The Economic Impacts of Risk

New Orleans – 100 Resilient Cities
Table of Contents / Agenda

• The Rising Cost of Disasters
• Natural Disaster Exposures of New Orleans
• Economics of Climate Adaptation
• Comprehensive Risk Management
• Case Studies
The Rising Cost of Disasters
The cost of disasters is growing and the portion absorbed by governments and its citizens are even greater.

Source: Swiss Re Economic Research & Consulting, sigma catastrophe database
Disasters place a significant burden on the public sector

- Despite prevention and mitigation efforts, no country can fully insulate itself against extreme natural disasters
- The brunt of economic losses from natural disasters ends up with individuals, corporations and governments, both on national and sub-national level
- Government budgets are impacted by:
 - Primary effects include immediate expenses for emergency relief efforts, costs for rebuilding public infrastructure or loss of capital and durable goods
 - Secondary effects, for instance, include lower economic growth, lower tax and non-tax revenues, budget deficits, increased indebtedness and costs from refinancing, higher inflation or currency movements
The proportion of economic losses absorbed by the USG: Is this sustainable?

Figure 4: Ratio of Total Federal Government Disaster Expenditures to Measured Losses
Source: Cummins, Suher, and Zanjani (2010)
Natural Disaster Exposures of New Orleans
Historical Tropical Cyclone Tracks
1891-2008

Source: Swiss Re CatNet
Storm Surge – Category 1 Hurricane

Source: Swiss Re CatNet/SLOSH
Storm Surge – Category 5 Hurricane

Source: Swiss Re CatNet/SLOSH
Storm Surge – Category 1 Hurricane

Source: Swiss Re CatNet/SLOSH
River Flood Exposure

Source: Swiss Re CatNet/FEMA
People Affected by Disasters

New Orleans' two greatest threats are river flooding and storm surge.

- Storm Surge: 528,000 people or 56% of the total population
- River Flood: 695,000 or 73% of the population
- Hurricane/Storm: 182,000 or 19% of the population

Source: Swiss Re CatNet
Mind the Risk – How does New Orleans compare to other cities?

- 13th globally for population exposed to storm surge
- 16th in the world for economic production lost (all perils)
- 7th globally for economic production lost to storm surge
- 4th in the United States for economic production lost (all perils)
Economics of Climate Adaptation
Analysis scope includes 77 counties along the Gulf Coast, involving an asset value of over $2 trillion

US Gulf coast case study

Key areas examined within 70 miles of the coast

<table>
<thead>
<tr>
<th>US Gulf Coast region and counties in scope¹</th>
<th>Basic metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 GDP ($M)</td>
<td>Counties 77</td>
</tr>
<tr>
<td>≤1,000</td>
<td></td>
</tr>
<tr>
<td>1,000-2,500</td>
<td></td>
</tr>
<tr>
<td>2,500-5,000</td>
<td></td>
</tr>
<tr>
<td>5,000-10,000</td>
<td></td>
</tr>
<tr>
<td>>10,000</td>
<td></td>
</tr>
<tr>
<td>Area 61,685 sq. mi</td>
<td></td>
</tr>
<tr>
<td>GDP $634 B</td>
<td></td>
</tr>
<tr>
<td>Population 11.7 million</td>
<td></td>
</tr>
</tbody>
</table>

Asset values by class

<table>
<thead>
<tr>
<th>Replacement value by class</th>
<th>$ Billions, 2010 dollars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>882</td>
</tr>
<tr>
<td>Commercial</td>
<td>455</td>
</tr>
<tr>
<td>Critical infrastructure</td>
<td>141</td>
</tr>
<tr>
<td>Agriculture/fisheries</td>
<td>6</td>
</tr>
<tr>
<td>Non-energy industrials</td>
<td>85</td>
</tr>
<tr>
<td>Electric utility assets</td>
<td>300</td>
</tr>
<tr>
<td>Oil & gas assets</td>
<td>499</td>
</tr>
<tr>
<td>Total</td>
<td>2,367</td>
</tr>
</tbody>
</table>

¹ Includes 30 Louisiana parishes

Source: ESRI; Energy Velocity

Source: ECA group
The risk profile of the region will shift going forward

US Gulf coast case study

Annual average expected loss in 2010 and 2030
$ Billions; 2010 dollars

- Extreme climate scenario
- Average climate scenario
- No climate change

Climate scenarios:
- 2010:
 - 14.2
- 2030:
 - 23.4
 - 18.8
- 2050:
 - 39.5
 - 34.6
 - 26.3

Percent of area’s capital investment:
- 2010: 7.6
- 2030: 6.8
- 2050: 6.4

Percent of GDP:
- 2010: 2.7
- 2030: 2.4
- 2050: 2.3

Average annual losses can increase significantly by 2100 (to $131-211 M)

1 No climate change; includes impact of subsidence
2 Based on BEA historical average of capital investment (private and total government expenditures) as a percentage of GDP

Source: Swiss Re
The risk profile of the region will shift going forward

US Gulf coast case study

Source: Swiss Re
More than 33% of loss can be averted by cost-effective measures

US Gulf coast case study

1 Estimated present value out to 2030 at 2009 dollars

Source: ECA group

Incremental increase in loss under average change $7.3 billion

Average annual loss in 2030 is $21.5 bn
Measures are analyzed in respect of costs (CapEx) and benefits (averted loss) in great detail.

