                                | 50W Metal Halide   | Electronic | 1                 | 50         | 56          | 15.5 |
| MH70/1          | MH70         | Metal Halide, (1) 70W lamp, Magnetic ballast              | 70W Metal Halide   | Magnetic   | 1                 | 70         | 91          | 15.5 |
| MH70/1-L        | MH70         | Metal Halide, (1) 70W lamp                                | 70W Metal Halide   | Electronic | 1                 | 70         | 78          | 15.5 |
| MH100/1         | MH100        | Metal Halide, (1) 100W lamp, Magnetic ballast             | 100W Metal Halide  | Magnetic   | 1                 | 100        | 124         | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                   | Layman Term       | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|-----------------------------------------------|-------------------|------------|-------------------|------------|------------|------|
| MH100/1-<br>L   | MH100        | Metal Halide, (1) 100W lamp                   | 100W Metal Halide | Electronic | 1                 | 100        | 108        | 15.5 |
| MH125/1         | MH125        | Metal Halide, (1) 125W lamp, Magnetic ballast | 125W Metal Halide | Magnetic   | 1                 | 125        | 148        | 15.5 |
| MH150/1         | MH150        | Metal Halide, (1) 150W lamp, Magnetic ballast | 150W Metal Halide | Magnetic   | 1                 | 150        | 183        | 15.5 |
| MH150/1-<br>L   | MH150        | Metal Halide, (1) 150W lamp                   | 150W Metal Halide | Electronic | 1                 | 150        | 163        | 15.5 |
| MH175/1         | MH175        | Metal Halide, (1) 175W lamp, Magnetic ballast | 175W Metal Halide | Magnetic   | 1                 | 175        | 208        | 15.5 |
| MH175/1-<br>L   | MH175        | Metal Halide, (1) 175W lamp                   | 175W Metal Halide | Electronic | 1                 | 175        | 196        | 15.5 |
| MH200/1         | MH200        | Metal Halide, (1) 200W lamp, Magnetic ballast | 200W Metal Halide | Magnetic   | 1                 | 200        | 228        | 15.5 |
| MH200/1-<br>L   | MH200        | Metal Halide, (1) 200W lamp                   | 200W Metal Halide | Electronic | 1                 | 200        | 219        | 15.5 |
| MH250/1         | MH250        | Metal Halide, (1) 250W lamp, Magnetic ballast | 250W Metal Halide | Magnetic   | 1                 | 250        | 288        | 15.5 |
| MH250/1-<br>L   | MH250        | Metal Halide, (1) 250W lamp                   | 250W Metal Halide | Electronic | 1                 | 250        | 275        | 15.5 |
| MH320/1         | MH320        | Metal Halide, (1) 320W lamp, Magnetic ballast | 320W Metal Halide | Magnetic   | 1                 | 320        | 362        | 15.5 |
| MH320/1-<br>L   | MH320        | Metal Halide, (1) 320W lamp                   | 320W Metal Halide | Electronic | 1                 | 320        | 343        | 15.5 |
| MH350/1         | MH350        | Metal Halide, (1) 350W lamp, Magnetic ballast | 350W Metal Halide | Magnetic   | 1                 | 350        | 391        | 15.5 |

