2015 NEW ORLEANS IRP - DRAFT

Modeling Overview

FEBRUARY 26, 2015

NOTE: ALL IRP MATERIALS ARE PRELIMINARY & SUBJECT TO CHANGE PRIOR TO THE FINAL REPORT FILING.

The following topics will be discussed:

- Resource Actions from 2012 IRP
- Market Modeling
- Demand-Side Resource Optimization
- Supply-Side Resource Evaluation

RESOURCE ACTIONS FROM 2012 IRP

<u>2012 IRP</u>

1

Supply Side Existing Resources

Decision to deactivate Michoud 2 and 3

- Market opportunity for Union CCGT partially addresses nearterm need
- Supply Side New Resources

Ninemile 6 addition in 2015

Planned Amite South CCGT in 2020

<u>2015 IRP</u>

 Identify resources to fill remaining needs

5 Evaluate DSM and Supply-Side alternatives

Existing Capacity (excluding Michoud and NM6)

Reference Load Requirement

Industrial Renaissance Scenario

MISO MARKET MODELING

- The AURORA model is used to develop a projection of the future power market for each of the four scenarios.
- The AURORA model as configured for IRP analysis uses a zonal representation of MISO and 1st Tier markets.

Results of MISO Market Modeling (MISO North and South, excluding New Orleans)

	Industrial Renaissance (Ref. Case)	Business Boom	Distributed Disruption	Generation Shift
CCGT	46%	81%	98%	62%
СТ	55%	19%	3%	3%
Wind	0%	0%	0%	12%
Solar	0%	0%	0%	24%
Year of First Addition	2017	2017	2017	2017
Total GWs Added (through 2034)	59	65	39	101

MISO MARKET MODELING

PROJECTED MISO MARKET ADDITIONS BY YEAR

- ICF conducted a DSM Potential Study to develop high-level, long run achievable DSM program potential estimates for ENO over the 20-year planning horizon (2015-2034).
 - In total, 24 DSM programs were considered cost effective with a Total Resources Cost ("TRC") ratio of 1.0 or better. ICF developed hourly loadshapes and program cost projections representing three levels – low, reference, and high – of achievable DSM program savings. These load shapes and costs are the demand-side management inputs in the IRP analysis.

ENO Cumulative Net MW Savings Potential, by Scenario

DSM OPTIMIZATION

- The AURORA Capacity Expansion Model was used to develop a DSM portfolio for each of the scenarios.
- The result of this process was an optimal DSM portfolio for each scenario.

	IR Portfolio	BB Portfolio	DD Portfolio	GS Portfolio
DSM	14 Programs	12 Programs	16 Programs	17 Programs
DSM Maximum (MW)	41	26	40	43

Portfolio Design Mix

LOAD REQUIREMENTS FOR EACH SCENARIO

Distributed Disruption Scenario (MW)

AURORA CAPACITY EXPANSION - SUPPLY SIDE PORTFOLIOS

SUPPLY SIDE PORTFOLIO Design

listed in brown are the resources to be

evaluated in the IRP.

Industrial Renaissance, Business Boom, and Distributed Disruption Portfolio

Preliminary – Work in Progress

SUPPLY SIDE PORTFOLIO DESIGN

AURORA CAPACITY EXPANSION - SUPPLY SIDE PORTFOLIOS

Generation Shift Portfolio

Industrial Renaissance – CT Portfolio

Industrial Renaissance – CT/Solar Portfolio

Resource Addition	Capacit y (MW)	Effective Capacity (MW)
2019 CT	194	194
2020 Solar	100	25

Industrial Renaissance – CT/Wind Portfolio

Resource Addition	Capacit y (MW)	Effective Capacity (MW)
2019 CT	194	194
2020 Wind	100	14

Industrial Renaissance - CT/Wind-Solar Portfolio

*Resources listed in blue are existing and planned resources. Resources additions listed in brown are the resources to be evaluated in the IRP. Effective

Capacity (MW)

194

7

12.5

Capacit

y (MW)

194

50

50

SUPPLY SIDE PORTFOLIO DESIGN

INSTALLED CAPACITY MIX OF EACH PORTFOLIO IN 2034

PORTFOLIO ANALYSIS

Portfolio Ranking (Work in Progress)

	IR Scenario	BB Scenario	DD Scenario	GS Scenario
CT Portfolio				
CT/Solar Portfolio				
CT/Wind Portfolio				
CT/Wind-Solar Portfolio				
CCGT Portfolio				
Solar Portfolio				

- The variable cost results will be combined with the fixed costs of the incremental resource additions to yield the total forward revenue requirements excluding sunk costs of the portfolio.
- Evaluate portfolio performance based on ranking and range of outcomes.
- Assess portfolios based on their ability to balance planning objectives of reliability, cost, and risk.
- Develop portfolios for final reference plan based on performance and ability to meet planning objectives.

The following activities are planned:

- Perform production cost simulations using Aurora for each of the portfolios
- Estimate total forward revenue requirements excluding sunk costs for each portfolio
- Assess sensitivity of key uncertainties
- Identify reference portfolio plan and action plan
- Draft IRP Report is due in June 2015