US Gulf coast case study

<table>
<thead>
<tr>
<th>Category</th>
<th>Measure</th>
<th>Loss averted, 2030</th>
<th>CapEx required</th>
<th>Average C/B ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential/commercial</td>
<td>Improved building codes</td>
<td>1.4 $Billions</td>
<td>12 $Billions</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>Beach nourishment</td>
<td>0.1 $Billions</td>
<td>1 $Billions</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>Wetlands restoration</td>
<td>0.4 $Billions</td>
<td>25 $Billions</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>Levee systems</td>
<td>0.3 $Billions</td>
<td>18 $Billions</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>Improved standards for offshore platforms</td>
<td>1.7 $Billions</td>
<td>16 $Billions</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>Floating production systems</td>
<td>1.1 $Billions</td>
<td>18 $Billions</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>Replacing semi-subs with drill ships</td>
<td>0.5 $Billions</td>
<td>11 $Billions</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>Levees for refineries and petrochemical plants</td>
<td>0.7 $Billions</td>
<td>5 $Billions</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Improving resilience of electric utility systems</td>
<td>1.3 $Billions</td>
<td>15 $Billions</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>7.5 $Billions</td>
<td>76 $Billions</td>
<td></td>
</tr>
</tbody>
</table>

1. Included despite high C/B ratios due to strong co-benefits, risk aversion
2. Total capital investment, non-discounted, across 20 years

- The government may need to support or incentivize some private capital investment, e.g., by subsidizing homes in low-income areas built to higher building codes.

Source: ECA group
Comprehensive Risk Management
Country Risk Management: Making societies more resilient

• Societies are becoming more vulnerable as the risks they face become more interconnected

• Integrated risk management approaches can help countries to identify and prepare for risks

 Identification ➔ Assessment ➔ Prevention and Mitigation ➔ Adaptation

• Such an all-hazard approach demands a high level of coordination across government, political and private sector bodies

• A Country Risk Office or Ministry could be responsible for managing such a prioritized risk landscape, taking an holistic approach to risks before events occur and ultimately reducing the risk burden to society
The public and the private sector are exposed to a broad variety of risks.
SONAR: Early Warning System – What risks are on the horizon?

![Diagram showing potential risks with high, medium, and low impact over 1-3 years, 4-10 years, and >10 years.](image-url)
Case Studies
Case study Mexico: MultiCat - Funding for immediate relief efforts after disasters

Solution features

• Insured perils: Earthquake and hurricane
• Payments to be used for immediate emergency relief after a disaster
• Parametric catastrophe bond: USD 315 million
• Trigger type: Index
 – Earthquake: physical trigger (quake magnitude)
 – Hurricane: physical trigger (barometric pressure)
• Time horizon: October 2012 – November 2015
• Renewed cat bond launched through the World Bank’s MultiCat facility and third cat bond for Mexico

Involved parties

• Insured: Fund for Natural Disasters (FONDEN) of Mexico
• Reinsured: AGROASEMEX S.A.
• Arranger: World Bank Treasury
• Swiss Re: Co-lead manager and joint bookrunner
Case study Uruguay: Largest Energy Risk Transfer to Protect Against Drought Risk

Solution features

- Insured peril: Drought
- Payments to be used to purchase energy from alternative sources when drought conditions cause lack of hydro power
- Derivative contract: between UTE, Uruguayan state-owned hydro-electric power company, and World Bank Treasury. Risk is then placed in the market
- Payment mechanics:
 - Trigger: Level of rainfall monitored at weather stations
 - Settlement: Market price of brent crude oil
- Transaction Size: USD 500 million
- Largest of it's kind in the weather risk management market

Involved parties

- Client: UTE (Uruguayan state-owned power company)
- Arranger: World Bank Treasury
- Risk Takers: Swiss Re and Allianz
Case study United States: Alabama – First parametric cover for a government in an industrialized country

Solution features
- Insured peril: Hurricane
- Payments to offset economic costs of hurricanes
- Trigger type: Disaster occurring within a defined geographic area ("box") along coast ("cat-in-the-box")
- Trigger based on wind speed of hurricane eye as it passes through pre-determined box
- Payout in as little as two weeks
- Time horizon: July 2010 – July 2013
- First parametric catastrophe risk transfer for a government in an industrialized country

Involved parties
- Insured: State Insurance Fund of Alabama
- Swiss Re: Lead structurer and sole underwriter
Case study Caribbean: Caribbean Catastrophe Risk Insurance Facility (CCRIF)

Solution features

- The CCRIF offers parametric hurricane and earthquake insurance policies to 16 CARICOM governments.
- The policies provide immediate liquidity to participating governments when affected by events with a probability of 1 in 15 years or over.
- Member governments choose how much coverage they need up to an aggregate limit of USD 100 million.
- The mechanism will be triggered by the intensity of the event (modelled loss triggers).
- The facility responded to events and made payments:
 - Dominica & St. Lucia after earthquake (2007)
 - Turks & Caicos after Hurricane Ike (2008)
 - Haiti, Barbados, St. Lucia, Anguilla and St. Vincent (2010)

Involved parties

- Reinsurers: Swiss Re and other overseas reinsurers
- Reinsurance program placed by Guy Carpenter
- Derivative placed by World Bank Treasury
Legal notice

©2014 Swiss Re. All rights reserved. You are not permitted to create any modifications or derivative works of this presentation or to use it for commercial or other public purposes without the prior written permission of Swiss Re.

The information and opinions contained in the presentation are provided as at the date of the presentation and are subject to change without notice. Although the information used was taken from reliable sources, Swiss Re does not accept any responsibility for the accuracy or comprehensiveness of the details given. All liability for the accuracy and completeness thereof or for any damage or loss resulting from the use of the information contained in this presentation is expressly excluded. Under no circumstances shall Swiss Re or its Group companies be liable for any financial or consequential loss relating to this presentation.