| Fixture<br>Code | LAMP<br>CODE | DESCRIPTION                                    | Layman Term        | BALLAST    | LAMP<br>/<br>FIXT | W/<br>LAMP | W/<br>FIXT | EUL  |
|-----------------|--------------|------------------------------------------------|--------------------|------------|-------------------|------------|------------|------|
| MH350/1-<br>L   | MH350        | Metal Halide, (1) 350W lamp                    | 350W Metal Halide  | Electronic | 1                 | 350        | 375        | 15.5 |
| MH360/1         | MH360        | Metal Halide, (1) 360W lamp, Magnetic ballast  | 360W Metal Halide  | Magnetic   | 1                 | 360        | 418        | 15.5 |
| MH400/1         | MH400        | Metal Halide, (1) 400W lamp, Magnetic ballast  | 400W Metal Halide  | Magnetic   | 1                 | 400        | 453        | 15.5 |
| MH400/1-<br>L   | MH400        | Metal Halide, (1) 400W lamp                    | 400W Metal Halide  | Electronic | 1                 | 400        | 429        | 15.5 |
| MH450/1         | MH450        | Metal Halide, (1) 450W lamp, Magnetic ballast  | 450W Metal Halide  | Magnetic   | 1                 | 450        | 499        | 15.5 |
| MH450/1-<br>L   | MH450        | Metal Halide, (1) 450W lamp                    | 450W Metal Halide  | Electronic | 1                 | 450        | 486        | 15.5 |
| MH575/1         | MH575        | Metal Halide, (1) 575W lamp, Magnetic ballast  | 575W Metal Halide  | Magnetic   | 1                 | 575        | 630        | 15.5 |
| MH750/1         | MH750        | Metal Halide, (1) 750W lamp, Magnetic ballast  | 750W Metal Halide  | Magnetic   | 1                 | 750        | 812        | 15.5 |
| MH775/1         | MH775        | Metal Halide, (1) 775W lamp, Magnetic ballast  | 775W Metal Halide  | Magnetic   | 1                 | 775        | 843        | 15.5 |
| MH875/1         | MH875        | Metal Halide, (1) 875W lamp                    | 875W Metal Halide  | Magnetic   | 1                 | 875        | 939        | 15.5 |
| MH1000/<br>1    | MH1000       | Metal Halide, (1) 1000W lamp, Magnetic ballast | 1000W Metal Halide | Magnetic   | 1                 | 1000       | 1078       | 15.5 |
| MH1000/<br>1-L  | MH1000       | Metal Halide, (1) 1000W lamp                   | 1000W Metal Halide | Electronic | 1                 | 1000       | 1067       | 15.5 |
| MH1500/<br>1    | MH1500       | Metal Halide, (1) 1500W lamp, Magnetic ballast | 1500W Metal Halide | Magnetic   | 1                 | 1500       | 1605       | 15.5 |

| Fixture<br>Code            | LAMP<br>CODE    | DESCRIPTION                                                 | Layman Term         | BALLAST  | LAMP<br>/<br>FIXT | W/<br>LAMP  | W/<br>FIXT  | EUL         |
|----------------------------|-----------------|-------------------------------------------------------------|---------------------|----------|-------------------|-------------|-------------|-------------|
| MH1650/<br>1               | MH1650          | Metal Halide, (1) 1650W lamp                                | 1650W Metal Halide  | Magnetic | 1                 | 1650        | 1765        | 15.5        |
| MH2000/<br>1               | MH2000          | Metal Halide, (1) 2000W lamp                                | 2000W Metal Halide  | Magnetic | 1                 | 2000        | 2140        | 15.5        |
| MV                         |                 | Mercury Vapor Fixtures                                      |                     |          |                   |             |             |             |
| <u>MV40/1</u>              | <u>MV40</u>     | Mercury Vapor, (1) 40W lamp                                 | 40W Mercury Vapor   |          | <u>1</u>          | <u>40</u>   | <u>50</u>   | <u>15.5</u> |
| <u>MV50/1</u>              | <u>MV50</u>     | Mercury Vapor, (1) 50W lamp                                 | 50W Mercury Vapor   |          | <u>1</u>          | <u>50</u>   | <u>74</u>   | <u>15.5</u> |
| <u>MV75/1</u>              | <u>MV75</u>     | Mercury Vapor, (1) 75W lamp                                 | 75W Mercury Vapor   |          | <u>1</u>          | <u>75</u>   | <u>93</u>   | <u>15.5</u> |
| <u>MV100/1</u>             | <u>MV100</u>    | Mercury Vapor, (1) 100W lamp                                | 100W Mercury Vapor  |          | <u>1</u>          | <u>100</u>  | <u>125</u>  | <u>15.5</u> |
| <u>MV160/1</u>             | <u>MV160-SB</u> | Mercury Vapor, Self-Ballasted, (1) 160W self-ballasted lamp | 160W Mercury Vapor  |          | <u>1</u>          | <u>160</u>  | <u>160</u>  | <u>15.5</u> |
| <u>MV175/1</u>             | <u>MV175</u>    | Mercury Vapor, (1) 175W lamp                                | 175W Mercury Vapor  |          | <u>1</u>          | <u>175</u>  | <u>205</u>  | <u>15.5</u> |
| <u>MV250/1</u>             | <u>MV250</u>    | Mercury Vapor, (1) 250W lamp                                | 250W Mercury Vapor  |          | <u>1</u>          | <u>250</u>  | <u>290</u>  | <u>15.5</u> |
| <u>MV400/1</u>             | <u>MV400</u>    | Mercury Vapor, (1) 400W lamp                                | 400W Mercury Vapor  |          | <u>1</u>          | <u>400</u>  | <u>455</u>  | <u>15.5</u> |
| <u>MV700/1</u>             | <u>MV700</u>    | Mercury Vapor, (1) 700W lamp                                | 700W Mercury Vapor  |          | <u>1</u>          | <u>700</u>  | <u>780</u>  | <u>15.5</u> |
| <u>MV1000/</u><br><u>1</u> | <u>MV1000</u>   | Mercury Vapor, (1) 1000W lamp                               | 1000W Mercury Vapor |          | <u>1</u>          | <u>1000</u> | <u>1075</u> | <u>15.5</u> |

# **F.** Appendix **B**: References

## F.1.1. New Construction

#### F.1.1.1. References

ASHRAE. (2002). Guideline 14-2002, Measurement of Energy and Demand Savings. American Society of Heating, Refrigerating and Air-Conditioning.

ASHRAE. (2007). Standard 90.1-2007, Energy Standard for Buildings Except Low-Rise Residential. American Society of Heating, Refrigerating and Air-Conditioning.

CADMAC. (1998). Appendix J - Quality Assurance Guidelines For Statistical, Engineering, and Self-Report Methods for Estimating DSM Program Impacts. California DSM Measurement Advisory Council.

CPUC. (2004). The California Evaluation Framework. California Public Utilities Commission and the Project Advisory Board.

Crawley, D. B., Griffith, B. T., Hand, J. W., & Kummert, M. (2005). Contrasting The Capabilities of Building Energy Performance Simulation Programs.

IPMVP. (2006). Volume III, Part I: Concepts and Practices for Determining Energy Savings in New Construction. International Performance Measurement and Verification Protocol.

## F.1.2. Retrocomissioning

#### F.1.2.1. References

BPA. (2011a). Existing Building Commissioning: An M&V Protocol Application Guide. Bonneville Power Administration.

EVO. (2012). International Performance Measurement and Verification Protocol—Concepts and Options for Determining Energy and Water Savings, Volume 1. Efficiency Valuation Organization.

Itron Inc. (2008). San Diego Gas and Electric 2005–2005 *Retrocommissioning Program Final Report*. Prepared for Portland Energy Conservation Inc.

Luskay, L., Haasl, T., Irvine, L., and Frey, D. (2002). *Retrocommissioning Case Study— Applying Building Selection Criteria for Maximum Results.* Prepared for the International Conference for Enhanced Building Operations.

PECI. (2009). A Study on Energy Savings and Measure Cost Effectiveness of Existing Building Commissioning. Prepared for Lawrence Berkeley National Laboratory. Portland Energy Conservation Inc.

PECI. (2010). *Building Optimization Analysis Tool—Final Project Report to PG&E.* Prepared for Pacific Gas and Electric. Portland Energy Conservation Inc.

Seventhwave. (2018). Gunasingh,, S., Zhou, J., & Hackel, S. *Persistence of Savings from Retro-Commissioning Measures*. Prepared for ComEd. <u>https://slipstreaminc.org/sites/default/files/documents/publications/retrocommissioning-persistence-studyfinal-reportect-2018.pdf</u>

Thorne, J., and Nadel, S. (2003). *Retrocommissioning: Program Strategies to Capture Energy Savings in Existing Buildings.* Prepared for American Council for an Energy-Efficient Economy.

Tso, B., Hall, N., Lai, P., and Pulliam, R. (2007). *How Much Does Retrocommissioning Really Save? Results from Three Commissioning Program Evaluations in California.* Prepared for the International Energy Program Evaluation Conference.

## F.1.2.2. Bibliography

ASHRAE. (2002). *Guideline 14-2002: Measurement of Energy and Demand Savings.* American Society of Heating, Refrigerating and Air-Conditioning.

BPA. (2011b). *Regression for M&V: Reference Guide.* Bonneville Power Administration.

California Commissioning Collaborative. (2006). California Commissioning Guide: Existing Buildings.

California Public Utilities Commission. (2006). California Energy Efficiency Evaluation Protocols: Technical, Methodological, and Reporting Requirements for Evaluation Professionals.

Dethman, L., Kunkle, R., and Degens, P. (2007). *Chasing O&M Savings: Process Lessons from Two Pilot Programs in the Northwest.* Prepared for the International Energy Program Evaluation Conference.

Natural Resources Canada. (2009). Recommissioning (RCx) Tools Assessment Report.

Northeast Energy Efficiency Partnerships. (2010). Regional EM&V Methods and Savings Assumptions Guidelines.

RLW Analytics, Inc. (2008). 2004–2005 Los Angeles County—Internal Services Department/Southern California Edison/Southern California Gas Company Energy Efficiency Partnership Impact Evaluation Study. Prepared for California Public Utilities Commission.

U.S. Department of Energy Federal Energy Management Program. (2008). *M&V Guidelines: Measurement and Verification for Federal Energy Projects—Version 3.0.* 

U.S. Environmental Protection Agency. (2008). ENERGY STAR Building Upgrade Manual.

|                |                       |               |                       | PY1  | PY2  | PY3  | PY4  | PY5  | PY6  | PY7  | PY8  | PY9  | PY10 | PY11 | PY12 | PY13 | PY14 | PY15 | PY16 | PY17 | PY18 | PY19 | PY20 |      |
|----------------|-----------------------|---------------|-----------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| EUL (uncapped) | Measure               | slope<br>yr 1 | slope<br>other<br>yrs | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13   | 14   | 15   | 16   | 17   | 18   | 19   | 20   |
| 3.76           | Air<br>distribution   | 0.155         | 0.153                 | 1.00 | 0.85 | 0.69 | 0.54 | 0.38 | 0.23 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 8.17           | Plant<br>optimization | 0.155         | 0.040                 | 1.00 | 0.87 | 0.69 | 0.65 | 0.61 | 0.57 | 0.53 | 0.49 | 0.45 | 0.41 | 0.37 | 0.33 | 0.29 | 0.25 | 0.21 | 0.17 | 0.13 | 0.09 | 0.05 | 0.01 | 0.00 |
| 5.39           | Ventilation           | 0.050         | 0.137                 | 1.00 | 0.96 | 0.90 | 0.76 | 0.63 | 0.49 | 0.35 | 0.22 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 20.65          | Scheduling            | 0.120         | 0.007                 | 1.00 | 0.89 | 0.76 | 0.75 | 0.75 | 0.74 | 0.73 | 0.73 | 0.72 | 0.71 | 0.71 | 0.70 | 0.69 | 0.69 | 0.68 | 0.67 | 0.67 | 0.66 | 0.65 | 0.65 | 0.64 |
| 28.68          | Filters               | 0.270         | -0.180                | 1.00 | 0.76 | 0.46 | 0.64 | 0.82 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 6.13           | General               | 0.025         | 0.123                 | 1.00 | 0.98 | 0.95 | 0.83 | 0.70 | 0.58 | 0.46 | 0.33 | 0.21 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

## F.1.2.3. EUL Model Results

| Measure            | Persistence<br>(1-3) | Persistence<br>(4-7) | Persistence<br>(8+) | EUL<br>Uncapped | EUL<br>Capped<br>(yr 7) |
|--------------------|----------------------|----------------------|---------------------|-----------------|-------------------------|
| Air distribution   | 2.54                 | 1.23                 | 0.00                | 3.76            | 3.76                    |
| Plant optimization | 2.56                 | 2.36                 | 3.25                | 8.17            | 4.92                    |
| Ventilation        | 2.86                 | 2.23                 | 0.30                | 5.39            | 5.09                    |
| Scheduling         | 2.65                 | 2.97                 | 15.03               | 20.65           | 5.62                    |
| Filters            | 2.22                 | 3.46                 | 23.00               | 28.68           | 5.68                    |
| General            | 2.93                 | 2.57                 | 0.63                | 6.13            | 5.50                    |